
EFFECTIVE MORPHISMS AND QUOTIENT STACKS

ANDREA DI LORENZO AND GIOVANNI INCHIOSTRO

Abstract. We give a valuative criterion for when a smooth algebraic stack with a separated good moduli
space is the quotient of a separated Deligne-Mumford stack by a torus. For doing so, we introduce a new
class of morphisms, the effective morphisms, which are a generalization of separated morphisms.

1. Introduction

It has been clear since Grothendieck, that often there are advantages by considering objects as their
functor of points. When one parametrizes objects with automorphisms, it is natural to consider algebraic
stacks. As affine schemes are the building blocks for schemes, quotient stacks are the the building blocks for
a wide class of stacks [AHR20]. Therefore, having some criterion for when an algebraic stack is a quotient
stack is a foundational question which is worth investigating, both for purely theoretical reasons, and (as one
expects) because it has some consequences on the moduli problem represented by the stack. For example,
smooth quotient stacks have a well-defined notion of integral Chow ring [EG98], and some times they measure
the failure of Br = Br′ for schemes [EHKV01].

While for schemes one has a cohomological criterion to determine if a scheme is affine, it is not at all
obvious to come up with a criterion for when an algebraic stack is a quotient stack, nor that a criterion
that completely characterizes quotient stacks should exist in the first place. Therefore in this paper we are
interested in mildly relaxing the quotient assumption. In particular, we are interested in understanding when
an algebraic stack X is a quotient of a Deligne-Mumford stack Y: one can understand Deligne-Mumford
stacks as the the simplest stacks one encounters, with non-trivial stacky structure.

In Section 2 we introduce effective morphisms, which have the following properties:
(1) generalize separated morphisms,
(2) are defined by a valuative criterion, and
(3) are stable under composition, base change, while being not étale local on the target.

The relevance of effective morphisms lies in the fact that they can be used to recognize quotient of DM stacks
by torus actions. What follows is our main result.

Theorem 1.1 (Theorem 2.19 and Theorem 5.10). Let X be a smooth algebraic stack and π : X → X a good
moduli space morphism. Assume that X is separated, over a field k of characteristic 0 containing all the
roots of 1. Then π is effective if and only X is the quotient of a separated Deligne-Mumford stack by a split
torus.

Effective morphisms are a generalization of separated morphisms, in the sense that all separated morphisms
are effective, but effective morphisms are not étale local on the target. Observe that not being étale local
on the target is essential for our application, as from [AHR20, Theorem 6.4] any class of morphisms which
is étale local on the target would not measure the property of being a quotient stack.

The complete definition of effective is Definition 2.3, but on a first approximation one can understand it
as follows. Consider R′ a DVR and Spec(R′) ∪η Spec(R′) the non-separated Spec(R′), namely the scheme
obtained by gluing two copies of Spec(R′) along their generic points. Assume that there is an action of µ2
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2 A. DI LORENZO AND G. INCHIOSTRO

on Spec(R′) ∪η Spec(R′) which away from the origins is a Galois action, and it swaps the two origins. We
can take the quotient of this action, P . One can check that P is non-separated, but it has a morphism
P → Spec(R), where R is the a DVR whose extension is R′, and such that the field extension K(R) ⊆ K(R′)
has degree 2. An effective morphism of stacks X → Y is a morphism satisfying that, for every separated
Deligne-Mumford gerbe T → Spec(R), if we denote by P := P ×Spec(R) T one has the following codimension
one filling condition:

P X

T Y.
The actual effectivity condition can be formulated as follows: one can consider any étale extension R ⊂ R′

and form the pushout P := Spec(K(R)) ∪Spec(K(R′)) Spec(R
′); moreover, for any separated gerbe T →

Spec(R), one can take the the cartesian product P := P ×Spec(R) T . A morphism of algebraic stacks X → Y
is effective if for every commutative diagram of solid arrows as (1), one has a filling given by the dotted
arrow above.

Other than the result in Theorem 1.1, effective morphisms are relevant in the context of the valuative
criterion for universally closed morphisms, as we now briefly explain. Recall that if X → Y is a morphism of
schemes with mild assumptions, being proper can be measured with a codimension 1 filling property (namely,
the valuative criterion for properness). It is well known that if X and Y are algebraic stacks instead, being
universally closed is equivalent to the following slightly modified valuative criterion. If one has a diagram as
the one on the left, then there is a possibly ramified extension of DVRs Spec(R)→ Spec(R′) and a diagram
as the one on the right:

Spec(K(R)) //

��

X

��

Spec(R) // Y

Spec(K(R′))

��

// Spec(K(R)) //

��

X

��

Spec(R′)

33

// Spec(R) // Y.

