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Abstract. We prove a root stack valuative criterion for good moduli space maps and for gerbes for re-
ductive groups under some mild assumptions on the residue characteristic. We give several applications to

parahoric extension for torsors, rational points on stacks, gerbes and homogeneous spaces, and the geometry
of fibrations.

1. Introduction

The goal of this paper is to prove the following root stack valuative criterion for good moduli spaces.

Theorem 1.1. Let X → X be a good moduli space where X is an Artin stack with affine diagonal and of
finite type over a locally Noetherian scheme S. Let R be a DVR with fraction field K and residue field k.
Given a commutative diagram of solid arrows

SpecK
lL

zz ��

// X

��
n
√
SpecR //

55

SpecR // X

there exists a root stack n
√
SpecR→ SpecR and dotted arrows filling in the diagram. Moreover, if SpecK →

X maps to the closed point of X ×X K, then one can choose an extension such that also the closed point of
n
√
SpecR maps to the closed point of X ×X k.

Good moduli spaces for algebraic stacks were introduced by Alper in his thesis [Alp13], and are a gen-
eralization both of coarse moduli spaces for Deligne-Mumford stacks in characteristic 0, and of morphisms,
appearing in the context of GIT, of the form [W (L)ss/G] → W//LG, where W is a projective variety
with an action of a linearly reductive group G, L is a G-linearized ample line bundle on W and W (L)ss
is its semistable locus. On a first approximation, these are morphisms X → X which are of the form
[Spec(A)/GLN ] → Spec(AGLN ) étale locally on X rather than Zariski locally, as in classical GIT [AHR25,
Theorem 6.1]. Good moduli space maps if they exist are universal for maps to algebraic spaces and have
very strong topological and cohomological properties. They are a fundamental tool in the study of algebraic
stacks with positive dimensional stabilizers.

The key difference between the root stack valuative criterion Theorem 1.1 and the usual existence part
of the valuative criterion for a good moduli space [AHLH23, Theorem A.8] is that both the fraction field
and the residue field of R are preserved by the extension n

√
SpecR → SpecR. This allows for many arith-

metic applications (Section 1.1) and for globalizing the valuative criterion from a DVR to a global curve C
(Proposition 1.5 below). For Deligne-Mumford stacks over C, the analogous valuative criterion has been used
extensively in the theory of twisted stable maps [AV02, ACV03] and fibered surfaces [AB19]. Recently it was
generalized by Bresciani and Vistoli [BV24a] to tame stacks in any characteristic and appears in numerous
applications including to heights of rational points on tame stacks [ESZB23, BPS24, DY22], resolution of
indeterminacy for rational maps to stacks [Jeo25], and classification of singular fibers in fibrations [Rey25].
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Beyond the realm of algebraic stacks with finite inertia, partial progress was made in [DLI22, Theorem
3.9] and [DLI24, Theorem 1.2]. For the stack of K-semistable Fano varieties and of boundary polarized
Calabi-Yau pairs, a proof of properness that shows one only needs to adjoin a root of the uniformizer of R
was given in [BLXZ25] and [ABB+23, Remark 7.2] respectively, though not necessarily that this can be done
µµµn-equivariantly as in Theorem 1.1. See also [SU24] for related results in the context of motivic integration.

The fact that X has a good moduli space is used to reduce to the case that X is a gerbe for a smooth
connected linearly reductive group scheme but in that case we prove the following result which in positive
and mixed characteristic is more general than the setting of a good moduli space. Recall that a group scheme
G is special in the sense of Serre if all G-torsors can be trivialized Zariski locally.

Remark 1.2. We can factor the resulting morphism n
√
SpecR→ X through its relative coarse moduli space

[AOV11, Theorem 3.1] which is necessarily a root stack of possibly smaller degree [BV24a, Proposition 3.12]
so without loss of generality we can assume that this filling is representable.

Theorem 1.3. Let R and K be as above and let X → n
√
SpecR be a gerbe for a reductive group scheme

G → n
√
SpecR over a root stack of SpecR. Suppose either that G is special, or that the order of the Weyl

groups of the fibers of G → n
√
SpecR is coprime to the residue characteristic, or G is an extension of the

form 1→ G1 → G→ G2 → 1 such that the Weyl groups of the fibers of G1 → n
√
SpecR have order coprime

to the residue characteristic, and such that G2 is special. Then any K-point xK : SpecK → X extends to a
section x : R → X where R → n

√
SpecR is a further root stack.

Remark 1.4. The above theorem is the first step in generalizing Theorem 1.1 to the case of adequate moduli
spaces [Alp14], at least under some assumptions. In characteristic 0, adequate and good moduli spaces are
equivalent but in positive and mixed characteristic, adequate moduli spaces are a larger class. For example,
if G is reductive and the residue characteristic is positive, then BG → S is an adequate moduli space but
usually not a good moduli space. From Example 4.3 we can see that the following conditions on the stabilizer
G at a closed points seem to be necessary: the reduced connected (G0)red ⊂ G is as in Theorem 1.3 and
the component group G/(G0)red is a tame finite group scheme. Even if we impose these assumptions, there
are two key places where the proof of Theorem 1.1 uses the good moduli space rather than adequate moduli
space assumption: 1) the application of canonical reduction of stabilizers [ER21] in Theorem 3.3 and in
particular the fact that the reduced connected component of the identity behaves well in families, and 2) the
replacement for Kempf’s Theorem when K is not perfect in Lemma 3.1.

Next we globalize the valuative criterion to show that rational maps from a global curve to an Artin stack
with a proper good moduli space can be extended after a root stack. Proposition 1.5 yields the existence of
tuning stacks for K-points of X in the sense of [ESZB23] and is the first step in developing the theory of
heights on stacks for Artin stacks with a good moduli space.

Proposition 1.5. Suppose C is a locally excellent, regular, 1-dimensional scheme (e.g. a smooth curve over
a field, or a Dedekind domain flat over Z). Let X be a stack as in Theorem 1.1 with proper good moduli
space or a gerbe over a root stack of C as in Theorem 1.3. Then any rational map φ : C 99K X extends to a
morphism f : C → X from some root stack C → C along the complement of a domain of definition for φ.

Corollary 1.6. Let C be as in Proposition 1.5 and let K = k(C) be its fraction field. Let X be a stack as
in Theorem 1.1 with a proper good moduli space or a gerbe over a root stack of C as in Theorem 1.3. Then
any K-point xK : SpecK → X extends to a morphism C → X from some root stack of C.

Finally, Theorem 1.1 combined with the existence criterion of [AHLH23] immediately implies the following
relative version. We refer the reader to loc.cit. for the definitions of Θ-reductive and S-complete morphisms.

Corollary 1.7. Let π : X → Y be a finite type morphism of Artin stacks. Suppose that

(i) π has affine diagonal,
(ii) the relative inertia groups at all closed points of the fibers of π are linearly reductive,
(iii) π is Θ-reductive,
(iv) π is S-complete, and
(v) π satisfies the existence part of the valuative criterion of properness.
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Then for any commutative diagram of solid arrows below where R is a DVR with fraction field K

SpecK
lL

zz ��

// X

��
n
√
SpecR //

55

SpecR // Y

there exists a root stack n
√
SpecR and dotted arrows filling in the diagram.

Remark 1.8. Note that assumption (ii) follows from the other assumptions in characteristic 0.

1.1. Applications. Throughout this section, R is a DVR with fraction field K and residue field k.

1.1.1. Torsors and parahoric extension. Consider the special case of Theorem 1.3 where X = BG is the
classifying stack of a reductive group over a root stack of R. We say that a reductive group has tame Weyl
group if its Weyl group has order coprime to the residue characteristics (Definition 4.1). Note that some
condition on the group is necessary as illustrated by Example 4.3. Then Theorem 1.3 implies that every
G-torsor over K is pulled back from some G-torsor over some root stack of SpecR. In fact the order of the
root stack necessary is also uniformly bounded in terms of G.

