Resolving Stanley's conjecture on k-fold acyclic complexes

Joseph Doolittle (Freie Universität Berlin) Bennet Goeckner (University of Washington)

November 2, 2019

Preliminaries: Simplicial Complexes

A simplicial complex on n vertices is a subset Δ of $2^{[n]}$ such that

$$
\sigma \in \Delta, \tau \subseteq \sigma \Longrightarrow \tau \in \Delta .
$$

f-polynomial:

$$
\begin{aligned}
f(\Delta, t) & =\sum_{\sigma \in \Delta} t^{|\sigma|} \\
& =f_{-1}+f_{0} t+f_{1} t^{2}+\cdots+f_{d} t^{d+1}
\end{aligned}
$$

where f_{i} is the number of faces of Δ of dimension i.

Preliminaries: Simplicial Complexes

Given complexes Γ and Δ, their join is

$$
\Gamma \star \Delta=\{\tau \cup \sigma: \tau \in \Gamma \text { and } \sigma \in \Delta\}
$$

If Γ is a $(k-1)$-simplex, then $\Gamma \star \Delta$ is a k-fold cone. $(k=1$ is simply a cone)

The f-polynomial of a join factors:

$$
f(\Gamma \star \Delta, t)=f(\Gamma, t) f(\Delta, t)
$$

Preliminaries: Simplicial Homology

$\tilde{H}_{i}(\Delta, \mathbb{k})$ is the $i^{\text {th }}$ reduced simplicial homology group of Δ with coefficients in \mathbb{k}.
$\tilde{\beta}_{i}=\operatorname{dim}_{\mathbb{k}} \tilde{H}_{i}(\Delta, \mathbb{k})$ are the reduced Betti numbers. These "count i-dimensional holes" in Δ.
Δ is acyclic (over \mathbb{k}) if $\tilde{\beta}_{i}=0$ for all i.

Acyclicity is topological (up to choice of \mathbb{k}).

Preliminaries: An example

$$
\Delta=\langle 123,345\rangle
$$

$$
f(\Delta, t)=1+5 t+6 t^{2}+2 t^{3}=(1+t)\left(1+4 t+2 t^{2}\right)
$$

Notice that $\Delta=\langle 3\rangle \star\langle 12,45\rangle$, so Δ is a cone. The above factorization is not surprising.

Known results

Theorem (Kalai, 1985)
If Δ is acyclic over some field, then

$$
f(\Delta, t)=(1+t) f\left(\Delta^{\prime}, t\right)
$$

for some complex Δ^{\prime}.
$\{f$-vectors of acyclic complexes $\}=\{f$-vectors of cones $\}$

But what is Δ^{\prime} ?

Known results

Theorem (Stanley, 1993)

If Δ is acyclic over some field, then Δ can be written as the disjoint union of rank 1 boolean intervals whose minimal faces together form a subcomplex Δ^{\prime}.

This Δ^{\prime} is an explicit combinatorial witness to the Δ^{\prime} that appears in Kalai's result.

Preliminaries: An example

$$
\Delta=\langle 123,345\rangle
$$

Face poset of Δ :
$123 \quad 345$
12
13
23
34
35
45
1
2
3
4
5
\varnothing

Preliminaries: An example

$\Delta=\langle 123,345\rangle$

Face poset of Δ :

Preliminaries: An example

$$
\Delta=\langle 123,345\rangle
$$

Face poset of Δ :

One last definition

Link of $\sigma: \operatorname{link} \sigma=\{\tau \in \Delta: \tau \cup \sigma \in \Delta$ and $\tau \cap \sigma=\varnothing\}$

A complex Δ is k-fold acyclic if $\operatorname{link} \sigma$ is acyclic for all $\sigma \in \Delta$ such that $|\sigma|<k$.

Acyclicity is equivalent to 1 -fold acyclicity. For $k>1$, this is not topological:

The conjecture

Theorem (Stanley, 1993, follows from Kalai 2001)
If Δ is k-fold acyclic over some field, then $f(\Delta, t)=(1+t)^{k} f\left(\Delta^{\prime}, t\right)$ for some complex Δ^{\prime}.
$\{f$-vectors of k-fold acyclic complexes $\}=\{f$-vectors of k-fold cones $\}$

Conjecture (Stanley, 1993)

If Δ is k-fold acyclic over some field, then Δ can be written as the disjoint union of rank k boolean intervals whose minimal faces together form a subcomplex Δ^{\prime}.

Main results

Theorem (Duval, Klivans, and Martin, unpublished)
The conjecture is true for $\operatorname{dim} \Delta \leq 2$.

Theorem (Doolittle and Goeckner, 2018)

The conjecture is false in general.

Remarks:

- We construct an explicit counterexample for $k=2$ and $\operatorname{dim} \Delta=3$.
- The conjecture holds for $k=\operatorname{dim} \Delta$. ("Stacked" complexes)
- A slight modification to the statement makes the conjecture true. (Replace "boolean intervals" with "boolean trees")

Main results

Theorem (Doolittle and Goeckner, 2018)

Let $\Gamma \subseteq \Delta$ be complexes such that
(1) Both Δ and Γ are k-fold acyclic,
(2) Γ is an induced subcomplex, and
(3) The relative complex (Δ, Γ) cannot be decomposed into rank k boolean intervals.
Then gluing many copies of Δ together along Γ produces a k-fold acyclic complex that cannot be decomposed into rank k boolean intervals.