It is very natural to ask what conditions one can impose on the extension Spec(R′) → Spec(R), and still
guarantee the extension of a lifting as before. We prove the following:

Theorem 1.2 (Theorem 2.14). Assume that X → Y is effective and universally closed morphism, over a
field k of characteristic 0 containing all the roots of 1. Then, in the diagram above, one can assume that
R′ = R[t]/(tn − π) where π is a uniformizer for R. In particular, one can assume that the residue fields of
R and R′ are isomorphic.

See also [BV22] for an analogous result in the case where X is a tame Deligne-Mumford stack.
The paper is organized as follows. In Section 2 we introduce effective morphisms, and we prove that if X

is an algebraic stack with a good moduli space admitting a separated, relatively Deligne-Mumford morphism
X → BGn

m, then the good moduli space map is effective (Theorem 2.19). In Section 3 we report some results
about torsors and twisted tori; in particular we prove that the classifying space of a twisted torus is a certain
fiber product (Theorem 3.12), which might be of independent interest. In Section 4 we prove that BG is
effective if and only if G is a central extension of a finite group by a split torus, whereas in Section 5 we
prove the other direction of Theorem 1.1

1.1. Conventions. All algebraic stacks will have affine (hence separated) diagonal. We work over a field
k which is of characteristic 0 containing all the roots of 1. Given two morphisms X → Spec(A) and
Spec(B) → Spec(A), we denote by XB := X ×Spec(A) Spec(B). Unless oterwise stated, all groups will be
reductive and over k, and all actions will be left actions. All algebraic stacks will be essentially of finite type
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over k, and the automorphism group of their geometric points will be reductive. We will use the shorthand
DM for Deligne-Mumford.

Acknowledgements. We are thankful to Jarod Alper, Dori Bejleri, Siddarth Mathur, Minseon Shin, David
Rydh and Angelo Vistoli for helpful conversations. We are thankful to the referee for carefully reading this
manuscript and for pointing out a gap in a previous version of this work.

2. Effective morphisms

In this section we introduce the main class of morphisms of algebraic stacks, effective morphisms, which
are a mild generalization of separated morphisms.

2.1. The “local bug-eyed cover”. We recall a construction of a special push-out, related to the “bug-eyed
cover” ([Kol97, Example 2.19] and [Alp23, Example 3.9.2]).

Consider a DVR R with fraction field K(R), let K(R′) be a finite extension of K(R) and let R′ be a
DVR with fraction field K(R′) such that the inclusions R → K(R) → K(R′) lands in R′; namely, the ring
R′ is the localization along a closed point of the normalization of Spec(R) in K(R′). Assume also that
Spec(R′)→ Spec(R) is étale. We have the following diagram:

Spec(K(R′)) //

��

Spec(K(R))

��

Spec(R′) // Spec(R).

Recall that as R→ R′ is étale, the uniformizer of R is also a uniformizer for R′. If we denote by kR and kR′

the residue fields of R and R′ respectively, we have an extension kR ⊆ kR′ .
It follows from [Ryd11, Theorem B] that if this extension is surjective, the diagram above is a pushout in

the category of algebraic stacks. In other terms, for every algebraic stack X , the data of a map Spec(R)→ X
is equivalent to two maps a : Spec(R′) → X and b : Spec(K(R)) → X , together with an isomorphism
σ : a|K(R′) → b|K(R′). However, if kR ⊊ kR′ , the two maps Spec(K(R′))→ Spec(K(R)) and Spec(K(R′))→
Spec(R′) admit a pushout P := PR,R′ (from [Ryd11]) which is not isomorphic to Spec(R), as the residue
field of the closed point of P is kR′ .

Definition 2.1. We call the local bug-eyed cover the pushout PR,R′ described above. When there is no
ambiguity, we drop the subscripts R and R′.

Example 2.2. We describe the push-out P in the special case where [K(R) : K(R′)] = 2 (and kR ̸= kR′).
In this case there is a µ2-action on Spec(R′), whose associated quotient scheme is Spec(R). We can pull
back the cartesian diagram on the left along Spec(R′)→ Spec(R) to obtain the one on the right:

Spec(K(R′)) Spec(R′)

Spec(K(R)) P,

Spec(K(R′))× µ2 Spec(R′)× µ2

Spec(K(R′)) P ′.

Observe that P ′ is still a pushout, because formation of the pushout commutes with base change [Ryd11,
Theorem C]. By construction, the closed points of P ′ correspond to two copies of Spec(kR′): we can then
regard P ′ as two copies of Spec(R′) glued at the generic points. It follows then that P is the algebraic space
obtained by quotiening P ′ by the action of µ2 that on the generic point agrees with the Galois action, and
it switches the two closed points.
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2.2. Effective morphisms. We now introduce the main definition of this paper.