Corollary 1.9. Let G → m
√
SpecR be a group over a root stack, with G reductive and with tame Weyl

group. Then there exists an integer n depending only on G such that the natural map

Hom( nm
√
SpecR,BG)→ H1(K,G)

is essentially surjective where Hom denotes the groupoid of maps and H1 denotes the groupoid of torsors.

Note that if R is strictly henselian, the groupoid of G-torsors on n
√
SpecR is equivalent to that of G-torsors

over Bµµµn,k. Thus we get an essentially surjective functor

Hom(Bµµµn,k,BG) = [Hom(µµµn,k, G)/G]→ H1(K,G)

where the action of G is by conjugation. By [MT15, Lemma 7.1], all such homomorphisms come from
co-characters of G over the residue field k.

Remark 1.10. Compare Corollary 1.9 with [RS22, Lemma 3.5(d)].

Remark 1.11. The kernel of the natural map in Corollary 1.9 should be related to the 1
nZ-points of the

Bruhat-Tits building of G over K (see [GWZ25, Theorem 3.17]).

One of the main interests in Proposition 4.10 is that it can be interpreted as a parahoric extension theorem
for G-bundles on K. Indeed by work of many authors [BS15, PR24, Dam24, BČE+25] [SSW24, Section 5],
a reductive group over a root stack R → SpecR is equivalent data to a parahoric model G → SpecR of
GK and the category of parahoric G-torsors over R is equivalent to the category of G-torsors on R. Thus
combining Proposition 2.10 with Proposition 1.5 and Corollary 1.6, we get the following parahoric exension
result.

Proposition 1.12. Suppose G is as in Theorem 1.3. Then any G-bundle over K extends to a parahoric
bundle over R. The same holds if R and K are replaced by a global curve as in Proposition 1.5 and its
function field respectively.

Example 1.13. Suppose R has residue characteristic ̸= 2 and let C ⊂ P2
K be a smooth conic which

corresponds to a map SpecK → BPGL2. Let C → SpecR be the closure of C in P2
R. Then the central fiber

is either a smooth conic, a doubled line, or a union of two lines. In the first case, the PGL2-torsor extends
to R. In the second case, the normalization of the pullback of C to 2

√
SpecR has good reduction and thus

the torsor extends to the second root stack. In the third case, the total space has an An singularity at the
node of the central fiber for some n ≥ 0 (where by convention we an A0 singularity is a regular point). If
n = 0, blowing up the node and contracting the strict transform of the central fiber yields a model with good
reduction so we are in the first case. If n = 1, blowing up the node and contracting the strict transform of
the central fiber yields a model with a double line so we are in the second case. For n ≥ 2, blowing up the
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node and contracting the strict transform of the central fiber yields a new central fiber which is still a union
of two lines but now has an An−2 singularity. Repeating this operation puts us back in either the first or the
second case depending on the parity of n. Thus for BPGL2 in odd characteristic, any torsor over K extends
up to a degree 2 root stack. ♢
1.1.2. The Lang-Nishimura Theorem for Artin stacks. Following [BV24a], we give a generalization of Lang-
Nishimura to Artin stacks with a good moduli space. We expect that this will have applications to questions
on essential dimension, fields of definition and fields of moduli for Artin stacks as in e.g. [BV24b, BRV11].

Proposition 1.14 (Lang–Nishimura theorem). Let S be a scheme and X 99K Y a rational map of algebraic
stacks over S, with X locally noetherian and integral and Y admitting a good moduli space Y → Y which
is proper over S. Let k be a field, s : Spec k → S a morphism. Assume that s lifts to a regular point
Spec k → X ; then it also lifts to a morphism Spec k → Y.

The following is a straightforward corollary.

Corollary 1.15. Suppose that a linearly reductive and special group G acts on an affine scheme SpecA
and that the ring of invariants AG is an R-algebra. Assume also that SpecA⊗R K has a K-point, and the
composition SpecK → SpecA→ SpecAG extends to SpecR→ SpecAG. Then SpecA⊗R k has a k-point.

1.1.3. Gerbes and homogeneous spaces. Next we give some applications of Theorem 1.3 to gerbes and homoge-
neous spaces over DVRs which may be viewed as a version of Grothendieck-Serre for gerbes and non-principal
homogeneous spaces.

Proposition 1.16. Let G → SpecR be a reductive group which is either special or has tame Weyl group.
Then any class G ∈ H2(R,G) which is trivial over SpecK becomes trivial after passing to a root stack. In
particular, if G|K = 0 then G|k = 0.

As a special case, we can consider a homogeneous space V for a group H which yields a gerbe [V/H] for
the stabilizer group.

Corollary 1.17. Let H → SpecR be a special affine group scheme. Let V → SpecR be an affine homo-
geneous space for H and suppose that the geometric stabilizer groups are reductive groups with tame Weyl
group. If V (K) ̸= ∅ then V (k) ̸= ∅.
As unirationality for homogeneous spaces is equivalent to admitting a rational point, we obtain the following.

Corollary 1.18. Unirationality specializes along DVRs for homogeneous spaces for special reductive groups
with reductive geometric stabilizer with tame Weyl group.

1.1.4. Applications to fibrations. Suppose X is a stack with a proper good moduli space which parametrizes
a class of projective varieties, for exampleMg or the KSBA moduli space of stable varieties, the K-moduli
stack parametrizing K-semistable Fano varieties, or the moduli space of boundary polarized Calabi-Yau
surface pairs [ABB+23, BL24]. Then the root stack valuative criterion yields certain nice integral models for
fibrations and a method for classifying the singular fibers of fibrations whose general fiber is parametrized
by the stack X as follows.

Let Yη → SpecK be an object over of X and let Y → Rn be the extension to a family over the nth root
stack given by Theorem 1.1. Then taking the coarse moduli space yields an integral model Y → SpecR
whose central fiber is a quotient of an object parametrized by X by µµµn. This turns the question of classifying
singular fibers to one of classifying µµµn actions on the objects of X . See [AB19], [BPS24, Section 7] and [Rey25]
for examples involving stable curves.

Corollary 1.19. Let R be a DVR containing C. Suppose Yη → SpecK is a K-semistable Fano variety.
Then there exists a proper model Y → SpecR with klt singularities whose central fiber is the quotient of a
K-polystable Fano variety by µµµn. In particular, the central fiber is irreducible and of multiplicity n.

Example 1.13 can be seen as a special case of Corollary 1.19 for the K-semistable Fano variety P1.

Corollary 1.20. Let R be a DVR containing C. Suppose (Yη, Dη)→ SpecK is a boundary polarized Calabi-
Yau surface pair in the sense of [ABB+23, BL24]. Then there exists a proper model (Y,D) → SpecR with
semi-log canonical singularities whose central fiber is the quotient of a boundary polarized Calabi-Yau by a
µµµn action. In particular, (Y,D + (Y0)red) is semi-log canonical and Y0 has multiplicity n.
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Moreover, by Corollary 1.6, Corollaries 1.19 and 1.20 have analogues for fibrations over global curves.

1.2. Conventions. By reductive group scheme G → S we mean, as in [Con14, Definition 3.1.1], a smooth
S-affine group scheme, such that the geometric fibers are connected reductive groups. When we don’t specify,
the cohomology will be the fppf cohomology. We will pass between an algebraic stack over a base scheme
B to the corresponding category fibered in groupoids over Sch(B) without mentioning it specifically; we
expect that this will not cause any confusion. Whenever we mention the site of an algebraic stack X , it will
be the flat-fppf site: its object are flat morphisms B → X from a scheme, and a covering of an object is an
fppf-covering. All algebraic stacks will be noetherian, unless mentioned otherwise. All algebraic stacks in
the body of the paper will have affine diagonal. The nth root stack of a DVR R, denoted n

√
SpecR or Rn,

is the algebraic stack [SpecR[t1/n]/µµµn] where t is a uniformizer of R.

