Week 9 Worksheet
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1. (a) Find Pa(t) for A= =16 5 2 0 0| and list the eigenvalues for A.
7 19 13 0 0
6 82 -1 1 3
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(b) The matrix A is known as a 'EV-‘ a"\(’\ \/\\(AV' matrix. Explain how to find P4(t) and
the eigenvalues for these matrices.
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2. (a) Let D = 8 _01 8 8 . Calculate D3.
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(b) The matrix D is known as a &(qu V\(L\ matrix. Explain how to calculate D* for
these matrices. k
’ C © 0 ..--0
- d, N
D 7T T
AT
Lo - - 07 du
(c) Multiplying matrices like D is _ t A S\{ ___when compared to multiplying matrices in

general.



3. The matrices P, P!, and D are given below.
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(a) Define A = PDP~!. Calculate A.

(b) Calculate Pa(t).
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4. What conclusions can you make in the last problem? What are the entries in D in relation to A?
What are the columns of P in relation to A? Is there any relationship between the entries of D and
the columns of P?
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Goal: Given a matrix A, find P (invertible) and D (diagonal) where A = PDP~". To try this right

away, skip the next problem for now and go to the next page.

5. The Unifying Theorem: The Final Chapter
Let A be an n x n matrix. A few of the many parts of the Unifying Theorem are:

A is invertible <= null(A) = {6} <= det(A) #0

With this in mind, try to add something about eigenvalues to the Unifying Theorem. Hint: Either
consider E)(A) or P4(t), and come up with a string of a few “if and only if” statements. You should
start with one of the statements above (or its negation) and end with a statement about eigenvalues.
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6. Let A= [3 2 3] . We are told that P(t) = (2 — t)?(5 — t). Find an invertible matrix P and a
3 0 5

diagonal matrix D such that A = PDP~!. (Hint: Reverse engineer the process in Problem 3.)
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7. Let M = l121 _11 2 . What is M*°? (You should be able to answer this question relatively quickly

using one of the preceding problems.) Q“\\&?O "V“'\
N, from ®3, Tt M= P DP"

So M= PDP' PP PDPT = PRRET
\__/\/_\—/

K Hmes§

foam  p= PO

S

10 _ 3 2 q" - SOM'-"\AD
N\ —X \ ,][O S'D][’) 3] l’\d.(n

99



8. Let A= B _53 . Find an invertible matrix P and a diagonal matrix D such that A = PDP~! or

explain why this is impossible.
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9. (a) Definition. An n x n matrix A is D] AGONAL'%ABLE if we can write A= PDP™!
where D is a diagonal matrix. Go through the last few problems and determine whether the given
matrices had this property or not.

(b) Theorem. (6.9) Let A be an n X n matrix. Then A is é«QO\DWL\\% a-"\)u' if and only if
there is a basis B = {7, ..., U, } for R™ where each #; is an eigé’nvector of A.

Explain why this theorem is true. (Hint: Think about how we’ve been constructing D and
especially P in the previous examples.)
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10. (a) Theorem A. (6.10) Let A be an n x n matrix. Let A1, Ag, .. ., A, be distinct eigenvalues of A and
let vy, 0o, .. ., U be corresponding eigenvalues (i.e., AU; = \;v;). Then the set {v}, 0, ..., Uk} is

LINEARLY TNDEPENDENT

(b) Theorem B. (6.11) Let A be an n x n matrix. For each eigenvalue A of A, say that m, is the

LY
multiplicity of A in P4(¢). Then A is diagonalizable if and only é" M(.E?]‘(ABB = m, for
each eigenvalue . - ———

Assume that Theorem A is true. Explain why Theorem B is true.
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11. Let Py (t) = (=2 — t)(5 — t)(8 — 1). E—

(a) M is a 3 x % matrix.
(b) The eigenvalues of M are -1 3 S LY %
(c) Is M guaranteed to be diagonalizable? Explain. (Note: See Theorem 6.12 in our textbook.)
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(d) What is det(M)? Is M invertible?
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