Definition 2.3. Let X → Y be a morphism of algebraic stacks, let R (resp. R′) be a DVR with fraction
field K(R) (resp. K(R′)) and β : Spec(R′) → Spec(R) be an étale extension. Let P := PR,R′ be the
corresponding local bug-eyed cover. Then we say that X → Y is effective if: given any R and R′ as above,
given any separated DM gerbe T → Spec(R), and a diagram of solid arrows as the one below, one can always
find a dotted arrow such that the resulting diagram commutes:

P ×R T X

T Y.

As usual, if k denotes the ground field, we say that X is effective if X → Spec(k) is effective.

Remark 2.4. It is already interesting to specialize the definition of effective to the case where T = Spec(R),
namely, to the case where the gerbe is trivial. In this case, one can check that for any morphism f : Spec(R)→
Y such that

(1) we can lift f generically, i.e. there exists a lifting fK(R) : Spec(K(R))→ X ,
(2) we can lift f globally up to étale covers, in the sense that there exists an étale extension β :

Spec(R′)→ Spec(R) and a lifting g : Spec(R′)→ X , and
(3) there is an isomorphism φ : (β|K(R′))

∗fK(R) → g|K(R′)

then we can actually lift f to a morphism Spec(R)→ X , in a way compatible with fK(R), gK(R′) and φ. This
situation arises typically when X → Y is universally closed, thanks to the existence part of the valuative
criterion of properness for algebraic stacks [Sta22, Tag 0CLW,Tag 0CLX].

Example 2.5. The classifying stack BGL2 is not effective. We will see in Section 4, in particular Theorem 4.6
that BG is effective if and only if G is a central extension of a split torus by a finite group. This can also be
proven directly, using the same argument of Proposition 4.3.

It turns out that effective morphisms are a generalization of separated morphisms.

Proposition 2.6. Assume that X → Y is separated. Then it is also effective.

We will first prove a few auxiliary lemmas, and introduce the following notations

Notation 2.7. In this section, R → R′ will denote an étale extension of DVRs, T → Spec(R) will be a
gerbe which is a DM stack, P = PR,R′ will be the local bug-eyed cover associated to R→ R′. Furthermore:

• we denote by T ′ := Spec(R′)×Spec(R) T ,
• we denote by U := Spec(K(R))×Spec(R) T and U ′ := Spec(K(R′))×Spec(R) T ,
• we denote by P := P ×Spec(R) T .

Lemma 2.8. Let X → Y be a separated morphism of algebraic stacks, let T be a regular 1-dimensional
scheme with a morphism ϕ : T → Y, and let U ↪→ T be a dense open subscheme of T . Assume that one has
two lifts f1, f2 : T → X of ϕ and an isomorphism ξ : f1|U → f2|U . Then there is an unique extension of ξ
to an isomorphism f1 → f2.

Proof. The setup is equivalent to the following diagram

(1)
Isom(f1|U , f2|U ) Isom(f1, f2) X

U T X ×Y X

q p δX/Y

https://stacks.math.columbia.edu/tag/0CLW
https://stacks.math.columbia.edu/tag/0CLX
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and, by assumption, q has a section. But δX/Y is affine and proper, so also p is affine and proper. By
assumption, T is regular of dimension one, so from the valuative criterion for properness every morphism
defined on a dense open subscheme of T extends uniquely to the whole T . In particular, as q has a section, p
is proper, and T is regular and of dimension 1, also p has a section. In other terms, f1 and f2 are isomorphic,
and as p is also separated, the isomorphism is unique. □

Lemma 2.9. Let T be a regular 1-dimensional scheme, let U → T be a schematically dense open subscheme
of T and let T ′ → T be an étale and surjective morphism. Assume that one has a commutative diagram of
solid arrows as the one below, where X → Y is a separated morphism and Q is the push-out of U ′ → U and
U ′ → T ′ which exists by [Ryd11, Theorem B]:

Q X

T Y.
.

Then there is a dotted arrow as the one above, which makes the diagram 2-commutative.

Proof. From the definition of pushout, the diagram in the statement of Lemma 2.9 is equivalent to the
following diagram

(2)
U ′ = U ×T T

′ T ′ X

U T Y.

j ξ

Our strategy consists in making the arrow ξ : T ′ → X descend along the étale cover T ′ → T . For this,
consider the projections

π1, π2 : T ′ ×T T
′ T ′

ρ1, ρ2 : U ′ ×U U
′ U ′

respectively on the first and the second factor. By assumption, the morphism j ◦ ξ descends along U ′ → U ,
hence there is an isomorphism σU : ρ∗1j

∗ξ → ρ∗2j
∗ξ. Observe that U ′×UU

′ → T ′×T T
′ is schematically dense.

