Resolving Stanley's conjecture on k-fold acyclic complexes

Joseph Doolittle (Freie Universität Berlin) Bennet Goeckner (University of Washington)

November 2, 2019

November 2, 2019 1 / 28

Preliminaries: Simplicial Complexes

A simplicial complex on n vertices is a subset Δ of $2^{[n]}$ such that

$$\sigma \in \Delta, \tau \subseteq \sigma \implies \tau \in \Delta.$$

f-polynomial:

$$f(\Delta, t) = \sum_{\sigma \in \Delta} t^{|\sigma|}$$
$$= f_{-1} + f_0 t + f_1 t^2 + \dots + f_d t^{d+1}$$

where f_i is the number of faces of Δ of dimension i.

Preliminaries: Simplicial Complexes

Given complexes Γ and Δ , their **join** is

$$\Gamma \star \Delta = \{ \tau \cup \sigma : \tau \in \Gamma \text{ and } \sigma \in \Delta \}$$

If Γ is a (k-1)-simplex, then $\Gamma \star \Delta$ is a k-fold cone. (k=1 is simply a cone)

The f-polynomial of a join factors:

$$f(\Gamma \star \Delta, t) = f(\Gamma, t) f(\Delta, t)$$

Preliminaries: Simplicial Homology

 $\tilde{H}_i(\Delta, \mathbb{k})$ is the i^{th} reduced simplicial homology group of Δ with coefficients in \mathbb{k} .

 $\tilde{\beta}_i = \dim_{\mathbb{K}} \tilde{H}_i(\Delta, \mathbb{K})$ are the **reduced Betti numbers**. These "count *i*-dimensional holes" in Δ .

 Δ is **acyclic** (over \mathbb{k}) if $\tilde{\beta}_i = 0$ for all i.

Acyclicity is topological (up to choice of k).

$$\Delta = \langle 123, 345 \rangle$$

$$f(\Delta, t) = 1 + 5t + 6t^2 + 2t^3 = (1 + t)(1 + 4t + 2t^2)$$

Notice that $\Delta=\langle 3\rangle \star \langle 12,45\rangle,$ so Δ is a cone. The above factorization is not surprising.

Known results

Theorem (Kalai, 1985)

If Δ is acyclic over some field, then

$$f(\Delta, t) = (1 + t)f(\Delta', t)$$

for some complex Δ' .

$$\{f\text{-vectors of acyclic complexes}\} = \{f\text{-vectors of cones}\}$$

But what is Δ' ?

Known results

Theorem (Stanley, 1993)

If Δ is acyclic over some field, then Δ can be written as the disjoint union of rank 1 boolean intervals whose minimal faces together form a subcomplex Δ' .

This Δ' is an explicit combinatorial witness to the Δ' that appears in Kalai's result.

November 2, 2019

$$\Delta = \langle 123, 345 \rangle$$

Face poset of Δ :

Ø

$$\Delta = \langle 123, 345 \rangle$$

Face poset of Δ :

W

November 2, 2019

Face poset of Δ :

10 / 28

One last definition

Link of σ : link $\sigma = \{ \tau \in \Delta : \tau \cup \sigma \in \Delta \text{ and } \tau \cap \sigma = \emptyset \}$

A complex Δ is k-fold acyclic if link σ is acyclic for all $\sigma \in \Delta$ such that $|\sigma| < k$.

Acyclicity is equivalent to 1-fold acyclicity. For k > 1, this is not topological:

The conjecture

Theorem (Stanley, 1993, follows from Kalai 2001)

If Δ is k-fold acyclic over some field, then $f(\Delta,t) = (1+t)^k f(\Delta',t)$ for some complex Δ' .

 $\{f\text{-vectors of }k\text{-fold acyclic complexes}\} = \{f\text{-vectors of }k\text{-fold cones}\}$

Conjecture (Stanley, 1993)

If Δ is k-fold acyclic over some field, then Δ can be written as the disjoint union of rank k boolean intervals whose minimal faces together form a subcomplex Δ' .

Main results

Theorem (Duval, Klivans, and Martin, unpublished) The conjecture is true for dim $\Delta \leq 2$.

Theorem (Doolittle and Goeckner, 2018)

The conjecture is false in general.

Remarks:

- We construct an explicit counterexample for k=2 and dim $\Delta=3$.
- The conjecture holds for $k = \dim \Delta$. ("Stacked" complexes)
- A slight modification to the statement makes the conjecture true. (Replace "boolean intervals" with "boolean trees")

November 2, 2019 13 / 28

Main results

Theorem (Doolittle and Goeckner, 2018)

Let $\Gamma \subseteq \Delta$ be complexes such that

- **1** Both Δ and Γ are k-fold acyclic,
- \bullet Γ is an induced subcomplex, and
- **3** The relative complex (Δ, Γ) cannot be decomposed into rank k boolean intervals.

