Week 1 Worksheet
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1. Given a system of equations, is it guaranteed that the Gaussian Elimination process will eventually
stop? Explain your answer. Use your answer to make some connection between systems in general and
systems in echelon form.
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2. (a) A system is in reduced echelon form if
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(b) With part (a) in mind, describe how you can modify Gaussian Elimination to find an equivalent ' °
system in reduced echelon form. This is called Gauss-Jordan elimination.
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3. Use Gauss-Jordan elimination to put the following system into reduced echelon form. Use this to solve

the system.
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4. (Number of solutions; Theorem 1.3 in textbook.) Theorem: A system of equations has either
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Use tools we have develoged (augmented matrices, Gaussian-Elimination, echelon form

why this theorem is true.
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5. (GeoGebra) Consider Problem 3. Put the given three planes into GeoGebra. Then put each new plane
that your row operations created into GeoGebra as well. Notice that row operations (a) and (b) do
not change the planes, but row operation (c) does. However, what does row operation (c) keep the
same? (To help answer this, just look at the two rows used in operation (c) and determine what

happens to them.)
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6. The points (1, —1,0), (1,0,2), and (0, =1, 1) all lie on a plane in R3. This plane can be written
ar + by + cz = d.
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Is there more than one possibility for a, b, c,d? Do these different values correspond to different
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