Indeed, the property of an open subscheme to be dense is preserved by étale base change, so as U ′ → T ′

is dense, also U ′ ×T T
′ = U ′ ×U T → T ′ ×T T

′ is schematically dense. Similarly, the composition of dense
open embeddings is a dense open embedding, so also U ′ ×U U

′ → U ′ ×U T
′ → T ′ ×T T

′ is dense. Therefore
from Lemma 2.8 the isomorphism σU extends to σ : π∗

1ξ → π∗
2ξ. As σU satisfies the cocycle condition,

from the uniqueness in Lemma 2.8 also σ satisfies the cocycle condition. Hence the morphism ξ descends as
desired. □

Proof of Proposition 2.6. We begin by introducing some notations:
• let T → T be an étale atlas,
• let T ′ := Spec(R′)×Spec(R) T and TP := P ×Spec(R) T ,
• let U := T ×Spec(R) Spec(K(R)) and U ′ := R×Spec(R) Spec(K

′(R)).
Recall that (see for example [LMB00, proof of Proposition 4.18]), if W1 and W2 are algebraic stacks and

W →W1 is a étale cover, a map f : W1 →W2 is equivalent to a map fW : W →W2 with an isomorphism
between the two maps π1 ◦ fW , π2 ◦ fW : W ×W1

W →W2 which satisfies the cocycle condition. Hence the
morphism P → X is equivalent to a morphism fP : TP → X with an isomorphism ξP : π1 ◦ fP → π2 ◦ fP
that satisfies the cocycle condition.
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Observe now that, as the formation of the push-out P commutes with base change [Ryd11, Theorem C]
we have that TP is the push-out of the open embedding U ′ → T ′ and the étale morphism U ′ → U . Observe
also that:

(1) as Spec(K(R))→ Spec(R) is dense and T → Spec(R) is étale, also U → T is dense, and
(2) as Spec(R′)→ Spec(R) is étale, also U ′ → U is étale.

Then the assumptions of Lemma 2.9 apply, so the map T → Y lifts to ϕ : T → X .
The two maps ϕ ◦ π1, ϕ ◦ π2 : T ×T T → T → X are isomorphic when restricted to U ×U U as they

descend to U , and U ×U U → Z ×Z Z is open and dense. Hence by Lemma 2.8, there is an isomorphism
σ : ϕ ◦ π1 → ϕ ◦ π2. It satisfies the cocycle condition as it satisfies it once restricted to U ×U U , and from
the uniqueness in Lemma 2.8. Hence there is a morphism T → X . □

Corollary 2.10. For every algebraic stack X , the map Hom(T ,X )→ Hom(P,X ) is fully faithful.

Proof. Consider two morphisms f, g : T → X which are isomorphic when we restrict them to P. They give
rise to the following diagram

Isom(f |P , g|P) Isom(f, g) X

P T X ×Y X .

q p δX/Y

f×g

Since f |P ∼= g|P , the map q has a section. Then p has a section when we pull it back to P. Since p is affine,
it is separated, so it is effective. Then the map p has a section. □

Corollary 2.11. Assume that the composition X → Y → Z is effective. Then X → Y is effective.

Proof. Consider the following diagram on the left:

P

π

��

a // X

p

��

T b // Y // Z

P

π

��

a // X

p

��

T
b
//

f
>>

Y

Since X → Z is effective, there is a map f : T → X such that a and f ◦ π are isomorphic. But then p ◦ a
and p ◦ f ◦ π are isomorphic, and p ◦ a is isomorphic to b ◦ π. So by Corollary 2.10 the maps p ◦ f and b are
isomorphic. In particular the diagram on the right is commutative, so p is effective. □

Non separated morphisms can be non-effective, even in the case of algebraic spaces.

Example 2.12. Let R = C(x2)[y](y) and consider the étale extension of DVRs

R −→ C(x)[y](y) =: R′.

Let P be the pushout of Spec(K(R′))→ Spec(K(R)) and Spec(K(R′))→ Spec(R′). Then P → Spec(R) is
a morphism of algebraic spaces that is not effective: indeed, if it were effective, we would have a section of
the field extension C(x2) ↪→ C(x), which is not the case.

More generally, in order for the morphism P → Spec(R) to be effective, the residue field of the closed
point of P should be kR. This is clearly necessary as otherwise the map P → Spec(R) would not have a
section - as before. It is sufficient as if the residue field kR′ is isomorphic to kR, then P = Spec(R) from
[Ryd11, Theorem B]. So in particular, P → Spec(R) is effective if and only if the residue field kR′ ∼= kR if
and only if P → Spec(R) is an isomorphism.
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Lemma 2.13. Composition of effective morphisms is effective, and being effective is stable under base
change.