- (1) and (2) preserve simplicialness and k-fold acyclicity; (3) forces the resulting complex to not be decomposable into rank k boolean intervals.
- "Many" $>($ total number of faces of $\Gamma) / 2^{k}$

Not the counterexample

$$
\begin{aligned}
& \Sigma=\langle 1234,1235,2345,2456,3456\rangle \\
& \Upsilon=\langle 125,124,246,346\rangle \\
& \Psi=(\Sigma, \Upsilon)
\end{aligned}
$$

- Σ is a triangulation of the octahedron with no interior vertices.
- Υ is a path of triangles on the boundary of Δ.
- Both Σ and Υ are 2-fold acyclic.
- (Σ, Υ) cannot be decomposed into rank 2 boolean intervals.

Not the counterexample

$$
\begin{aligned}
& \Sigma=\langle 1234,1235,2345,2456,3456\rangle \\
& \Upsilon=\langle 125,124,246,346\rangle \\
& \Psi=(\Sigma, \Upsilon)
\end{aligned}
$$

Not the counterexample

$$
\begin{aligned}
& \Sigma=\langle 1234,1235,2345,2456,3456\rangle \\
& \Upsilon=\langle 125,124,246,346\rangle \\
& \Psi=(\Sigma, \Upsilon)
\end{aligned}
$$

Not the counterexample

$$
\begin{aligned}
& \Sigma=\langle 1234,1235,2345,2456,3456\rangle \\
& \Upsilon=\langle 125,124,246,346\rangle \\
& \Psi=(\Sigma, \Upsilon)
\end{aligned}
$$

Not the counterexample

$$
\begin{aligned}
& \Sigma=\langle 1234,1235,2345,2456,3456\rangle \\
& \Upsilon=\langle 125,124,246,346\rangle \\
& \Psi=(\Sigma, \Upsilon)
\end{aligned}
$$

Only problem: Γ is not induced

Building the counterexample

$$
\begin{aligned}
& \Sigma=\langle 1234,1235,2345,2456,3456\rangle \\
& \Upsilon=\langle 125,124,246,346\rangle \\
& \Psi=(\Sigma, \Upsilon)
\end{aligned}
$$

Schematic:
Υ

Building the counterexample

$$
\begin{aligned}
& \Sigma=\langle 1234,1235,2345,2456,3456\rangle \\
& \Upsilon=\langle 125,124,246,346\rangle \\
& \Psi=(\Sigma, \Upsilon)
\end{aligned}
$$

Building the counterexample

$$
\begin{aligned}
& \Sigma=\langle 1234,1235,2345,2456,3456\rangle \\
& \Upsilon=\langle 125,124,246,346\rangle \\
& \Psi=(\Sigma, \Upsilon)
\end{aligned}
$$

Building the counterexample

Theorem (Doolittle and Goeckner, 2018)

If $\Delta=$ gold + purple + gray and $\Gamma=$ purple + gray, then
(1) Both Δ and Γ are 2 -fold acyclic,
(2) Γ is an induced subcomplex, and
(3) The relative complex (Δ, Γ) cannot be decomposed into rank 2 boolean intervals.

Building the counterexample

$\Delta=$ gold + purple + gray and $\Gamma=$ purple + gray

Since Γ has 64 total faces and $64 / 2^{2}=16$, gluing at least 17 copies of Δ together along Γ will produce a counterexample.

In fact, a linear programs shows that gluing just three copies of Δ together along Γ produces a complex that is 2 -fold acyclic but not decomposable into rank 2 boolean intervals!
f-polynomial $=1+20 t+136 t^{2}+216 t^{3}+99 t^{4}=(1+t)^{2}\left(1+18 t+99 t^{2}\right)$

The end

Thanks!

Boolean Trees

A boolean tree of rank k is a subposet of a poset P that is defined recursively:

- A rank 0 boolean tree is simply an element of P.
- Given T_{1} and T_{2}, both boolean trees of rank $k-1$ with minimal elements r_{1} and r_{2} such that r_{2} covers r_{1}, then $T_{1} \cup T_{2}$ is a boolean tree of rank k.

The boolean tree version

Conjecture (Stanley, 1993)

If Δ is k-fold acyclic over some field, then Δ can be written as the disjoint union of rank k boolean intervals whose minimal faces together form a subcomplex Δ^{\prime}.

Theorem (Doolittle and Goeckner, 2018)

If Δ is k-fold acyclic over some field, then Δ can be written as the disjoint union of rank k boolean trees whose minimal faces together form a subcomplex Δ^{\prime}.

Proof ideas: Algebraic shifting (Kalai) and iterated homology (Duval-Rose and Duval-Zhang).

The actual end

Thanks again!

