Partial Solutions for Practice Problems for Midterm 2

1. Let A and B be sets of real numbers. Define the sets A + B and $A \cdot B$ as follows:

```
A + B = \{x + y : x \in A \text{ and } y \in B\}, A \cdot B = \{xy : x \in A \text{ and } y \in B\}.
```

(a) If A and B are bounded above, prove that A + B is also bounded above and that lub(A + B) = lub(A) + lub(B).

Let $M_A = \text{lub}(A)$ and $M_B = \text{lub}(B)$. Then if $x \in A$ and $y \in B$, then $x \leq M_A$ and $y \leq M_B$, so $x + y \leq M_A + M_B$; hence $M_A + M_B$ is an upper bound for A + B. For any $\epsilon > 0$, there is a number $\hat{x} \in A$ such that $\hat{x} > M_A - \epsilon/2$ and there is a number $\hat{y} \in B$ such that $\hat{y} > M_B - \epsilon/2$. Hence $\hat{x} + \hat{y} > (M_A + M_B) - \epsilon$. Therefore $M_A + M_B = \text{lub}(A + B)$.

(b) If A and B are sets of nonnegative numbers which are bounded above, prove that $A \cdot B$ is bounded above and that $lub(A \cdot B) = lub(A) \cdot lub(B)$. Give an example to show that $A \cdot B$ might have no upper bound if A and B are bounded above but are allowed to contain negative numbers.

Let $M_A = \text{lub}(A)$ and $M_B = \text{lub}(B)$. Then if $x \in A$ and $y \in B$, then $x \leq M_A$ and $y \leq M_B$, so (since x and y are nonnegative) $xy \leq M_A \cdot M_B$. Therefore $M_A \cdot M_B$ is an upper bound for $A \cdot B$. If $M_A = 0$ or $M_B = 0$, then $M_A \cdot M_B = 0$, and clearly this is the least upper bound for $A \cdot B$, since its elements are nonnegative and, in this case, it would have to consist of the single element 0. Assume, then, that $M_A > 0$ and $M_B > 0$. For any $\epsilon > 0$, there is a number $\hat{x} \in A$ such that $\hat{x} > M_A - \epsilon/(M_A + M_B)$ and a number $\hat{y} \in B$ such that $\hat{y} > M_B - \epsilon/(M_A + M_B)$. Then $\hat{x}\hat{y} > (M_A - \epsilon/(M_A + M_B)) \cdot (M_B - \epsilon/(M_A + M_B)) = M_A \cdot M_B - \epsilon + \epsilon^2/(M_A + M_B)^2 > M_A \cdot M_B - \epsilon$. Therefore $M_A \cdot M_B$ is the least upper bound for $A \cdot B$.

If $A = \{x : x \leq 1\}$ and $B = \{y : y \leq 2\}$, since A and B have arbitrarily large (in absolute value) negative numbers and since the product of two negative numbers is positive, $A \cdot B$ has arbitrarily large positive numbers and so is not bounded above by $M_A \cdot M_B = 2$.

2. Let $S = \{\cos(m/n) : m, n \in \mathbf{Z}^+\}$. What are lub(S) and glb(S)? Is S a closed set? Is S a countable set?

 $\operatorname{lub}(S) = 1$ and $\operatorname{glb}(S) = -1$, since these are the lub and glb of $\cos(x)$ for $x \in \mathbf{R}^+$, and any x in \mathbf{R}^+ (e.g., $x = \pi$ or $x = 2\pi$) can be arbitrarily well approximated by a positive rational number, and then since cosine is a continuous function, the cosine of a rational number sufficiently close to x

will be close to $\cos(x)$. [This is informal. It could be made precise with ϵ 's and δ 's, but I wasn't suggesting that you do that.]

S is not a closed set, since it does not contain the limit point -1, as $\cos(x) = -1$ if and only if x is an odd integer multiple of π , but such x's are irrational. Also, S does not contain the limit point 1, since neither 0 nor any other integer multiple of 2π can be written in the form m/n where $m, n \in \mathbb{Z}^+$. S is countable, since it can be put in 1-1 correspondence with the positive rationals, which can be put in 1-1 correspondence with the positive integers.