Proof. The first statement is straightforward, we prove the second one. For any effective morphism f : X → Y
and any morphism g :W → Y, we have a 2-commutative diagram of solid arrows

P X ×Y W X

T W Y

p f

g

Effectiveness of f implies that there is a lifting given by the dotted arrow above. In this way, we have well
defined morphisms ξ : T → X and ζ : T → W; to obtain a morphism T → X ×Y W, the only missing data
is an isomorphism α : f(ξ) ≃ g(ζ) or, in other terms, a section of IsomT (f(ξ), g(ζ)).

The morphism P → X ×Y W corresponds to the data p∗ξ, p∗ζ and an isomorphism p∗ξ ≃ p∗ζ. In
particular, we have a commutative diagram of solid arrows.

P IsomT (f(ξ), g(ζ))

T T

q

Id

The morphism q is affine because by hypothesis Y has affine diagonal, hence it is separated and thus effective
by Proposition 2.6. This means that we have a lifting given by the dotted arrow in the diagram above, which
is the desired section of IsomT (f(ξ), g(ζ)). □

We now make a short digression on how effective morphisms are related to the valuative criterion for
universally closed morphisms. Recall that if one has an universally of stacks X → Y, then it satisfies the
stacky valuative criterion for universally closed morphisms [Sta22, Tag 0CLW,Tag 0CLX], namely if one has
a diagram as the one on the left, then there is a possibly ramified extension of DVRs Spec(R) → Spec(R′)
and a diagram as the one on the right:

Spec(K(R)) //

��

X

��

Spec(R) // Y

Spec(K(R′))

��

// Spec(K(R)) //

��

X

��

Spec(R′)

33

// Spec(R) // Y.

It is natural to wonder if, in some specific cases, one can impose some restrictions on the extension R ⊆ R′.

Theorem 2.14. Assume that X → Y is effective and universally closed. Then one can assume that R′ =
R[t]/(tn − π) where π is a uniformizer for R.

Proof. Let Spec(R′)→ Spec(R) an extension such that the map Spec(K(R′))→ Spec(K(R))→ X extends
along Spec(R′), and let n be the ramification index. Consider R̃ = R[t]/(tn − π). Then R ↪→ R̃ is totally
ramified of order n and by Abhyankar’s lemma [Sta22, Tag 0BRM] the localizations of the normalization of
R′⊗RR̃ are étale over R̃. But since X → Y is effective, we can extend the map Spec(K(R̃))→ Spec(K(R))→
X to a map Spec(R̃)→ X as desired. □

2.3. Preparatory lemmas on Picard groups. We collect here some technical lemmas that will be needed
later. Recall that a finite group G over a field k is split when |G(k)| = |G(k)|, whether a split torus over k is
an algebraic group isomorphic to Gn

m,k. From now one we will use the simplified notation Gn
m for split tori.

https://stacks.math.columbia.edu/tag/0CLW
https://stacks.math.columbia.edu/tag/0CLX
https://stacks.math.columbia.edu/tag/0BRM
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Lemma 2.15. Let k → k′ a field extension, and let G be a group over k. Assume that G is a central
extension of a split torus Gn

m by a finite split group. Then the pull-back map Pic(BG) → Pic(BGk′) is an
isomorphism.

Proof. The proof relies on the fact that, by assumption, k is of characteristic 0 and contains the roots of 1.
This guarantees that the result is true if G is finite split, or if G ∼= Gn

m for some n, or if G is of the form
Gn

m × F for some finite group F . Indeed, a line bundle on BG is a homomorphism G → Gm and, for the
aforementioned groups, the set of all such homomorphisms remains invariant under base change.

In general, from [Bri15], there is a finite subgroup F of G, and a surjective homomorphism Gn
m ⋊ F → G

with finite kernel K. Observe that, as Gn
m is central, the semidirect product is a product. In other terms, G

fits in a sequence as follows:
1→ K → Gn

m × F → G→ 1.

We have then the following diagram:

0 // Hom(G,Gm) //

��

Hom(Gn
m × F,Gm)

∼=
��

// Hom(K,Gm) //

∼=
��

0 // Hom(G|k′ ,Gm|k′) // Hom(Gn
m|k′ × F |k′ ,Gm|k′) // Hom(K|k′ ,Gm|k′) //

The desired result follows from a diagram chase. □

Let us recall our notation. We set R to be a DVR with fraction field K(R) and residue field kR, and we
set T → Spec(R) to be a gerbe which is a DM stack. Furthermore, we set U := Spec(K(R))×Spec(R) T .

Lemma 2.16. The restriction maps Pic(T )→ Pic(U) is an isomorphism.

Proof. We need to show that the pullback map is both injective and surjective.
Surjective. This follows as we can always extend line bundles from an open non-empty substack of a

smooth algebraic stack to the whole algebraic stack.
Injective. By definition of gerbe, there exists an étale cover of Spec(R) such that the pullback of T is a

classifying stack. We can assume that such étale cover is connected and that it has only one closed point,
hence given by Spec(A)→ Spec(R) with A local.

