Week 9 Worksheet

1. (a) Find $P_{A}(t)$ for $A=\left[\begin{array}{ccccc}11 & 0 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 & 0 \\ -16 & 5 & 2 & 0 & 0 \\ 7 & 19 & 13 & 0 & 0 \\ 6 & 82 & -1 & 1 & 3\end{array}\right]$ and list the eigenvalues for A.
(b) The matrix A is known as a \qquad matrix. Explain how to find $P_{A}(t)$ and the eigenvalues for these matrices.
2. (a) Let $D=\left[\begin{array}{cccc}2 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 5\end{array}\right]$. Calculate D^{3}.
(b) The matrix D is known as a \qquad matrix. Explain how to calculate D^{k} for these matrices.
(c) Multiplying matrices like D is \qquad when compared to multiplying matrices in general.
3. The matrices P, P^{-1}, and D are given below.

$$
P=\left[\begin{array}{ll}
3 & 2 \\
1 & 1
\end{array}\right] \quad P^{-1}=\left[\begin{array}{cc}
1 & -2 \\
-1 & 3
\end{array}\right] \quad D=\left[\begin{array}{ll}
7 & 0 \\
0 & 5
\end{array}\right]
$$

(a) Define $A=P D P^{-1}$. Calculate A.
(b) Calculate $P_{A}(t)$.
(c) Find bases for each of the eigenspaces of A.
4. What conclusions can you make in the last problem? What are the entries in D in relation to A ? What are the columns of P in relation to A ? Is there any relationship between the entries of D and the columns of P ?

Goal: Given a matrix A, find P (invertible) and D (diagonal) where $A=P D P^{-1}$. To try this right away, skip the next problem for now and go to the next page.

5. The Unifying Theorem: The Final Chapter

Let A be an $n \times n$ matrix. A few of the many parts of the Unifying Theorem are:

$$
A \text { is invertible } \Longleftrightarrow \operatorname{null}(A)=\{\overrightarrow{0}\} \Longleftrightarrow \operatorname{det}(A) \neq 0
$$

With this in mind, try to add something about eigenvalues to the Unifying Theorem. Hint: Either consider $E_{\lambda}(A)$ or $P_{A}(t)$, and come up with a string of a few "if and only if" statements. You should start with one of the statements above (or its negation) and end with a statement about eigenvalues.
6. Let $A=\left[\begin{array}{lll}2 & 0 & 0 \\ 3 & 2 & 3 \\ 3 & 0 & 5\end{array}\right]$. We are told that $P_{A}(t)=(2-t)^{2}(5-t)$. Find an invertible matrix P and a diagonal matrix D such that $A=P D P^{-1}$. (Hint: Reverse engineer the process in Problem 3.)
7. Let $M=\left[\begin{array}{cc}11 & -12 \\ 2 & 1\end{array}\right]$. What is M^{10} ? (You should be able to answer this question relatively quickly using one of the preceding problems.)
8. Let $A=\left[\begin{array}{cc}5 & -3 \\ 0 & 5\end{array}\right]$. Find an invertible matrix P and a diagonal matrix D such that $A=P D P^{-1}$ or explain why this is impossible.
9. (a) Definition. An $n \times n$ matrix A is \qquad if we can write $A=P D P^{-1}$ where D is a diagonal matrix. Go through the last few problems and determine whether the given matrices had this property or not.
(b) Theorem. (6.9) Let A be an $n \times n$ matrix. Then A is \qquad if and only if there is a basis $\mathcal{B}=\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$ for \mathbb{R}^{n} where each \vec{v}_{i} is an eigenvector of A.

Explain why this theorem is true. (Hint: Think about how we've been constructing D and especially P in the previous examples.)
10. (a) Theorem A. (6.10) Let A be an $n \times n$ matrix. Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ be distinct eigenvalues of A and let $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{k}$ be corresponding eigenvalues (i.e., $A \vec{v}_{i}=\lambda_{i} \vec{v}_{i}$). Then the set $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{k}\right\}$ is
\qquad .
(b) Theorem B. (6.11) Let A be an $n \times n$ matrix. For each eigenvalue λ of A, say that m_{λ} is the multiplicity of λ in $P_{A}(t)$. Then A is diagonalizable if and only \qquad $=m_{\lambda}$ for each eigenvalue λ.

Assume that Theorem A is true. Explain why Theorem B is true.
11. Let $P_{M}(t)=(-2-t)(5-t)(8-t)$.
(a) M is a \qquad \times \qquad matrix.
(b) The eigenvalues of M are \qquad .
(c) Is M guaranteed to be diagonalizable? Explain. (Note: See Theorem 6.12 in our textbook.)
(d) What is $\operatorname{det}(M)$? Is M invertible?