Then gluing many copies of Δ together along Γ produces a k-fold acyclic complex that cannot be decomposed into rank k boolean intervals.

- (1) and (2) preserve simplicialness and k-fold acyclicity; (3) forces the resulting complex to not be decomposable into rank k boolean intervals.
- "Many" > (total number of faces of Γ)/2^k

November 2, 2019

$$\begin{split} \Sigma &= \langle 1234, 1235, 2345, 2456, 3456 \rangle \\ \Upsilon &= \langle 125, 124, 246, 346 \rangle \\ \Psi &= (\Sigma, \Upsilon) \end{split}$$

- Σ is a triangulation of the octahedron with no interior vertices.
- Υ is a path of triangles on the boundary of Δ .
- Both Σ and Υ are 2-fold acyclic.
- (Σ, Υ) cannot be decomposed into rank 2 boolean intervals.

W

November 2, 2019

$$\Sigma = \langle 1234, 1235, 2345, 2456, 3456 \rangle$$

$$\Upsilon = \langle 125, 124, 246, 346 \rangle$$

$$\Psi = (\Sigma, \Upsilon)$$

November 2, 2019 16 / 28

$$\Sigma = \langle 1234, 1235, 2345, 2456, 3456 \rangle$$

$$\Upsilon = \langle 125, 124, 246, 346 \rangle$$

$$\Psi = (\Sigma, \Upsilon)$$

November 2, 2019 17 / 28

$$\Sigma = \langle 1234, 1235, 2345, 2456, 3456 \rangle$$

 $\Upsilon = \langle 125, 124, 246, 346 \rangle$
 $\Psi = (\Sigma, \Upsilon)$

November 2, 2019 18 / 28

$$\Sigma = \langle 1234, 1235, 2345, 2456, 3456 \rangle$$

 $\Upsilon = \langle 125, 124, 246, 346 \rangle$
 $\Psi = (\Sigma, \Upsilon)$

Only problem: Γ is not induced

$$\begin{split} \Sigma &= \langle 1234, 1235, 2345, 2456, 3456 \rangle \\ \Upsilon &= \langle 125, 124, 246, 346 \rangle \\ \Psi &= (\Sigma, \Upsilon) \end{split}$$

Schematic:

$$\begin{split} \Sigma &= \langle 1234, 1235, 2345, 2456, 3456 \rangle \\ \Upsilon &= \langle 125, 124, 246, 346 \rangle \\ \Psi &= (\Sigma, \Upsilon) \end{split}$$

$$\begin{split} \Sigma &= \langle 1234, 1235, 2345, 2456, 3456 \rangle \\ \Upsilon &= \langle 125, 124, 246, 346 \rangle \\ \Psi &= (\Sigma, \Upsilon) \end{split}$$

November 2, 2019 22 / 28

Theorem (Doolittle and Goeckner, 2018)

If $\Delta = gold + purple + gray \ and \ \Gamma = purple + gray, \ then$

- **1** Both Δ and Γ are 2-fold acyclic,
- **2** Γ is an induced subcomplex, and
- **3** The relative complex (Δ, Γ) cannot be decomposed into rank 2 boolean intervals.

$$\Delta = \text{gold} + \text{purple} + \text{gray and } \Gamma = \text{purple} + \text{gray}$$

Since Γ has 64 total faces and $64/2^2=16$, gluing at least 17 copies of Δ together along Γ will produce a counterexample.

In fact, a linear programs shows that gluing just **three** copies of Δ together along Γ produces a complex that is 2-fold acyclic but not decomposable into rank 2 boolean intervals!

$$f$$
-polynomial = $1 + 20t + 136t^2 + 216t^3 + 99t^4 = (1+t)^2(1+18t+99t^2)$

The end

Thanks!

Boolean Trees

A boolean tree of rank k is a subposet of a poset P that is defined recursively:

- \circ A rank 0 boolean tree is simply an element of P.
- o Given T_1 and T_2 , both boolean trees of rank k-1 with minimal elements r_1 and r_2 such that r_2 covers r_1 , then $T_1 \cup T_2$ is a boolean tree of rank k.

November 2, 2019

The boolean tree version

Conjecture (Stanley, 1993)

If Δ is k-fold acyclic over some field, then Δ can be written as the disjoint union of rank k boolean intervals whose minimal faces together form a subcomplex Δ' .

Theorem (Doolittle and Goeckner, 2018)

If Δ is k-fold acyclic over some field, then Δ can be written as the disjoint union of rank k boolean trees whose minimal faces together form a subcomplex Δ' .

Proof ideas: Algebraic shifting (Kalai) and iterated homology (Duval–Rose and Duval–Zhang).

The actual end

Thanks again! $\,$

