Math 461 Wednesday, January 22 Chapter 4 In-class problems I

- 0. Why are binomial coefficients called binomial coefficients?
- 1. How many ways are there to place m indistinguishable balls into ℓ distinguishable boxes?

2. It turns out that
$$\sum_{k=2}^{n} k(k-1) \binom{n}{k} = n(n-1)2^{n-2}$$
 for any integer $n \ge 2$.

- (a) Prove this fact using the binomial theorem and *calculus*.
- (b) Prove this fact using a "combinatorial proof." That is, find some quantity that is counted by each side of the equation.
- (c) The reading showed that $\sum_{k=1}^{n} k \binom{n}{k} = n2^{n-1}$ for any integer $n \ge 1$, and the above equation is a generalization of this. Can you generalize this even further? How far? (You don't need to prove it, but you should know how to.)
- 3. Let k < n be positive integers. Show that $\sum_{i=k}^{n} \binom{n}{i} \binom{i}{k} = 2^{n-k} \binom{n}{k}$ using a combinatorial proof.
- 4. How many subsets of [n] are strictly larger than their complements?
- 5. Let $k, m, n \in \mathbb{Z}_{\geq 0}$ such that $k + m \leq n$. Give a combinatorial proof to show that

$$\binom{n}{m}\binom{n-m}{k} = \binom{n}{k}\binom{n-k}{m}.$$

- 6. Fermat's Little Theorem says that if $a \in \mathbb{Z}$ and p is prime, then $a^p \equiv a \pmod{p}$. We'll prove a simplified version of this. (Btw, when I was an undergrad I was convinced that Fermat was a fraud. Look up what he's said about margins in paticular.)
 - (a) Let N be a necklace with p beads. We have a colors to use where a > 1. How many ways can we color the beads of N using at least two colors? Assume here that any rotation or flip of the necklace is a different coloring.
 - (b) Now assume that colorings are the same if one can be obtained from the other via rotation. How many of these are there? How does this prove the above result?
- 7. A sequence a_0, a_1, a_2, \ldots is **unimodal** if there exists some $i \in \mathbb{Z}_{\geq 0}$ such that $a_j \leq a_{j+1}$ if $j \leq i$ and $a_j \geq a_{j+1}$ if j > i. Prove that the binomial coefficients $\binom{n}{0}, \binom{n}{1}, \ldots, \binom{n}{n}$ form a unimodal sequence.

8. Let
$$k, m, n \in \mathbb{N}$$
. Show that $\sum_{i=0}^{k} \binom{n}{i} \binom{m}{k-i} = \binom{n+m}{k}$.