1.3. Acknowledgements. We thank Jarod Alper, Harold Blum, Patrick Brosnan, Elden Elmanto, Michael
Groechenig, Tom Haines, Sam Molcho, Swarnava Mukhopadhyay, Danny Ofek, Zinovy Reichstein, Jason
Starr for helpful conversations. We thank Andres Fernandez Herrero for helpful conversations and for giving
us detailed feedback on a previous version of this manuscript. We especially thank Sid Mathur for many
helpful conversations about gerbes.

2. Groups, torsors and gerbes on algebraic stacks

In this section we develop some preliminary results on reductive groups and their torsors and gerbes over
an algebraic stack. We also refer the reader to [BIMS25] where this material will be developed in more depth.

2.1. Reductive groups over a stack. We begin with the following

Definition 2.1. Let X be an algebraic stack. A group G over X is a sheaf on Xfppf which is a sheaf in
groups, and such that there is a fppf-cover U → X such that the sheaf G|U is represented by a scheme over
U . We say that G is a smooth (resp. separated, of finite type, fppf) group over X , if there is an fppf-cover
as above such that G|U is represented by a smooth (resp. separated, of finite type, fppf) group scheme over
U .

Definition 2.2. Let G → X be a smooth separated group over an algebraic stack X . We say that G is
reductive (resp. linearly reductive, a torus) if for every fppf-cover B → X from a scheme B, the pull-back
G×X B → B is a reductive (resp. linearly reductive, a torus) B-group.

Lemma 2.3. Let G → X a reductive group over a tame algebraic stack as above, with connected fibers.
Then there is an algebraic stack T , with a smooth affine and representable morphism T → X such that for
every morphism f : B → X , there is an equivalence

HomX (B, T )←→ {maximal tori of G×X B}.

Proof. Note that B 7→ {maximal tori of G×X B} is an fppf sheaf. Indeed, the restriction of this functor to
Bfppf is represented by the scheme TorGB/B → B, as proven in [Con14, Theorem 3.2.6]. Thus, T is a sheaf
over X . Then to prove representability, it is enough to show T → X is affine. For this, we may look fppf
locally, where we can assume X is a scheme; we then apply [Mil13, XII, 5.4]. □

Lemma 2.4. Let X be an algebraic stack, and T → X a torus over X which fppf-locally is isomorphic to
Gn

m. Then the sheaf Isomgrp(Gn
m ×X , T ) over Xfppf , that sends U → Isomgrp(Gn

m(U), T (U)), is represented
by an algebraic stack, which is étale over X but not noetherian for n > 1.

Proof. We see that Isomgrp(Gn
m × X , T ) is a GLn,X (Z) = Aut(Gn

m,X )-torsor. Since GLn,X (Z) is étale over

X , it follows that Isomgrp(Gn
m × X , T ) is étale over X . Note it is not noetherian as GLn,X (Z) is not

noetherian. □

The following lemma is a generalization of [Ser10, Theorem 3′′]; see also [GCP24, Lemma 2.7].

Lemma 2.5. Let G be a reductive group over a field k and suppose µµµr acts on G. Then there exists a
µµµr-invariant maximal torus of G defined over k.
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Proof. IfG is a torus there is nothing to prove, so we will assumeG is not a torus. Suppose k has characteristic
exponent p ≥ 1 and write r = pam where m is coprime to p. Following the proof of [Ser10, Theorem 3′′],
we induct on m and the dimension of G. Whem m = 0, µµµr = µµµpa is a connected group scheme. Let
φ : µµµr → Aut(G) be the morphism inducing the action. Since Out(G) is étale over k [Con14, Theorem
7.1.9(1)], the composition µµµr → Out(G) is trivial so φ must factor through the adjoint group Gad = G/Z(G).
By [MT15, Lemma 7.1], the morphism φ : µµµr → Gad factors through a torus which we may take to be maximal
by Grothendieck’s theorem on maximal tori (see [Con14, Remark A.1.2]). Lifting this maximal torus of Gad

to G, we obtain a maximal torus of G which is µµµr-invariant as required. If m > 0, then µµµr
∼= µµµpa × µµµm

where µµµm is etale of order coprime to the characteristic. Then the invariant subgroup of the µµµm action Gµµµm

satisfies the conclusions of [Ser10, Proposition 3]. Indeed as in loc. cit., the conclusions can be checked after
passing to k̄ in which case µµµm

∼= Z/mZ where loc. cit. applies directly. In particular, G1 = (Gµµµm)0 is
reductive and it is positive dimensional if G is not a torus. Now we proceed exactly as in the end of the
proof of [Ser10, Theorem 3′′] with A replaced by µµµr and A′ =< s > by µµµm, we report the salient steps below.
We consider the µµµr/µµµm = µµµpa action on G1 and take a µµµpa -invariant torus in G1, which exists by the base
case m = 0 above, and we take G2 its centralizer. Observe that µµµr acts on G2. As dim(G2) < dim(G), by
induction G2 admits a µµµr-maximal torus. This will have the same dimension as a maximal torus for G; thus
we have found a maximal torus of G (contained in G2) which is fixed by µµµr. □

Remark 2.6. The proof shows more generally that the conclusion of [Ser10, Theorem 3′′] holds whenever
A is a linearly reductive finite group scheme with a composition series 1 = A0 ⊂ A1 . . . ⊂ Al = A such that
Ai is normal in A and Ai+1/Ai is a k-form of either µµµr or Z/rZ for some r.

Proposition 2.7. Let R be a henselian DVR, and let R be the rth root stack of SpecR at the closed point.
Let G → R be a reductive group with connected fibers. Then there is a torus T → R with a morphism
i : T ⊆ G such that, for every geometric point Spec l→ R, the fiber Tl → Gl is a maximal torus.

Proof. For any map of algebraic stacks f : X ′ → X let Γ(X ′/X ) denote the groupoid of sections of f . Let
T → R be the stack of maximal tori of G which is smooth and affine over R by Lemma 2.3. We wish to
show that Γ(T /R) is nonempty. Let R0 = Bµµµr be the residual gerbe of the closed point of SpecR and let
T0 = T ×R R0, G0 = G ×R R0. The data of G0 is equivalent to the data of a reductive group Gk over k,
the residue field of R, together with a µµµr-action on it. By Lemma 2.5, there exists a µµµr-invariant maximal
torus of Gk, i.e. the groupoid of sections Γ(T0/R0) is nonempty. Since R is henselian, the pair (R,R0) is
henselian by [AHR25, Theorem 3.6], and R has the resolution property as it is a global quotient of an affine
scheme by Gm. Thus by [AHR25, Proposition 7.9], Γ(T /R) → Γ(T0/R0) is essentially surjective, and in
particular nonempty. □

2.2. Gerbes and torsors over stacks. We recall some background on torsors, gerbes and bands. Let X
be an algebraic stack and G/X be a group stack as in the previous section.

Definition 2.8. A G-torsor over X is an fppf sheaf P → X with an action G ×X P → P for which there
exists an fppf cover U → X such that PU

∼= GU with the left action of GU . A gerbe over X is an fppf stack
Y → X for which there exists an fppf cover U → X and a group GU → U such that YU ∼= BGU where BGU

is the classifying stack of GU → U .

We refer to [Gir65, Chapter IV] for background on bands which we recall here; see also [EHKV01, Section
3.1]. Let G → X be a gerbe which is trivialized after an fppf cover U → X and suppose that the group GU

is pulled back from a group stack G→ X . Over U ×X U we have descent data for BGU which is a section of
the stack IsomU (BGU ,BGU ) = [Aut(GU )/GU ] where GU acts by conjugation. Passing to π0 yields a section
of Out(GU ) over U ×X U satisfying the cocyle condition, i.e. an element of H1(X ,Out(G)). Note that there
is a natural map H1(X ,Aut(G))→ H1(X ,Out(G)) and that elements of H1(X ,Aut(G)) classify X -forms of
G.