3. Let a_1 and b_1 be any two positive numbers with $a_1 < b_1$. Define sequences $\{a_n\}$ and $\{b_n\}$ by

 $a_{n+1} = \sqrt{a_n b_n}, \quad b_{n+1} = \frac{1}{2}(a_n + b_n), \quad n = 1, 2, \dots$

Prove that the sequences converge and have the same limit. [Hint: Show by induction that $\{a_n\}$ is an increasing sequence bounded above by b_1 and that $\{b_n\}$ is a decreasing sequence bounded below by a_1 . Conclude that each sequence has a limit. Take limits on both sides of the equation $b_{n+1} = \frac{1}{2}(a_n + b_n)$ to show that the limits are the same.]

First note that since a_1 and b_1 are positive, all a_n and b_n are positive. This can be shown by induction. If a_n and b_n are positive, a_{n+1} , being the square root of a positive number, is positive, and b_{n+1} , being the average of two positive numbers, is positive.

We now show by induction that $a_n < b_n$ for all $n \in \mathbb{Z}^+$. We are told that this holds for n=1. Assuming that $a_n < b_n$, we will show that $a_{n+1} < b_{n+1}$. We have $a_{n+1}^2 = a_n b_n$ and $b_{n+1}^2 = \frac{1}{4}(a_n^2 + 2a_n b_n + b_n^2)$. Hence $b_{n+1}^2 - a_{n+1}^2 = \frac{1}{4}(a_n^2 - 2a_n b_n + b_n^2) = \frac{1}{4}(a_n - b_n)^2 > 0$. [Since $(a_n - b_n)^2 \ge 0$ for any a_n and b_n , we wouldn't even need the induction hypothesis to prove the statement with > replaced by \ge , but it certainly follows from the induction hypothesis that $(a_n - b_n)^2 > 0$.] Since a_{n+1} and a_{n+1} are positive numbers, this implies that $a_{n+1} < b_{n+1}$.

It follows that $a_{n+1} = \sqrt{a_n b_n} > \sqrt{a_n a_n} = a_n$, so $\{a_n\}$ is an increasing sequence. Also, $b_{n+1} = \frac{1}{2}(a_n + b_n) < \frac{1}{2}(b_n + b_n) = b_n$, so $\{b_n\}$ is a decreasing sequence. Since each a_n is less than b_n , which is less than or equal to b_1 , $\{a_n\}$ is an increasing sequence bounded above by b_1 . Since each b_n is greater than a_n , which is greater than or equal to a_1 , $\{b_n\}$ is a decreasing sequence bounded below by a_1 . Threfore each sequence has a limit, say, $\lim_{n\to\infty} a_n = a$ and $\lim_{n\to\infty} b_n = b$. Taking limits on both sides in the equation $b_{n+1} = \frac{1}{2}(a_n + b_n)$, and using the fact that the limit of a sum is the sum of the limits and the limit of a scalar multiple of a sequence is the scalar multiple of the limit, we find $b = \frac{1}{2}(a + b)$, or, a = b.

- 4. Show *directly* (i.e., without using the theorem that a convergent sequence is Cauchy) that each of the following sequences is a Cauchy sequence:
 - (a) $\left\{\frac{1}{n}\right\}$

 $\left|\frac{1}{n} - \frac{1}{m}\right| \le \frac{1}{n} + \frac{1}{m}$. Given $\epsilon > 0$, let $N = 2/\epsilon$. Then n, m > N implies $1/n < \epsilon/2$ and $1/m < \epsilon/2$; hence $1/n + 1/m < \epsilon$. Therefore this sequence is Cauchy.

(b) $\left\{\frac{(-1)^n}{n}\right\}$

Since $\left|\frac{(-1)^n}{n} - \frac{(-1)^m}{m}\right| \le \frac{1}{n} + \frac{1}{m}$, use same argument as in (a).

(c) 3, 3.3, 3.33, 3.333, ..., where the *n*th number in the sequence is $\sum_{i=0}^{n-1} (3/10^i)$.

Let m > n. Then

$$|x_m - x_n| = \left| \sum_{i=n}^{m-1} (3/10^i) \right| = \frac{3}{10^n} \sum_{i=0}^{m-n-1} \frac{1}{10^i} = \frac{3}{10^n} \frac{1 - (1/10)^{m-n}}{1 - (1/10)} < \frac{3}{10^n} \cdot \frac{10}{9}.$$

Since the right-hand side goes to 0 as $n \to \infty$, given any $\epsilon > 0$, there is an N such that m > n > N implies $|x_m - x_n| < \epsilon$. Therefore this is a Cauchy sequence.