Partition extenders, skeleta of simplices, and Simon's conjecture

Bennet Goeckner (University of Washington)
joint with
Joseph Doolittle (TU Graz)
Alexander Lazar (KTH)

24 June, 2021

Simplicial complexes

Simplicial complex: Collection Δ such that

$$
\text { if } \sigma \in \Delta \text { and } \tau \subseteq \sigma \text {, then } \tau \in \Delta \text {. }
$$

Face: Element $\sigma \in \Delta$. Facet: Maximal element $F \in \Delta$.

Dimension: $\operatorname{dim} \sigma:=|\sigma|-1, \operatorname{dim} \Delta:=\max \{\operatorname{dim} \sigma \mid \sigma \in \Delta\}$.

Pure: All facets have the same dimension.

An example

$f(\Delta)=(1,5,6,2) \quad f$-vector: $f_{i}=\#$ of i-dimensional faces of Δ.
$h(\Delta)=(1,2,-1,0) \quad h$-vector: Invertible transformation of f-vector.

Partitionability

Partitionable: Can write Δ as disjoint union of boolean intervals

$$
\Delta=\left[R_{1}, F_{1}\right] \sqcup \cdots \sqcup\left[R_{k}, F_{k}\right]
$$

where F_{1}, \ldots, F_{k} are the facets of Δ and $[A, B]=\{C \mid A \subseteq C \subseteq B\}$.

Partitionability

Partitionable: Can write Δ as disjoint union of boolean intervals

$$
\Delta=\left[R_{1}, F_{1}\right] \sqcup \cdots \sqcup\left[R_{k}, F_{k}\right]
$$

where F_{1}, \ldots, F_{k} are the facets of Δ and $[A, B]=\{C \mid A \subseteq C \subseteq B\}$.

Partitionability

Partitionable: Can write Δ as disjoint union of boolean intervals

$$
\Delta=\left[R_{1}, F_{1}\right] \cup \cdots \cup\left[R_{k}, F_{k}\right]
$$

where F_{1}, \ldots, F_{k} are the facets of Δ and $[A, B]=\{C \mid A \subseteq C \subseteq B\}$.

Partitionability

Partitionable: Can write Δ as disjoint union of boolean intervals

$$
\Delta=\left[R_{1}, F_{1}\right] \cup \cdots \cup\left[R_{k}, F_{k}\right]
$$

where F_{1}, \ldots, F_{k} are the facets of Δ and $[A, B]=\{C \mid A \subseteq C \subseteq B\}$.

Shellable \Longrightarrow Partitionable.

Proposition

If Δ is pure and partitionable, then h_{k} counts the number of minimal faces R_{i} of size k in any partitioning of Δ.

The h-vector can also be obtained from the Hilbert series of $\mathbb{k}[\Delta]$, the Stanley-Reisner ring of Δ.

Another example

$$
\begin{gathered}
\Delta=\langle 123,124,134,234,456\rangle \\
f(\Delta)=(1,6,9,5) \\
h(\Delta)=(1,3,0,1)
\end{gathered}
$$

This complex is partionable but not shellable (or constructible, Cohen-Macaulay, etc.).

$$
\Delta=[\varnothing, 456] \sqcup[1,124] \sqcup[2,234] \sqcup[3,134] \sqcup[123,123]
$$

Our question

Proposition

If Δ is pure and partitionable, then h_{k} counts the number of minimal faces R_{i} of size k in any partitioning of Δ.

Goal: Combinatorial interpretation of $h(\Delta)$ when Δ is not partitionable.

Main idea: Relative complexes.

Partition extenders

Let $\Delta \subseteq \Gamma$. The relative complex (Γ, Δ) is the set of all faces $\sigma \in \Gamma \backslash \Delta$. Partitionability is defined as before.

Definition

Let Δ be a pure complex. A partition extender for Δ is a pure complex Γ such that
(1) $\Delta \subseteq \Gamma$,
(2) $\operatorname{dim} \Gamma=\operatorname{dim} \Delta$, and
(3) both Γ and (Γ, Δ) are partitionable.

Partition extenders: An example revisited

Partition extenders: An example revisited

Partition extenders: An example revisited

If Γ is a partition extender for Δ, then $h(\Delta)=h(\Gamma)-h(\Gamma, \Delta)$.

Partition extenders

Theorem (Doolittle G.-Lazar)

Let Δ be a pure complex. Then Δ has a partition extender.

Corollary (Doolittle G.-Lazar)

The h-vector of any pure complex can "naturally" be written as the difference of two h-vectors of partitionable (relative) complexes.

- Our construction adds many faces to construct Γ.
- Is there a minimal partition extender? (With respect to added facets, vertices, faces overall?)
- Are minimal partition extenders unique in some sense?

Our construction: An example

Fact: A graph is partitionable if and only if it has at most one acyclic component.

Our construction: An example

Fact: A graph is partitionable if and only if it has at most one acyclic component.

Our construction: An example

Fact: A graph is partitionable if and only if it has at most one acyclic component.

Our construction: An example

Fact: A graph is partitionable if and only if it has at most one acyclic component.

Cohen-Macaulay extenders

Similar notions can be studied for properties that are defined for both simplicial complexes and relative complexes.

Theorem (Doolittle-G.-Lazar)

Let Δ be a pure complex with Stanley-Reisner ring $\mathbb{k}[\Delta]$. Then Δ has a Cohen-Macaulay extender if and only if $\operatorname{depth} \mathbb{k}[\Delta] \geq \operatorname{dim} \mathbb{k}[\Delta]-1$.

Depth and the Cohen-Macaulay (CM) property can be defined in terms of (relative) homologies of certain subcomplexes.

If depth $\mathbb{k}[\Delta]=\operatorname{dim} \mathbb{k}[\Delta]-1$, then any CM complex of the same dimension that contains Δ is a CM extender. In particular, the skeleton of a simplex works.

Shellable extenders and Simon's conjecture

Conjecture (Doolittle-G.-Lazar)
Let Δ be a pure complex such that depth $\mathbb{k}[\Delta] \geq \operatorname{dim} \mathbb{k}[\Delta]-1$ for every field \mathbb{k}. Then Δ has a shellable extender.

Can we always construct shellable extenders without introducing new vertices (as in the CM case)?

If so, this would prove Simon's conjecture.

Simon's conjecture

Conjecture (Simon '94)

The d-skeleton of an n-simplex is extendably shellable for all n and d.

Extendably shellable: Any partial shelling can be completed to a full shelling.

- Trivially true for $d \leq 1$ and $d \geq n-1$.
- True for $d=2$ and holds for all rank 3 matroids (Björner and Eriksson '94).
- True for $d=n-2$ (Bigdeli, Yazdan Pour, and Zaare-Nahandi '19 and Dochtermann '21).
- Not all matroids are extendably shellable: The 12-dimensional crosspolytope is not (Hall '04).

Simon's conjecture - Future directions

Relative complexes: Natural setting for overall approach; help in searching for counterexamples.

Lex shellable complexes:

- Weakening of matroid characterization (all vertex orders induce a shelling).
- Implies EL-shellability of face poset.
- Incomparable with vertex decomposability.

The end

Grazie e buona serata!