Definition 2.9. Let G → X be a gerbe as above. The band of G is the element Band(G) ∈ H1(X ,Out(G))
described above. Similarly, if G′ → X is a form of G, we define the band of G′ as the image Band(G′) ∈
H1(X ,Out(G)) of the class of G′ under the natural map H1(X ,Aut(G)) → H1(X ,Out(G)). We say G is
banded by G′ if Band(G) = Band(G′) and call G a G′-gerbe.
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When G is abelian, G-torsors and G-gerbes are classified by fppf cohomology H1(X , G) and H2(X , G)
respectively (e.g. [Ols16, Theorems 12.1.5 & 12.2.8]). When G is non-abelian, we follow [Gir65] and define
H1(X , G) and H2(X , G) respectively as the set of isomorphism classes of G-torsors and G-gerbes on X. The
following is a generalization of [Dou75, Ch. V, sect. 3.2, p. 75] to stacks.

Proposition 2.10. Let G → X be a gerbe over an algebraic stack X . Suppose that there exists an fppf cover
U → X such that G|U ∼= BGU where GU → U is reductive and U is connected. Then there exists a reductive
group G→ X and a form G′ → X of G such that Band(G′) = Band(G).

Proof. Since U is connected, the type of GU → U is constant [DGA+11, XXII Section 2]. Let G0 → SpecZ
be the Chevalley group of this type, that is, the unique split reductive group with the given root data [Con14,
Theorem 6.1.17]. After possibly refining U , we may assume that GU

∼= G0 ×Z U . Let G := G0 ×Z X . Then
Band(G) ∈ H1(X ,Out(G)). On the other hand, for the Chevalley model, Aut(G0)→ Out(G0) splits [Con14,
Theorem 7.1.9 (3)]. Fix such a splitting. This induces a splitting Aut(G)→ Out(G) over X and thus a lift
of Band(G) to an element of H1(X ,Aut(G)). Let G′ be the corresponding X -form of G. This is our desired
group scheme. □

3. Preliminary reductions

In this section we make some preliminary reductions that show it suffices to prove Theorem 1.1 in the case
where the stack is a gerbe whose geometric automorphism groups are reductive. Throughout this section,
we let R be a DVR with fraction field K and residue field k and we assume that X is an algebraic stack with
good moduli space X → SpecR.

3.1. Passing to the polystable locus. We first show that it suffices to prove Theorem 1.1 in the case
where the K-point of X is polystable (see e.g. [BES24, Definition 3.2 and Lemma 3.3]). We begin with the
following.

Lemma 3.1. Let V = SpecA→ SpecK with a GLn action such that [V/GLn]→ SpecK is a good moduli
space. Let x ∈ V (K) be any K-point. Then there is a one parameter subgroup λ : Gm → GLn defined over
K such that limt→0 λ(t)x exists and belongs to the unique closed orbit of V .

Proof. For perfect fields this follows from [Kem78], especially [Kem78, §4]. In characteristic p instead we
proceed as follows. By [BHMR17, Theorem 1.3], the cocharacter closure of GLn(K)x contains a unique
cocharacter closed GLn(K) orbit and there is a λ : Gm → GLn defined over K such that limt→0 λ(t)x exists
and belongs to this cocharacter closed orbit. We wish to show that this limit in fact belongs to the closed
orbit. Thus it suffices to check that every cocharacter closed orbit of the GLn(K) action on V is contained in
the unique closed orbit of V . We refer the reader to [BHMR17] for the definition of cocharacter closed and
cocharacter closure. Toward this end, let z ∈ V be a point in a cocharacter-closed orbit. Aftering passing
to the separable closure Ks of K, we can write [V/GLn]×K Ks ∼= [W/G] where W is affine and G ⊂ GLn

is the stabilizer of the closed orbit. By assumption, G is linearly reductive so its connected component
is a torus T ∼= Gn

m,Ks . By [BHMR17, Theorem 1.5(ii)], z remains cocharacter closed over Ks and under

the isomorphism with [W/G] corresponds to a cocharacter closed orbit of G(K). Again by [Kem78], after
passing further to the algebraic closure K/Ksep, there is a 1-parameter subgroup λK : (Gm)K → (Gn

m)K
such that limt→0 λK(t)z exists and is contained in the closed orbit. But λ is of the form t 7→ (ta1

1 , . . . , t
an
n )

with ai ∈ Z, so it is the pullback of a character λKs : (Gm)Ks → (Gn
m)Ks . Thus limt→0 λKs(t)z exists and

is contained in the closed orbit. Since z is cocharacter closed, this limit must also be contained in G(K)z
so z is contained in the closed orbit of V ×K Ks. As belonging to the closed orbit can be checked after a
separable field extensions, then z is also in the closed orbit of V , as desired. □

Proposition 3.2. Let R be a DVR with generic point η = SpecK. Consider an algebraic stack X with a
good moduli space ξ : X → SpecR. Assume that

(1) X admits a K-point ϕ : η → X , and
(2) every ψ : η → X sending η to the polystable point of Xη extends to a section over some root stack
R = r

√
SpecR of SpecR.

Then ϕ extends to a section over some root stack R of SpecR.
7



Proof. We first prove that there is a map ΘK : = [A1
K/Gm] → X sending 1 to ϕ(η) and 0 to the unique

polystable point of XK over η. Indeed, from [AHR25, Theorem 6.1], we can write XK = [V/GLn] with V
affine and XK → η a good moduli space. By Lemma 3.1, there is a 1-parameter subgroup defined over K
such that λ : Gm → GLn such that limt→0 λ(t)ϕ(η) is in the unique closed orbit of the GLn action on V .
Taking quotients of the induced map A1

K → XK yields the required map ΘK → X .
By assumption, up to replacing SpecR with a root stack R, we can extend SpecK

ι−→ A1
K → X to a

morphism R → X , where ι is the inclusion of the origin in A1
K . Consider then the following diagram

SpecK //

ι

��

SpecR

β

��
A1

K
α // SpecA.

where A is the fiber product of K[t]×K R. More explicitly,

A = {p(t) ∈ K[t] : p(0) ∈ R} = R

[
t,
t

π
,
t

π2
, . . .

]
where π is a uniformorizer in R. As SpecK → A1

K is a closed embedding and SpecK → SpecR is affine,
SpecA is a pushout of the previous diagram in algebraic stacks by [AHHLR24, Theorem 4.2]. Consider the
n-th root stack of SpecA at the Cartier divisor π = 0. This leads to the following cartesian diagram:

SpecK //

ι

��

R

b
��

A1
K

a // n
√
SpecA.

We argue now that this diagram is also a pushout in algebraic stacks. By [AHHLR24, Theorem 4.2] it suffices
to check that O n

√
SpecA → a∗OA1

K
×(a◦ι)∗OSpecK

b∗OR is an isomorphism. This can be checked flat-locally

on n
√
SpecA, so consider the cover SpecA[r]/(rn − π)→ n

√
SpecA. This cover pulls back to the diagram of

schemes on the left, leading to the diagram of rings on the right

SpecK[r]/(rn − π) //

��

SpecR[r]/(rn − π)

��
SpecK[t, r]/(rn − π) // SpecA[r]/(rn − π)

K[r]/(rn − π) R[r]/(rn − π)oo

K[t, r]/(rn − π)

t=0

OO

A[r]/(rn − π)

OO

oo

It suffices to note that the right-most diagram is a pull-back in rings.
By the universal property of pushouts, we have a map n

√
SpecA→ X . Since

A = colimlR

[
t

πm
| m ≤ l

]
= colimlR

[
t

πl

]
and X is of finite type, by the functorial characterization of locally finitely presented morphisms, the map
n
√
SpecA → X factors via n

√
SpecR[ t

πk ] =
n
√

SpecR[s, t]/(sπk − t) → X for some k ≫ 0. Consider the

morphism i : SpecR→ SpecR[s, t]/(sπk−t) induced by the R-algebra homomorphism j : R[s, t]/(sπk−t)→
R that sends s 7→ π and t 7→ πk+1. We have that:

(1) the image i(η) of the generic point of SpecR is contained in D(t) ∩D(π) = A1
K \ {0} as j(tπ) ̸= 0

(2) the image i(x) of the closed point of SpecR is the prime ideal (π, s, t), which agrees with the image
of the closed point of SpecR via β.

