Week 6 Worksheet

1. (a) Let $S=\operatorname{null}\left(\left[\begin{array}{cccc}1 & -3 & 0 & 1 \\ 0 & 0 & 1 & -2\end{array}\right]\right)$.
(i) S \qquad a subspace of \qquad because \qquad .
(ii) Rewrite S as the span of one or more vectors.
(b) Let S be the solution set to

$$
\begin{aligned}
-2 x_{1}+3 x_{2} & =0 \\
x_{1}-2 x_{2} & =0 \\
3 x_{1}+x_{2} & =0
\end{aligned}
$$

(i) S \qquad a subspace of \qquad because \qquad
(ii) Rewrite S as the null space of a matrix.
(c) Let $S=\operatorname{span}\left\{\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right],\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right]\right\}$.
(i) S \qquad a subspace of \qquad because \qquad
(ii) Rewrite S as the solution set of a system of homogeneous linear equations.
2. Let $S=\operatorname{span} V$ where $V=\left\{\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{c}-2 \\ -2 \\ 0 \\ -2\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}1 \\ 0 \\ -1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 3 \\ 2 \\ 1\end{array}\right]\right\}$.
(a) Just by looking at the number of vectors in V, we know that $\operatorname{dim} S$ \qquad . Explain:
(b) Since $S \subseteq \mathbb{R}$-, we actually know that $\operatorname{dim} S$ \qquad . Explain:
(c) Use "Option 1" from Wednesday's class to find a basis for S.
(d) Use "Option 2" from Wednesday's class to find a basis for S.
(e) From either (c) or (d), we now know that $\operatorname{dim} S$ \qquad .
3. Let S be a subspace of \mathbb{R}^{n}.
(a) Why might it be helpful to write S as the span of some vectors?
(b) Why might it be helpful to write S as the null space of a matrix (or the solution to a system of homogeneous linear equations)?
4. This question is about subspaces in general. However, it might be helpful to consider the example $S=\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}2 \\ 2 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]\right\}$ while answering them.
(a) Can using "Option 1" change the vectors in question? Can "Option 2" change the vectors?
(b) Why do we use the original columns in "Option 2"? Can we use the original rows in "Option 1"?
5. Define $S_{1}=\left\{\left[\begin{array}{l}x \\ y \\ z\end{array}\right]: x-y+2 z=0\right.$ and $\left.y-z=0\right\}$ and $S_{2}=\operatorname{span}\left\{\left[\begin{array}{c}-1 \\ -1 \\ 1\end{array}\right],\left[\begin{array}{c}1 \\ 2 \\ -1\end{array}\right]\right\}$.
(a) One of these subspaces is contained in the other. Determine which and explain why.
(b) Find a basis for the subspace that is contained in the other subspace.
(c) Extend the basis that you found in Part (b) to a basis for the other subspace.
6. For each of the following, \mathcal{B} is not a basis for S. For each, explain why.
(a) $S=\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right],\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right]\right\} \quad \mathcal{B}=\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right]\right\}$.
(b) $S=\left\{\vec{x} \in \mathbb{R}^{4}: x_{1}+x_{3}-x_{4}=0\right\} \quad \mathcal{B}=\left\{\left[\begin{array}{c}-1 \\ 0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 1\end{array}\right]\right\}$.
(c) $S=\mathbb{R}^{2} \quad \mathcal{B}=\left\{\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}1 \\ -1 \\ 0\end{array}\right]\right\}$.
(d) $S=\operatorname{null}\left[\begin{array}{cccc}1 & 0 & 2 & 1 \\ 0 & 1 & -1 & 0\end{array}\right] \quad \mathcal{B}=\left\{\left[\begin{array}{c}-2 \\ 1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}-1 \\ 0 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{c}0 \\ 1 \\ 1 \\ -2\end{array}\right]\right\}$.

7. The Unifying Theorem

Let $S=\left\{\vec{a}_{1}, \ldots, \vec{a}_{n}\right\}$ be a set of vectors in \mathbb{R}^{n}. Define $A=\left[\vec{a}_{1} \ldots \vec{a}_{n}\right]$, and let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be defined $T(\vec{x})=A \vec{x}$. The following are equivalent.
(a) S spans \mathbb{R}^{n}.
(b) S is linearly independent.
(c) $A \vec{x}=\vec{b}$ has a unique solution for all $\vec{b} \in \mathbb{R}^{n}$.
(d) T is onto.
(e) T is one-to-one.
(f) A is invertible.
(f.5) T is invertible.
(g) \qquad (Something involving the kernel of T)
(g.5) \qquad (Something involving the null space of A)
(h) \qquad (Something involving a basis)

