Practice Problems for Midterm 2

1. Let A and B be sets of real numbers. Define the sets A + B and $A \cdot B$ as follows:

$$A + B = \{x + y : x \in A \text{ and } y \in B\}, A \cdot B = \{xy : x \in A \text{ and } y \in B\}.$$

- (a) If A and B are bounded above, prove that A+B is also bounded above and that lub(A+B) = lub(A) + lub(B).
- (b) If A and B are sets of nonnegative numbers which are bounded above, prove that $A \cdot B$ is bounded above and that $lub(A \cdot B) = lub(A) \cdot lub(B)$. Give an example to show that $A \cdot B$ might have no upper bound if A and B are bounded above but are allowed to contain negative numbers.
- 2. Let $S = \{\cos(m/n) : m, n \in \mathbf{Z}^+\}$. What are lub(S) and glb(S)? Is S a closed set? Is S a countable set?
- 3. Let a_1 and b_1 be any two positive numbers with $a_1 < b_1$. Define sequences $\{a_n\}$ and $\{b_n\}$ by

$$a_{n+1} = \sqrt{a_n b_n}, \quad b_{n+1} = \frac{1}{2}(a_n + b_n), \quad n = 1, 2, \dots$$

Prove that the sequences converge and have the same limit. [Hint: Show by induction that $\{a_n\}$ is an increasing sequence bounded above by b_1 and that $\{b_n\}$ is a decreasing sequence bounded below by a_1 . Conclude that each sequence has a limit. Take limits on both sides of the equation $b_{n+1} = \frac{1}{2}(a_n + b_n)$ to show that the limits are the same.]

- 4. Show *directly* (i.e., without using the theorem that a convergent sequence is Cauchy) that each of the following sequences is a Cauchy sequence:
 - (a) $\left\{\frac{1}{n}\right\}$
 - (b) $\left\{\frac{(-1)^n}{n}\right\}$
 - (c) 3, 3.3, 3.33, 3.333, ..., where the *n*th number in the sequence is $\sum_{i=0}^{n-1} (3/10^i)$.
- 5. Try exercise 5 on p. 83 of the text, exercises 4 and 5 on p. 516-517, and the exercise on p. 523.