Partition extenders, skeleta of simplices, and Simon's conjecture

Bennet Goeckner (University of Washington)

joint with

Joseph Doolittle (TU Graz) Alexander Lazar (KTH)

24 June, 2021

Simplicial complexes

Simplicial complex: Collection Δ such that

if
$$\sigma \in \Delta$$
 and $\tau \subseteq \sigma$, then $\tau \in \Delta$.

Face: Element $\sigma \in \Delta$. Facet: Maximal element $F \in \Delta$.

Dimension:
$$\dim \sigma := |\sigma| - 1$$
, $\dim \Delta := \max \{\dim \sigma \mid \sigma \in \Delta\}$.

Pure: All facets have the same dimension.

24 June, 2021 Bennet Goeckner 2 / 2

An example

$$f(\Delta) = (1, 5, 6, 2)$$
 f-vector: $f_i = \#$ of i-dimensional faces of Δ .

$$h(\Delta) = (1, 2, -1, 0)$$
 h-vector: Invertible transformation of f-vector.

24 June, 2021 Bennet Goeckner 3 / 23

Partitionable: Can write Δ as disjoint union of boolean intervals

$$\Delta = [R_1, F_1] \sqcup \cdots \sqcup [R_k, F_k]$$

where F_1, \ldots, F_k are the **facets** of Δ and $[A, B] = \{C \mid A \subseteq C \subseteq B\}$.

24 June, 2021 Bennet Goeckner 4 / 23

Partitionable: Can write Δ as disjoint union of boolean intervals

$$\Delta = [R_1, F_1] \sqcup \cdots \sqcup [R_k, F_k]$$

where F_1, \ldots, F_k are the **facets** of Δ and $[A, B] = \{C \mid A \subseteq C \subseteq B\}$.

24 June, 2021 Bennet Goeckner 5/23

Partitionable: Can write Δ as disjoint union of boolean intervals

$$\Delta = [R_1, F_1] \cup \cdots \cup [R_k, F_k]$$

where F_1, \ldots, F_k are the **facets** of Δ and $[A, B] = \{C \mid A \subseteq C \subseteq B\}$.

24 June, 2021 Bennet Goeckner 6 / 23

Partitionable: Can write Δ as disjoint union of boolean intervals

$$\Delta = [R_1, F_1] \cup \cdots \cup [R_k, F_k]$$

where F_1, \ldots, F_k are the **facets** of Δ and $[A, B] = \{C \mid A \subseteq C \subseteq B\}$.

Shellable \Longrightarrow Partitionable.

Proposition

If Δ is pure and partitionable, then h_k counts the number of minimal faces R_i of size k in any partitioning of Δ .

The h-vector can also be obtained from the Hilbert series of $\mathbb{k}[\Delta]$, the Stanley-Reisner ring of Δ .

Another example

$$\Delta = \langle 123, 124, 134, 234, 456 \rangle$$

$$f(\Delta) = (1, 6, 9, 5)$$

$$h(\Delta) = (1, 3, 0, 1)$$

This complex is partionable but **not** shellable (or constructible, Cohen–Macaulay, etc.).

$$\Delta = [\varnothing, 456] \sqcup [1, 124] \sqcup [2, 234] \sqcup [3, 134] \sqcup [123, 123]$$

24 June, 2021 Bennet Goeckner 8 / 23

Our question

Proposition

If Δ is pure and partitionable, then h_k counts the number of minimal faces R_i of size k in any partitioning of Δ .

Goal: Combinatorial interpretation of $h(\Delta)$ when Δ is not partitionable.

Main idea: Relative complexes.

Partition extenders

Let $\Delta \subseteq \Gamma$. The **relative complex** (Γ, Δ) is the set of all faces $\sigma \in \Gamma \setminus \Delta$. **Partitionability** is defined as before.

Definition

Let Δ be a pure complex. A partition extender for Δ is a pure complex Γ such that

- $\bullet \ \Delta \subseteq \Gamma,$
- $\mathbf{Q} \dim \Gamma = \dim \Delta$, and
- **3** both Γ and (Γ, Δ) are partitionable.

Partition extenders: An example revisited

Partition extenders: An example revisited

Partition extenders: An example revisited

If Γ is a partition extender for Δ , then $h(\Delta) = h(\Gamma) - h(\Gamma, \Delta)$.

24 June, 2021 Bennet Goeckner 13 / 23

Partition extenders

Theorem (Doolittle-G.-Lazar)

Let Δ be a pure complex. Then Δ has a partition extender.

Corollary (Doolittle-G.-Lazar)

The h-vector of any pure complex can "naturally" be written as the difference of two h-vectors of partitionable (relative) complexes.

- Our construction adds many faces to construct Γ .
- Is there a minimal partition extender? (With respect to added facets, vertices, faces overall?)
- Are minimal partition extenders unique in some sense?

W

24 June, 2021 Bennet Goeckner 14 / 23

Cohen–Macaulay extenders

Similar notions can be studied for properties that are defined for both simplicial complexes and relative complexes.

Theorem (Doolittle-G.-Lazar)

Let Δ be a pure complex with Stanley–Reisner ring $\mathbb{k}[\Delta]$. Then Δ has a Cohen–Macaulay extender if and only if depth $\mathbb{k}[\Delta] \geq \dim \mathbb{k}[\Delta] - 1$.

Depth and the Cohen–Macaulay (CM) property can be defined in terms of (relative) homologies of certain subcomplexes.

If depth $\mathbb{k}[\Delta] = \dim \mathbb{k}[\Delta] - 1$, then **any** CM complex of the same dimension that contains Δ is a CM extender. **In particular**, the skeleton of a simplex works.

24 June, 2021 Bennet Goeckner 19 / 23

Shellable extenders and Simon's conjecture

Conjecture (Doolittle-G.-Lazar)

Let Δ be a pure complex such that depth $\mathbb{k}[\Delta] \geq \dim \mathbb{k}[\Delta] - 1$ for every field \mathbb{k} . Then Δ has a shellable extender.

Can we always construct shellable extenders without introducing new vertices (as in the CM case)?

If so, this would prove Simon's conjecture.

Simon's conjecture

Conjecture (Simon '94)

The d-skeleton of an n-simplex is extendably shellable for all n and d.

Extendably shellable: Any partial shelling can be completed to a full shelling.

- Trivially true for $d \le 1$ and $d \ge n 1$.
- True for d = 2 and holds for all rank 3 matroids (Björner and Eriksson '94).
- True for d = n 2 (Bigdeli, Yazdan Pour, and Zaare-Nahandi '19 and Dochtermann '21).
- Not all matroids are extendably shellable: The 12-dimensional crosspolytope is not (Hall '04).

24 June, 2021 Bennet Goeckner 21 / 23

Simon's conjecture – Future directions

Relative complexes: Natural setting for overall approach; help in searching for counterexamples.

Lex shellable complexes:

- Weakening of matroid characterization (all vertex orders induce a shelling).
- Implies EL-shellability of face poset.
- Incomparable with vertex decomposability.

W

24 June, 2021 Bennet Goeckner 22 / 23

The end

Grazie e buona serata!