Then it induces a morphism n
√
SpecR→ n

√
SpecR[s, t]/(sπk − t), which if postcomposed with the morphism

n
√

SpecR[s, t]/(sπk − t)→ X yields a morphism n
√
SpecR→ X whose restriction to the generic point η → X

is isomorphic to ϕ : η → X by (1), and which sends the special point to a point over the closed point of
SpecR by (2). □
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3.2. Reduction to the case of a gerbe. The next result shows that it suffices to prove Theorem 1.1 for
gerbes over root stacks.

Theorem 3.3. Let R be a DVR, with generic point η = SpecK. Consider a stack X with good moduli space
π : X → SpecR, and suppose ϕ : η → X ps ⊂ X is a polystable K-point. Then there exists a root stack
Rn = n

√
SpecR and a diagram as follows

G
p //

π′

��

X

π

��
η //

ϕ′
>>

Rn q
// SpecR

where q is the coarse moduli space map, ϕ and p ◦ ϕ′ are isomorphic and π′ is a gerbe banded by a smooth,
connected, linearly reductive group scheme G → Rn. Moreover, the closed point of G maps to a polystable
point in X .

The argument follows closely many of the ideas in [BES24].

Proof. Let x ∈ XK be the polystable point of XK and let X ′′ be the closure of {x} ⊂ X . Since X → SpecR
is universally closed, and since closed substacks of a stack with a separated good moduli space still admit
a good moduli space [Alp13, Lemma 4.14], the stack X ′′ admits a good moduli space which is closed in
SpecR and which contains η. In other terms, the composition X ′′ → X → SpecR is a good moduli space.
Moreover, the point η is a stable point of X ′′ → SpecR so X ′′ → SpecR is a stable good moduli space,
i.e. the stable locus is dense. Thus we may apply canonical reduction of stabilizers [ER21] which yields a
modification X ′ → X ′′ such that

• X ′ → X ′′ is an isomorphism over η,
• the dimension of the stabilizers of the geometric points of X ′ is constant, and
• X ′ admits a good moduli space which is obtained by a sequence of blow-ups of SpecR.

Since R is a DVR, the sequence of blowups of SpecR must be the identity an the composition (X ′)red →
X ′ → SpecR is a good moduli space by [Alp13, Theorem 4.16(viii)] so without loss of generality we may
assume X ′ is reduced. By [ER21, Proposition B.2] and its proof (especially [ER21, Proposition B.6], see also
[BES24, Proposition 2.3]) we can factor X ′ → SpecR as X ′ → Y → SpecR where the first map is a gerbe
whose geometric automorphism groups are the smooth connected components of the identity of the geometric
automorphism groups of X ′ and Y → SpecR is a tame coarse moduli space. By [Alp13, Proposition 3.13],
X ′ → Y is also a good moduli space so the geometric automorphism groups are also linearly reductive.

Note that by construction the K-point ϕ : η → X factors through X ′ → X . Now [BV24a, Theorem 3.1]
applies to the map Y → SpecR so η → X ′ → Y extends to a section of Y → SpecR up to replacing SpecR
with a root stack Rn. Then G : = X ′×Y Rn → Rn is a good moduli gerbe with smooth, connected, linearly
reductive geometric automorphism groups. It follows from Proposition 2.10 that any such gerbe is banded
by a smooth, connected, linearly reductive group scheme over Rn (i.e. a form of G over Rn). Moreover, by
construction ϕ factors through ϕ′ : η → G as required.

As for the moreover part, observe that at each saturated blow-up in the algorithm of Edidin and Rydh
[ER21], we are taking an open substack (namely, using their notation, a saturated blow-up) of the blow-up of
the polystable point over the closed point ofR. Hence it suffices to show that the saturated blow-up intersects
the exceptional divisor of the blow-up, and each blow-up in the Edidin-Rydh algorythm is centered at a point
on the exceptional divisor of the previous blow-up. Both these statement follow from [ER21, Proposition 3.7
(3)]: the first one follows from [ER21, Proposition 3.7 (3)] directly, the second one follows as at each step
we are blowing up the polystable point, which is the unique closed point (over the closed point of SpecR).
As the exceptional divisor is closed, it will contain the unique closed polystable point. Then any point on
the last exceptional divisor we extract will map to the polystable point of X . □

4. Gerbe case

The goal of this section is to prove the root stack valuative criterion for gerbes banded by a reductive
group. When the residue characteristic is finite, we need a tameness assumption on the reductive group.
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Definition 4.1. Let G→ S be a reductive group over a stack S. We say G has tame Weyl group if for all
geometric points x : Spec k → S, the order of the Weyl group of Gx is coprime to the characteristic of k.

Theorem 4.2. Let R be a henselian DVR with fraction field K and let R be a root stack of SpecR. Let
G → R be a gerbe banded by a reductive group G → R which is either special or has tame Weyl group.
Suppose that G admits a K-point ϕ : SpecK → G. Then ϕ extends to a section R → G up to replacing R
with a further root stack.

The following example illustrates that some assumption on G is necessary.

Example 4.3. Let R be a mixed characteristic (0, 2) henselian DVR with imperfect residue field k, for
example the henselization of Z[t](2), and let t ∈ R be an element which is not a square in k. Consider the

conic C = {x2 + y2 = tz2} ⊂ P2
K . This can be interpreted as a map SpecK → BPGL2. We claim that

this map does not extend to any root stack of SpecR. Suppose toward contradiction that it did extend over
a root stack Rn. Then the pullback C ′ of C to R′ = R[21/n] has good reduction, where R′ has the same
residue field k. Let C′ → SpecR′ be a smooth proper model. Then by smoothness C′ admits a k′′-point
where k′′/k is a separable extension. By the henselian assumption, this extends to an R′′-point where R′′/R′

the unique finite étale extension corresponding to k′′/k. In particular, C ′′ = C ×R R′′ has a K ′′-rational
point. This implies its discriminant must be a square. On the other hand, the discriminant of x2 + y2 = tz2

is 8t, so after possibly adjoining a further root of 2, this implies that t is a square in K ′′. Thus its reduction
is a square in k′′ which contradicts the fact that k′′/k is separable so C cannot have good reduction over
any root stack. ♢

The proof will proceed as follows. First we will prove that, up to replacing R with a further root stack,
the gerbe G has to be trivial. This will be achieved by replacing G with a gerbe over R banded by the center
of G, which is an extension of a torus by a tame finite group. Using [BV24a] we will further reduce the
problem to the case in which G is a torus, which we handle explicitly. Once we know that G is trivial, the
problem will become to lift a class c ∈ H1(η,G|η). If G is special, this is automatic. In the case where G has
tame Weyl group, we will reduce again to the case of a torus by showing that G admits a maximal torus T ,
lifting c to a class in H1(η,N |η) where N is the normalizer of T in G, and reducing again to the case of a
torus using that N is an extension of a torus by a finite tame group (so using [BV24a]).

4.1. Torus case. In this section we include a few preparatory results that will be needed later. Whevever
we take a cohomology group on an algebraic stack, we will use the flat-fppf cohomology.

Lemma 4.4. Let X be a tame regular algebraic stack with a dense open substack that is a scheme. Then
H2(X ,Gm) is torsion and if X admits a coarse moduli space π : X → X, the cokernel of π∗ : H1(X,Gm)→
H1(X ,Gm) is torsion.