Moreover, we have T ×Spec(R) Spec(A) ≃ BG for a finite étale group scheme G → Spec(A). Up to taking
a refined cover, we can assume that G ≃ Spec(A) × G for a constant (hence split) finite group scheme G,
hence BG ≃ Spec(A)× BG. Observe that U ×Spec(R) Spec(A) is isomorphic then to Spec(K(A))× BG.

We have a commutative diagram of pullback homomorphisms

Pic(T ) Pic(U)

Pic(Spec(A)× BG) Pic(Spec(K(A))× BG)

hence if we prove that the left vertical arrow and the bottom horizontal arrow are injective, we are done.
Observe that the composition Pic(T ) → Pic(Spec(A) × BG) → Pic(BGkR

) (where the last map is the
restriction to any geometric closed point of Spec(A) × BG) is injective: indeed by [Alp13, Theorem 10.3]
every line bundle on T whose restriction to the residual gerbes of every geometric closed point is trivial must
come from the good moduli space, which is Spec(R) in our case; but every line bundle on Spec(R) is trivial,
from which our conclusion follows. This also implies that Pic(T )→ Pic(Spec(A)× BG) is injective.

For the second arrow, observe that by Lemma 2.15 the composition Pic(BG) → Pic(Spec(A) × BG) →
Pic(BGK(A)) is an isomorphism, hence Pic(Spec(A)×BG)→ Pic(BGK(A)) is injective, thus concluding the
proof. □
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2.4. Effectiveness of quotients of DM stacks by a torus. We now prove one direction of Theorem 1.1.

Proposition 2.17. The morphism BGn
m → Spec(k) is effective.

Proof. First we prove the case n = 1. Given a diagram of solid arrows as the one below, we want to construct
a dotted arrow g:

(3)
P BGm

T Spec(k)

p g

The data of a map P → BGm corresponds to a triple (M1,M2, φ) where M1 (resp. M2) is a line bundle
on T ′ (resp. on U) and φ : M1|U ′ ≃ M2|U ′ is an isomorphism of line bundles. An isomorphism between
two line bundles is the multiplication by a scalar on each fiber, hence we can think of φ as an element of
Gm(U) = Gm(Spec(K(R′))), i.e. φ = πdu where d is an integer, π is the uniformizer in R which is also a
uniformizer in R′ as R→ R′ is étale, and u is invertible in R′.

The data of a map g : T → BGm corresponds to a line bundle M on T , and its pullback p∗g : P → BGm

corresponds to the triple (M |T ′ ,M |U , Id). The arrow g makes the diagram (3) 2-commutative if and only if
there exists an isomorphism of the triple (M |T ′ ,M |U , Id) with (M1,M2, φ), i.e. if there exist isomorphisms
a :M |′T →M1, b :M |U →M2 such that b|U ′ ◦ φ ◦ a|U ′ = Id.

First observe that, from Lemma 2.16, there is a unique line bundle M on T such that M2 is the pull-
back of M . Similarly, as the map Pic(T ′) → Pic(U ′) is an isomorphism from Lemma 2.16, also the line
bundle M1 is the pull back of M to T ′. In particular M1

∼= M |T ′ and M2
∼= M |U . So our goal is to find

a ∈ Gm(T ) = Gm(Spec(R
′)) and b ∈ Gm(U) = Gm(K(R)) such that a ·πdu · b = 1. We can pick a = u−1 and

b = π−d to obtain this equality, thus proving that the map g : T → BGm given by M makes (3) commutative.
For n ≥ 1, we argue by induction: indeed, there is a cartesian diagram

BGn
m BGm

BGn−1
m Spec(k).

Both the right vertical arrow and the bottom horizontal arrow are effective by inductive hypothesis, and
the left vertical arrow is effective because being effective is stable under base change (Lemma 2.13). As the
composition of effective arrows is effective by the same lemma, we obtain the desired conclusion. □

Proposition 2.18. Let G be an algebraic group fitting in the short exact sequence

1 −→ Gn
m

i−→ G −→ F −→ 1

where the normal subgroup i(Gn
m) is central and F is finite. Then BG→ Spec(k) is effective.

