Type polytopes and products of simplices

Federico Castillo (Max-Planck-Institut für Mathematik) Joseph Doolittle (Freie Universität Berlin) Bennet Goeckner (University of Washington) Li Ying (University of Notre Dame)

September 12, 2020

Motivation

If two polytopes are combinatorially isomorphic, how "different" can they be?

Polytope: The convex hull of finitely many points (or the bounded solution set to finitely many linear inequalities)

Combinatorially isomorphic: Face lattices are isomorphic

Example: Cubes

Standard cube: $C_{d}=[0,1]^{d}$

Klee-Minty cube: Simplex algorithm might have to visit all 2^{d} vertices

Example: Cubes

For $d \geq 3$, there exist d-cubes for which each pair of opposing facets is perpendicular.

A more precise question

Realization space of P : Set of all polytopes that are combinatorially isomorphic to P

- Every semialgebraic set (over \mathbb{Z}) is the realization space of some polytope (Mnëv, 1988).
- In 2019, Adiprasito, Kalmanovich, and Nevo showed that realization spaces of cubes are contractible.

Type cone of P : Set of all polytopes that are combinatorially isomorphic to P with the same facet normal vectors

- We consider the closure of the original type cone (allows degeneracies).
- In 2019, Padrol, Palu, Pilaud, and Plamondon show that certain families of fans have simplicial type cones.

Minkowski sums and summands

Let $Q, R \in \mathbb{R}^{d}$ be polytopes. Their Minkowski sum is

$$
Q+R=\{q+r \mid q \in Q, r \in R\}
$$

We call Q a (weak) Minkowski summand of P if we can find a polytope R (and a scalar λ) such that $Q+R=(\lambda) P$.

A theorem of Shephard on weak Minkowski summands

Let $V(P)$ be the vertex set of P and $E(P)$ be the edge set of P.

Theorem (Shephard)

Let $P=\left\{x \in \mathbb{R}^{d}: U x \leq z\right\}$ be an irredundant inequality description for a polytope. The following are equivalent.
(i) Q is a weak Minkowski summand of P.
(ii) (Edge lengths) There exists a map $\varphi: V(P) \rightarrow V(Q)$ such that for $v_{i}, v_{j} \in V(P)$ with $\left\{v_{i}, v_{j}\right\} \in E(P)$ we have $\varphi\left(v_{i}\right)-\varphi\left(v_{j}\right)=\lambda_{i, j}\left(v_{i}-v_{j}\right)$, for some $\lambda_{i, j} \in \mathbb{R}_{\geq 0}$.
(iii) (Facet heights) There exists an $\eta \in \mathbb{R}^{m}$ such that $Q=\left\{x \in \mathbb{R}^{d}: U x \leq \eta\right\}$ and for any subset of rows S such that the linear system $\left\{\left\langle u_{i}, x\right\rangle=z_{i}, \forall i \in S\right\}$ defines a vertex of P, the linear system $\left\{\left\langle u_{i}, x\right\rangle=\eta_{i}, \forall i \in S\right\}$ defines a vertex in Q.

The type cone

A 1-Minkowski weight on P is a function $\omega: E(P) \rightarrow \mathbb{R}_{\geq 0}$ such that

$$
\sum_{e \in F} \vec{e} \cdot \omega(e)=\overrightarrow{0}
$$

for each two-dimensional face F of P, given any cyclic orientation of the edges of F. (The "balancing condition.")

The type cone

Type cone of $P: \mathbb{T} \mathbb{C}(P)=$ Set of 1-Minkowski weights on P

Type polytope of $P: \mathbb{T P}(P)=\left\{\omega \in \mathbb{T} \mathbb{C}(P): \sum_{e \in E(P)} \omega(e)=|E(P)|\right\}$

By Shephard's Theorem (ii), $\mathbb{T} \mathbb{C}(P)$ parametrizes the set of weak Minkowski summands of P up to translation, and $\mathbb{T P}(P)$ parametrizes this set up to translation and dilation.

An example: Facet heights

By Shephard's Theorem (iii), we can also consider $\mathbb{T} \mathbb{C}(P)$ and $\mathbb{T P}(P)$ in terms of facet heights.

Type cones of polygons

$\mathcal{N}(P)=$ set of unit normal vectors for the facets of P

P

$\mathcal{N}(P)$

Proposition (with Castillo, Doolittle, and Ying)

For a polygon P, the faces of $\mathbb{T P}(P)$ correspond to sets $S \subseteq \mathcal{N}(P)$ such that $0 \in \operatorname{relint}(\operatorname{conv} S)$.

Corollary: Any d-polytope with $d+3$ facets is the type polytope of some polygon.

Type cones of polygons

When $n>4$, different n-gons can have non-isomorphic type polytopes. Here are three such $\mathcal{N}(P)$ for $n=6$.

When n is even, regular polygons do not maximize the f-vector of the type polytope!

Type cones of cubes

Let C_{d} be the regular d-cube. Each set of parallel edges gets one parameter. Thus $\mathbb{T} \mathbb{C}\left(C_{d}\right) \cong \mathbb{R}_{\geq 0}^{d}$ and $\mathbb{T P}\left(C_{d}\right)$ is a $(d-1)$-simplex.

But what about for other cubes?

McMullen's method

McMullen (1973) gave a way to compute $\mathbb{T P}(P)$ using intersections of convex hulls corresponding to Gale diagrams of the polar dual P°.

Theorem (McMullen)

Let P be a polytope, $\mathcal{A}=\left\{a_{1}, \cdots, a_{m}\right\}$ be the vertex set of its polar P°, and $\operatorname{Gale}(A)=\left\{b_{1}, \cdots, b_{m}\right\}$ be a Gale transform for \mathcal{A}. Then

$$
\mathbb{T P}(P) \cong \bigcap_{S} \operatorname{conv}\left\{b_{i}: b_{i} \in S\right\}
$$

where the intersection is over all cofacets S of \mathcal{A}.

This is hard to apply in general, but works well for products of simplices.

Our main result

Nontrivial simplex: An n-simplex for some $n>0$.

Theorem (with Castillo, Doolittle, and Ying)
If P is combinatorially isomorphic to a product of $k+1$ nontrivial simplices, $\mathbb{T P}(P)$ is a simplex of dimension k. In particular, the type polytope of any combinatorial d-cube is a $(d-1)$-simplex.

Only depends on combinatorial type and not facet normals!

"Proof"

Key step of proof: Show that the intersection of all rainbow simplices from a particular rainbow configuration is itself a simplex.

This rainbow configuration is the Gale transform of the polar of the product of nontrivial simplices. We then apply McMullen's result.

Acknowledgements

This research began at the Graduate Research Workshop in Combinatorics 2019 at the University of Kansas.

The interactive graphics were created using GeoGebra. The depiction of a Klee-Minty cube appears courtesy of Sophie Huiberts.

The end

Thanks for listening!

$\mathbb{T P}(\square) \cong \mathbb{T P}(\square) \cong \mathbb{T P}($