Proof. We first prove that H2(X ,Gm) is torsion. It follows from the same argument as in [Lie08, Proposition
3.1.3.3] that the morphism H2(X ,Gm)→ H2(U,Gm) is injective, where U is a dense open substack which is
a scheme (see also [Ach24, Prop. 2.23]). More specifically, consider a class c ∈ H2(X ,Gm) which restrict to
the trivial class generically. This corresponds to a gerbe G → X which generically is trivial. So G|U has a
1-twisted line bundle Lη, and its push-forward via G|U → G will be a 1-twisted line bundle. As H2(U,Gm)

is torsion from [Lie08, Corollary 3.1.3.4], also H2(X ,Gm) is torsion. To check that H1(X ,Gm) is torsion, it
suffices to use [AH11, Lemma 2.3.7] to argue that for every line bundle L on X , a power L⊗N descends to
X. □

Proposition 4.5. Let R be a henselian DVR, let R be a root stack of SpecR and let T → R a smooth group
stack with geometric fibers isomorphic to Gn

m for a fixed n. Then there is a finite étale morphism π : R′ → R
where R′ is also a root stack of a henselian DVR such that π−1T ∼= Gn

m ×R′.

In other terms, we can split the torus after a finite étale morphism of the root stack R. This is well-known
if R is a scheme.

Proof. Let p be the residue characteristic of the closed point of SpecR, let µµµd the stabilizer of the closed
point of R and π the uniformizer of R. If p > 0 let e and d′ be such that d = ped′ and p does not divide d′,

so µµµd
∼= µµµpe ×µµµd′ ; if p = 0 let d = d′. Observe now that SpecR[t]/(td−π)] ∼= SpecR[t1, t2]/(t

pe

1 −π, td
′

2 − t1)
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and R ∼= [SpecR[t1, t2]/(t
pe

1 − π, td
′

2 − t1)/µµµd′ ×µµµpe ] where µµµd′ acts on t2 and µµµpe on t1. So we have a space

X (namely, SpecR[t1, t2]/(t
pe

1 − π, td
′

2 − t1)) with an action of a group of the form G = G1 × G2 (namely,
G1 = µµµpe and G2 = µµµd′). We can factor X → [X/G1×G2] as X → [X/G1]→ [X/G1×G2]. So we can then
factor the fppf µµµd-cover SpecR[t]/(t

d − π)→ R as

SpecR[t]/(td − π)→ pe
√
SpecR[ d′

√
π]

ξ−→ R.

Observe that ξ is finite and étale as it is a µµµd′ -torsor, so it suffices to prove the desired statement for R[ d′
√
π],

which is still a henselian DVR, and for R = pe
√
SpecR[ d′

√
π]: we can assume d = pe and p > 0.

Observe now that if k is a separably closed field of characteristic p, and T is a torus on Bµµµpe over Spec k,
then T ∼= Bµµµpe × Gn

m for some n. Indeed, as T splits after the fppf-cover Spec k → Bµµµpe , T is given by a
homomorphism µµµpe → Aut(T ) = GLn(Z). As GLn(Z) is discrete over SpecK, the only homomorphism is
the trivial one.

Consider then Rsh the strict henselization of R, consider the morphisms SpecRsh → SpecR and Rsh :=
R×SpecR SpecRsh. Over Rsh one can consider the isom-sheaf Ish := Isomgrp(Gn

m×Rsh, T sh) of Lemma 2.4

where T sh = T |Rsh . Then there is a section (Bµµµpe)ks → I, where ks is the separable closure of the residue
field of R. As Ish → Rsh is étale, this section lifts uniquely to any infinitesimal thickening of (Bµµµpe)ks inRsh,
so from [AHR25, Theorem 3.4] it lifts to a section over Rsh. As Ish is the pull-back of Isomgrp(Gn

m ×R, T )
which is locally of finite type over R, and as Rsh is the limit of finite and étale morphisms over R, there is a
finite and étale morphism SpecR′ → SpecR such that T trivializes when pulled back to R×SpecR SpecR′;
note this fiber product is a root stack over SpecR′. □

Lemma 4.6. Let p : Y → X be a finite and étale morphism of degree d of algebraic stacks and T → Y a
smooth commutative scheme. Then p induces a morphism from the flat-fppf topos of Y to the one of X , and
there are morphisms T → p∗p

−1T and p∗p
−1T → T whose composition is the multiplication by d.

Observe that this is again well-known for schemes, on the small étale site [Sta21, Tag 03SH]. We will need
the corresponding statement for the fppf-site, in the case when T is smooth; for doing so the key input is
[Gro68, Theorem 11.7].

Proof. As p is finite and étale, from [Sta21, Tag 0GR1] it induces a morphism of topoi. In particular,
there are funcors p∗ : Sch(Yfppf) → Sch(Xfppf) and p−1 : Sch(Xfppf) → Sch(Yfppf). The sheaf represented
by T ×X Y agrees with p−1T . Moreover, there is an adjunction morphism Id → p∗p

−1 that gives a map
T → p∗p

−1T . We claim that, as T is smooth, there is also a map p∗p
−1T → T such that the composition

T → p∗p
−1T → T is the multiplication by d.

To check this, it suffices to prove that for every flat morphism U → X from a separated scheme

(1) there is a map p∗p
−1T (U) → T (U), such that if precomposed with T (U) → p∗p

−1T (U) gives the
multiplication by d, and

(2) this map is functorial in U (i.e. it is a map of sheaves).

For (1), consider then the restriction morphisms rU : Sch(Ufppf)→ Sch(Uét) and rV : Sch(Vfppf)→ Sch(Vét)
where V = U ×X Y, and the subscript ét stands for the small étale site. Then:

• T (U) = rU (T |U )(U). Indeed, we can pick an étale cover U → U where U is a disjoint union of affines
(so also U ×U U will affine), and from Grothendiek’s theorem [Gro68, Theorem 11.7] T (U) = rUT (U)
and T (U ×U U) = rUT (U ×U U) as T is smooth. Then from the sheaf properties, the global sections
T (U) and rU (T |U )(U) are the colimit of the same diagram, so T (U) = rU (T |U )(U).

• As we can compute p∗, p
−1 and gobal sections in terms of limits of global sections of T on affine

schemes which are étale over either V or U , proceeding as above rV (p
−1T |U ) and p−1

ét rU (T |U ) are
canonically isomorphic and similarly with p∗, where we denoted by pét the morphism between the
small étale sites Vét → Uét.

• For the small étale sites we have morphisms rU (T |U )(U)→ ((pét)∗(pét)
−1)rU (T |U )(U)→ rU (T |U )(U)

from [Sta21, Tag 03SH], so we also have morphisms T (U)→ (p∗p
−1T )(U)→ T (U) whose composi-

tion is multiplication by d.
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For part (2) instead, it suffices to check that if one has a cartesian diagram as follows

V ′ //

��

V

f

��
U ′ // U

with V → U finite and étale, then the trace map of [Sta21, Tag 03SH] commutes with base change. Recall
that if A is a sheaf of abelian groups on the small étale site of U , the trace map is defined in [Sta21, Tag
03SH] as the composition of

A → (fét)∗(fét)
−1A ∼= (fét)!(fét)

−1A → A
where (fét)∗, (fét)

−1 and (fét)! are maps between the categories abelian sheaves on the small étale site of U
and V . The two arrows come from natural adjunctions, whereas the isomorphism comes from the map defined
in [Sta21, Tag 0F4L], which is an isomorphism for f finite and étale [Sta21, Tag 03S7]. Then to check the
desired statement, it suffices to observe that both the adjunction maps rU (TU ) → (fét)∗(fét)

−1rU (TU ) and
(fét)!(fét)

−1rU (TU ) → rU (TU ), and the isomorphism (fét)∗(fét)
−1rU (TU ) ∼= (fét)!(fét)

−1rU (TU ) commute
with base change.

As f is étale, the first map A → (fét)∗(fét)
−1A evaluated at an étale morphism W → U agrees with the

restriction
A(W )→ A(W ×U V ).

The second map instead, up to shrinking W , agrees with the addition map⊕
W→V over U

(fét)
−1A(W ) =

⊕
W→V over U

A(W )→ A(W )

as (fét)! is the sheafification of (fét)p! [Sta21, Tag 03S2]. These commute with base change. Similarly the
isomorphism A(W ×U V )→

⊕
W→V over U A(W ) defined in [Sta21, Tag 0F4L], where we shrank W so that

there are deg(f) sections of W → V over U , again commutes with base change. □

Corollary 4.7. Let R be a henselian DVR , let R be a root stack of SpecR at its closed point and T → R
a torus. Then Hi(R, T ) is torsion for i = 1, 2.