Proof. Due to the fact that Gn
m is central in G, we have from [Gir65, Proposition III.3.3.1; Remarque

IV.4.2.10], two long exact sequences

H1(T ,Gn
m) H1(T , G) H1(T , F ) H2(T ,Gn

m)

H1(P,Gn
m) H1(P, G) H1(P, F ) H2(P,Gn

m).

jT

p1

i

p2 p3

δT

p4

jP ι δP

We recall that, as F might not be abelian, H1(·, G) and H1(·, F ) might not be groups, but only pointed sets.
None the less, there is a functorial action of H1(·,Gn

m) on H1(·, G). This action is compatible with the exact
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sequence above, in the sense that given x ∈ H1(·,Gn
m) and y ∈ H1(·, G), if we denote by x ∗ y the action of

x on y, then ι(x ∗ y) = ι(y); see [Gir65, III.3.4.5].
Observe now that:
• p1 and p3 are surjective as BGn

m and BF are effective, and
• p4 is injective.

Indeed the first bullet point follows from Proposition 2.17, and the fact that F is finite, so BF is separated
hence effective from Proposition 2.6. For the second bullet point, observe that the we have a commutative
diagram

H2(T ,Gn
m) H2(U ,Gn

m)

H2(P,Gn
m) H2(U ,Gn

m)

≃

and the right vertical arrow is an isomorphism. The homomorphism H2(T ,Gm) → H2(U ,Gm) is injective:
indeed, as T is regular, we have that H2(T ,Gm) is isomorphic to the Brauer group, and the Brauer group of
T injects into the Brauer group of its generic point. This is true if T is a scheme from [Gro68a, Corollarie 1.8],
whereas in the case where T is a DM stack it suffices to observe that the same argument of [Lie08, Proposition
3.1.3.3] goes through. Then the top horizontal arrow in the last diagram is injective, hence also the left vertical
arrow is injective.

Now the surjectivity of p2, which is equivalent to BG being effective, follows from a diagram chase of the
first diagram of pointed sets. We report it below.

Let α ∈ H1(P, G). Since p3 is surjective, there is b ∈ H1(T , F ) such that p3(t) = ι(α). But δP (ι(α)) =
0 = p4(δT (b)). Since p4 is injective, δT (b) = 0 so b = i(a) for a ∈ H1(T , G). Now the two elements p2(a)
and α map to the same element in H1(P, F ). In particular, there is ξ ∈ H1(P,Gn

m) such that ξ ∗ p2(a) = α.
But p1 is surjective, so there is x ∈ H1(T ,Gn

m) which maps to x. Hence p2(x ∗ a) = α, as desired. □

We are ready to prove one of the two directions of our main result.

Theorem 2.19. Assume that X admits a DM morphism ϕ : X → BGn
m, and a separated good moduli space

X. Then the good moduli space map X → X is effective.

Proof. Let Y → X be the Gn
m-torsor associated to ϕ. Then Y → X is an affine morphism, so it is also

S-complete from [AHLH23, Proposition 3.42]. So the composition Y → X → X is S-complete since being
S-complete is stable under compositions, and X is S-complete as it admits a separated good moduli space.
But then Y is separated, since a DM stack is S-complete if and only if it is separated. In particular, the
morphism ϕ is separated. So also from [Sta22, Tag 04YV] the morphism X → X × BGn

m is separated. In
particular, it is effective from Proposition 2.6; since BGn

m → Spec(k) is effective also X × BGn
m → X is

effective from Lemma 2.13. Since composition of effective morphisms is effective, also X → X is effective as
desired. □

Definition 2.20. We say that a group G is effective if BG→ Spec(k) is effective.

Lemma 2.21. Let X → Y a morphism of algebraic stacks, and let Z → Y a separated morphism which is
a gerbe. If X ×Y Z → Z is effective, then X → Y is effective.

We will use the following auxiliary lemma.

Lemma 2.22. Let π : X −→ X ′ a gerbe over a DM stack X ′, and let f : X −→ Y be a morphism. Assume
that X and X ′ are separated. Then for every geometric point p ∈ X one has

Ker(AutX (p)→ AutX ′(π(p))) ⊆ Ker(AutX (p)→ AutY(f(p)))

https://stacks.math.columbia.edu/tag/04YV
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if and only if there is a map ϕ : X ′ → Y such that ϕ ◦ π and f are isomorphic.

Proof. If there is a map ϕ as above, the inclusion of the kernels is clear. We focus on the other direction.
Consider (π, f) : X → X ′ × Y. As the composition X → X ′ × Y → X ′ is separated, and by our

conventions all the relative diagonals are separated, also (π, f) is separated. From [AOV11, Theorem 3.1]
the map (π, f) admits a relative coarse moduli space X r.c.. So one has a factorization X α−→ X r.c. β−→ X ′×Y;
let p1 : X ′ × Y → X ′ be the first projection. Observe that for every geometric point p of X :

(1) as α is a relative coarse moduli space, we can (and will) identify (via α) the geometric points of X
and X ′,

(2) AutX (p)→ AutX r.c.(α(p)) is surjective,
(3) AutX r.c.(p)→ AutX ′((p1 ◦ β)(p)) is injective,
(4) X r.c. → X ′ is bijective on geometric points as X → X ′ and X → X r.c. are such.

