Math 461
Friday, March 6
Chapter 12 In-class problems I
0. (a) What is a planar graph?
(b) State Euler's theorem on connected planar graphs as an alternating sum of V, E, and F. (Where V, E, and F are the number of vertices, edges, and faces respectively.)
(c) It's possible to draw a given planar graph G in many ways. Will any planar drawing of G have the same number of faces? Why or why not?
(d) If we simply know the definition of planar (and not any subsequent tools), which is easier, showing that a graph is planar or showing that it's not planar? Why?

1. Is $K_{2,2,2}$ planar?
2. Let G be a connected simple planar graph with $V \geq 3$.
(a) Prove that $3 F \leq 2 E$.
(b) Prove that $E \leq 3 V-6$.
(c) Are Parts (a) and (b) true if G is not simple?
3. (a) Does 2(b) say anything about K_{5} ?
(b) Does 2(b) say anything about $K_{3,3}$?
4. (a) Let G be a connected simple planar graph. Prove that G has a vertex v such that $\operatorname{deg}(v) \leq 5$.
(b) Is this true if G is not simple?
5. (a) Let G be a connected simple planar graph with $V \geq 3$. Show that if G does not contain any triangles then $E \leq 2 V-4$.
(b) Does Part (a) say anything about $K_{3,3}$?
6. (a) What does it mean for two graphs G and H to be edge-equivalent? (This is also called homeomorphic.)
(b) Give an example of two graphs that are homeomorphic but not isomorphic. Are isomorphic graphs always homeomorphic?
(c) Kuratowski's Theorem. A graph G is planar if and only if it does not contain a subgraph that is homeomorphic to K_{5} and $K_{3,3}$.
Don't prove this statement, but explain some of the implications.
7. The following is known as the Petersen graph. Graph theorists love it. Determine whether the Petersen graph is planar.