Proof. From Proposition 4.5 there is a finite étale morphism p : R′ → R of degree d such that T |R′ ∼= Gn
m

for some n, with R′ the root stack of a DVR. From Lemma 4.6 the map

T → p∗p
−1T → T

of abelian fppf-sheaves of X is the multiplication by d, for i = 1, 2. So there are maps whose composition is
multiplication by d

Hi(R, T )→ Hi(R, p∗p−1T )→ Hi(R, T ).
It suffices to check that that Hi(R, p∗p−1T ) ∼= Hi(R′, p−1T ). Indeed, R′ is such that p−1T = Gn

m and
Hi(R′,Gn

m) is torsion by Lemma 4.4. The equality Hi(R, p∗p−1T ) ∼= Hi(R′, p−1T ) follows from the Leray
spectral sequence, once we prove that Rip∗p

−1T = 0 for i > 0; we will now prove this.
From [Sta21, Tag 0GR2] the sheaf Rip∗p

−1T is the sheafification of the presheaf that sends U → R to
Hi(U×RR′, p−1T ). In particular to check that Rip∗p

−1T = 0 it suffices to check that every separated scheme
U → R admits an étale cover U → U in affine schemes such that Hi(U ×R R′, p−1T ) = 0. Let us denote by
V := R′ ×R U with the second projection f . As f is finite, Ri(fét)∗(p

−1T )|Vét
= 0 from [Sta21, Tag 0A4K],

where the subscript ét stands for the restriction of f and p−1T to the small étale sites of V and U . Then we
can find an étale cover U → U of U in affine schemes such that Hi

ét(U ×U V, p
−1T |Vét

) = 0. The vainshing of
Rip∗p

−1T follows from Grothendieck’s theorem [Gro68, Theorem 11.7]: étale cohomology of affine schemes
with value in p−1T (which is smooth) agrees with fppf, so Hi

ét(U ×U V, p
−1T |Vét

) = Hi(U ×U V, p
−1T ). Then

Rip∗p
−1T = 0 as every scheme U → R admits a cover U → U where Rip∗p

−1T (U) = 0, and Rip∗p
−1T is a

sheaf. □

Lemma 4.8. Let R be the root stack of the spectrum of a DVR R, let η be its generic point and let T → R
be a torus. Assume we are given xη ∈ H1(η, T |η). Then, up to replacing R with a further root stack, we can

extend xη to x ∈ H1(R, T ).
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Proof. First observe that H1(η, T |η) is torsion by Lemma 4.4. In the fppf topology ofR, we have the following
exact sequence:

1→ F → T
·d−→ T → 1

where d is the order of xη. As T is a torus, F is tame. Then there is a finite tame group F over R and an

element cη ∈ H1(η, F |η) that maps to xη. It suffices to extend cη to c ∈ H1(R, F ). Observe that the element
cη corresponds to a morphism η → BF . As F is tame, from [BV24a] we can extend this morphism to a map

R → BF , up to replacing R with a further root stack. This corresponds to an element cF ∈ H1(R, F ) and
its image in H1(R, T ) is the desired extension x. □

Proposition 4.9. Let R be the root stack of a henselian DVR R. Let T → R be a torus, and T → R a
gerbe banded by T which is generically trivial. Then, up to replacing R with a further root stack, T is trivial.

Proof. Let c ∈ H2(R, T ) be the class representing T . First observe that by Corollary 4.7, the class c is
torsion. Let d be the order of c, and consider the exact sequence in the fppf-topology

1→ F → T
·d−→ T → 1.

As d is the order of c, there is cF ∈ H2(R, F ) which maps to c via β : H2(R, F )→ H2(R, T ). Consider then
the following commutative square, where η is the generic point of R:

H1(R, T ) α //

��

H2(R, F )
β //

��

H2(R, T )

��
H1(η, T )

α|η // H2(η, F )
β|η // H2(η, T ).

Since β|η((cF )|η) = 0, there is an element xη ∈ H1(η, T ) that maps to (cF )|η. From Lemma 4.8, up to

replacing R with a further root stack, we can extend xη to x ∈ H1(R, T ). In particular, up to replacing cF
with cF − α(x), we can assume that (cF )|η is trivial. So F , the F -gerbe over R corresponding to cF , has a
section over η. Thus by [BV24a] it has a section after replacing R with a further root stack. In other terms,
cF = 0 after passing to a further root stack. Thus also c = 0. □

4.2. Proof of Theorem 4.2. We are finally ready to prove Theorem 4.2; we begin with the following
auxiliary statement.

Proposition 4.10. Let R be a henselian DVR, let G → R be a reductive group which is either special or
has tame Weyl group (as in Definition 4.1) where R is a root stack of SpecR at its closed point. Let η be the
generic point of R. Then any section of (BG)η → η can be extended to a section of R → BG up to replacing
R with a further root stack.

Proof. In the special case, there is nothing to prove as η → BG classifies the trivial torsor which extends to
the trivial torsor over R. Thus suppose G is reductive with tame Weyl group. Let T be a maximal torus of
G, which exists by Proposition 2.7 and let N be the normalizer of T in G. The inclusion N → G induces
a map H1(·, N) → H1(·, G). By [Ser97, Lemma III.2.2.1 (b)] the class cη lifts to an element dη ∈ H1(η,N),
as all maximal tori of a reductive group over an algebraically closed field are conjugate. In particular, it
suffices to check that the map dη : η → BNη lifts to a d : R → BN , up to replacing R with a further root
stack. Recall that the normalizer of a maximal torus T is an extension of T by the Weyl group which by
assumption is tame over R:

1→ T → N →W → 1.

In particular, we can factor BN → R as BN α−→ BW → R. By [BV24a], there is a lift of α ◦ dη up to
replacing R with a further root stack, so we have a morphism R → BW extending α ◦ dη. We need now to
lift it to BN ×BW R, but BN ×BW R → R is a gerbe for a form of the torus T by [Sta21, Tag 0CJY]. Then
Proposition 4.9 applies so that after replacing R by a further root stack, we can extend η → BN ×BW R to
a section R → BN ×BW R as required. □
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Remark 4.11. In the special case of a gerbe over R itself rather than a root stack of SpecR, the order
of the root stack needed to extend the K-point of BG can be bounded uniformly in terms of the Weyl
group of G. Indeed by work of Chernousov, Gille and Reichstein [CGR06, CGR08] there exists a finite
subgroup scheme S ⊂ G which is an extension of the Weyl group of G by a diagonalizable group such that
H1(K,S)→ H1(K,G) is surjective. Thus we can lift the K-point of BG to BS. By the tameness assumption
on the Weyl group of G, the stack BS is tame so we may apply [BV24a] to this stack and then the degree
of the root stack necessary is bounded by the order of S.

We are now ready to prove Theorem 4.2.

Proof of Theorem 4.2. From Proposition 4.10, it suffices to show that, up to replacing R with a further root
stack, we have that G ∼= BG. Since G is banded by G, it corresponds to a class c ∈ H2(R, G). Let Z be
the center of G (which exists by [Con14, Lemma 2.2.4]). Observe that Z is linearly reductive as Z ⊆ C(T )
where C(T ) is the centralizer of a maximal torus T of G (which again exists by [Con14, Lemma 2.2.4]), and
C(T ) = T as it is true on geometric fibers and both sides commute with base change by [Con14, Theorem
3.3.4]. It follows from [Gir65, Thm. IV.3.3.3] (see also the proof of [BES24, Proposition 2.1]) that the map
H2(R, Z)→ H2(R, G) and the map H2(η, Z)→ H2(η,G) defined by sending a gerbe Z to (Z × BG)((( Z are
bijections, where (Z×BG)(((Z is the rigidification of Z×BG by the diagonal subgroup Z of the inertia stack
I(Z × BG) = IZ × IBG. In particular, it suffices to show that if Z is a commutative linearly reductive
group over R, and Z → R is a gerbe banded by Z which is generically trivial, it can be trivialized up to
replacing R with a further root stack. We can further rigidify by the smooth connected component of the
identity (Z0)sm ([AHR25, Theorem 9.9] and [BES24, Remark 2.2]) and factor Z → R as Z → Z ′ → R
where Z → Z ′ is a gerbe for (Z0)sm, and Z ′ → R is finite and tame [BES24, Proposition 2.3]. Applying
[BV24a] to the generically trivial tame gerbe Z ′ → R, after replacing R by a further root stack, we can
assume that Z ′ → R has a section. Pulling back Z → Z ′ along this section, we obtain a gerbe for (Z0)sm so
it suffices to treat the case in which (Z0)sm = Z is a smooth commutative connected reductive group, i.e. a
torus. Then Proposition 4.9 applies so that Z and thus G is trivialized after replacing R by a further root
stack. □

5. Proofs of the main theorems and applications

We are finally ready to prove Theorem 1.1 and Theorem 1.3.

Proof of Theorem 1.1. We first assume that R is henselian. From Proposition 3.2 it suffices to treat the
case when the generic point of SpecR maps to a polystable point of X . From Theorem 3.3 it suffices to
assume that X → X is a gerbe banded by a connected, smooth, linearly reductive group. This case is treated
in Theorem 4.2. To reduce to the henselian case we use [Ryd11, Theorem B]. Take SpecA → SpecR the
Henselization morphism. We know that the n-th root stack of SpecA at its closed point will admit a lifting
to X . But the following diagram is a pushout, which concludes the argument

SpecFrac(A) //

��

n
√
SpecA

��
SpecFrac(R) // n

√
SpecR.

□

Proof of Theorem 1.3. When R is henselian, this is exactly Theorem 4.2. To reduce to the henselian case,
we can use the same pushout diagram as in the above proof of Theorem 1.1. Finally, to handle extensions of
groups, suppose we have an exact sequence 1→ G1 → G2 → G3 → 1 of reductive groups over a root stack R
where G1 has tame Weyl group and G3 is special. Let X2 → R be a gerbe banded by G2 and SpecK → X2

be a K-point. As in the proof of Theorem 4.2, after passing to a further root stack of R, we may assume
that X2

∼= BG2. Composing with BG2 → BG3 yields a K-point of BG3 which extends to a R-point after
taking a further root stack by assumption. Now consider X1 : = R ×BG3 BG2 with its induced K-point
SpecK → X1. This is a gerbe banded by a form of G1 so by assumption, the K-point extends after taking
a further root stack. Composing with X1 → X2 = BG2 yields the required extension. □
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Proof of Proposition 1.5 and Corollary 1.6. For Proposition 1.5, let x1, . . . , xm ∈ C be points of indetermi-
nacy for φ and let U be the open complement so that φ restricts to a morphism U → X . Let Ri = OC,xi

which is a DVR and let K = k(C) = FracRi be the function field. The K-point SpecK → X extends to
root stack points ni

√
SpecRi → X by properness of X and Theorem 1.1 or by Theorem 1.3 for some integers

ni. Let C → C be the global root stack n1,...,nm
√
(C, x1, . . . , xm). We wish to extend U → X to a morphism

C → X . By induction on m, we can extend the morphism one point at a time so suppose without loss of
generality that m = 1. Consider the diagram

SpecK //

��

n
√
SpecR

��
U // C

.

This is a flat Mayer-Vietoris square in the sense of [HR23, Definition 1.2] and C is locally excellent by
assumption so this square is a pushout square in algebraic stacks by [HR23, Theorem A]. Thus there is a
morphism C → X by the universal property of pushouts.

For Corollary 1.6, note that X is locally of finite presentation by assumption so the given K-point
SpecK → X spreads out to a morphism U → X for some open set U ⊂ C [Sta21, Tag 0CMX]. The
result then follows from Proposition 1.5. □

Proof of Corollary 1.9. By Theorem 1.3 and Remark 4.11, there exists an n depending only on G such that
any K-point extends to a n

√
SpecR point of BG. □

Proof of Proposition 1.14 and Corollary 1.15. Exactly the same argument as in [BV24a, Theorem 4.1] goes
through, except we replace [BV24a, Corollary 3.2] with Theorem 1.1 which gives a morphism R → Y that,
if pre-composed with the covering Spec(R)→ R and the closed embedding of the closed point Spec(kR)→
Spec(R), gives the desired point on Y.

For Corollary 1.15, we can apply Proposition 1.14 to the rational map SpecR 99K [SpecA/G] to get a
k-point of [SpecA⊗R k/Gk] which lifts to a k-point of A⊗R k by the special assumption. □

Proof of Proposition 1.16. Let G ∈ H2(R,G) such that G|K = 0. Then GK ∼= BGK so there exists a point
SpecK → G which by Theorem 1.3 extends to a root stack Rn → G. Composing with Spec k → Rn yields
a k-point of G|k which exhibits the triviality of G|k. □

Proof of Corollary 1.17 and Corollary 1.18. Let xK : SpecK → [V/H] be the composition of a K-point of
V with the quotient map. This exhibits the triviality of the gerbe [V/H]K . By Proposition 1.16 the gerbe
[V/H]|k is also trivial and since H is special, any k-point of [V/H]|k lifts to a k-point of V .

If VK is unirational then it admits a K-point. Thus Vk also admits a k-point. By [Bor91, Theorem
18.2(ii)], Hk is unirational and given a k-point x ∈ V (k), we get a surjection Hk → Vk by h 7→ hx which
implies Vk is unirational. □

Remark 5.1. In fact Theorem 1.3 applied to [V/H] shows something slightly stronger. Given any K-point
xK ∈ V (K), there exists a root extension R′ = R[t1/n] where t is a uniformizer and an element h ∈ H(R′)
such that hxK extends to an R′-point of V .

Proof of Corollary 1.19 and Corollary 1.20. The K-moduli stackMK-ss of K-semistable Fano varieties has
a proper good moduli space MK-ps by [LWX19, BLX22, ABHLX20, LXZ22]. Thus by Theorem 1.1, there
exists a root stack Rn and a family Y → Rn of K-semistable Fano varieties with polystable central fiber
extending Yη → SpecK. The total space has klt singularities by [Oda13, Theorem 1.3] and inversion of
adjunction for klt singularities [fli92, Sections 16 & 17] and quotients of klt singularities are klt so the coarse
space Y → SpecR has klt singularities and central which is a quotient of a K-polystable Fano variety by
µµµn. The multplicity n can be deduced by noting that Rn → SpecR is totally ramified of order n (see e.g.
[BPS24, Lemma 7.11]).

For the moduli of boundary polarized Calabi-Yau surface pairsMCY , the argument is similar, except here
we only have an asymptotically good moduli space [ABB+23, Definition 13.1]. More precisely, we bound the
Cartier index of KY to obtain an open substackMCY

m which has a good moduli space MCY
m . By the proofs

of [ABB+23, Theorem 1.3] and [BL24, Theorem 1.1], the good moduli space is proper and independent of
15
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m for m ≫ 0. Thus we apply Theorem 1.3 to MCY
m for m sufficiently large. Then the proof is exactly as

above using that quotients of slc singularities are slc [AP12, Lemma 2.3] and inversion of adjunction for log
canonical singularities [Kaw07, Main Theorem]. □
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[BČE+25] V. Balaji, Kestutis Česnavičius, Elden Elmanto, Arnab Kundu, and Alex Youcis. Grothendieck-Serre phenomena
for parahoric groups. In preparation, 2025.

[BES24] Dori Bejleri, Elden Elmanto, and Matthew Satriano. Proper splittings and projectivity for good moduli spaces.

arXiv preprint arXiv:2408.11057, 2024.
[BHMR17] Michael Bate, Sebastian Herpel, Benjamin Martin, and Gerhard Röhrle. Cocharacter-closure and the rational
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