Point (3) follows easily from the containment of the two kernels in the assumptions and point (2).
In particular the map AutX r.c.(p)→ AutX ′(p) is injective for every p, so from [Con07, Theorem 2.2.5] it

is representable. We show that X r.c. → X ′ is an isomorphism étale locally on X ′.
Consider U → X ′ an étale atlas which is a scheme. We can pull back all the maps constructed before:

X ×X ′ U → X r.c. ×X ′ U → U × Y → U.

We need to show that γ := (p1 ◦ β)|X r.c.×X′U : X r.c. ×X ′ U → U is an isomorphism. As X r.c. → X ′ is
representable, X r.c. ×X ′ U is an algebraic space. Moreover, as X → X ′ is a gerbe, X ×X ′ U → U is the
coarse moduli space map. In particular, from the universal property of the coarse moduli space, the map
X ×X ′ U → X r.c. ×X ′ U factors as

X ×X ′ U → U
δ−→ X r.c. ×X ′ U

and γ ◦ δ = Id from the universal property of the coarse moduli space. So δ has a left inverse.
Similarly, the construction of the relative coarse moduli space commutes with étale base change from

[AOV11, Theorem 3.1], so X r.c. ×X ′ U is the relative coarse moduli space of X ×X ′ U → U × Y. We can
use the universal property of the relative coarse moduli space, exactly as before we were using the universal
property of the coarse moduli space. In particular, the diagram X ×X ′ U → U

δ−→ X r.c. ×X ′ U → U × Y
factors as

X ×X ′ U → X r.c. ×X ′ U
γ′

−→ U
δ−→ X r.c. ×X ′ U → U × Y.

Hence δ◦γ′ = Id. So δ has both a right inverse and a left inverse, so γ = γ′ and γ and δ are isomorphisms. □

Proof of Lemma 2.21. As usual, we need to check that a morphism T → Y which lifts to P → X , lifts to
T → X . We can pull back X → Y via T → Y, so we can and will assume that Y = T . Recall that T is
separated.

As all the fiber products will be over T , we will omit the subscript T in ×T . First observe that Z →
Spec(R) is a DM gerbe, as it is a composition of the two gerbes Z → Y = T and T → Spec(R).

Hence, the morphism P → X induces P × Z → X × Z. But X × Z → Z is effective, so in the diagram
below the map α has a lift

X × Z

##

α

��

P × Z

99

//

%%

Z

##

X

��

P

;;

// T .
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Consider then the maps f : Z → X × Z → X and π : Z → T . The map p2 : P × Z → Z is
surjective and for every geometric point p ∈ P × Z it induces an isomorphism AutP×Z(p) → AutZ(p2(b)).
Hence to understand f : AutZ(π2(p)) → AutX (f(π2(p))) and π : AutZ(π2(p)) → AutT (π(π2(p))), one can
understands the corresponding maps for P → Z → X × Z → X and P × Z → P. Now as the map
P ×Z → X ×Z → X factors as P ×Z → P → Z, the inclusion of the kernels in Lemma 2.22 hold. In turn,
this gives that also Z → X factors via Z → T → X . □

3. Torsors, twisted tori and gerbes

In this section we recall some well-known facts about torsors, twisted tori and gerbes that will be needed
in the rest of the paper. In particular, along the way we prove that the classifying space of a twisted torus
is isomorphic to a certain fiber product. We will use these results in Section 4.

3.1. Torsors. We will be mostly interested in (étale) torsors over the spectrum of a field L, and G will be
a finite type group scheme over Spec(L). We begin with the following:

Definition 3.1. If f : X → Y is a G-torsor, the automorphisms of f are the automorphisms of X which
commute with f and the (left) G-action.

Example 3.2. If f : G×Y → Y is the trivial torsor, there is a bijection between G and the automorphisms
of f . This bijection sends G ∋ g 7→ ((h, y) 7→ (hg−1, y)). This is clearly an isomorphism of G × Y which
commutes with f , and it commutes with the action since h1(h2g−1) = (h1h2)g

−1: the multiplication in G is
associative, and our actions are left actions.

Torsors can be described using descent. Let us first fix some notation.

Notation 3.3. In what follows we use use G to denote a group scheme over k, we use X for a G-torsor
which gets trivialized by a Galois extension k ⊆ k′, and finally we use Γ to denote the Galois group of the
extension k ⊂ k′.

In particular Γ acts on Gk′ , the action commutes with the group operation in Gk′ , and there is a bijection
between the set of G-torsors X → Spec(k) and H1(Γ, Gk′) (see [Ser97, Chapter 1 Section 5]); in the following
remark we construct one of the two arrows.

Remark 3.4. In the context of group cohomology, consider a cocycle

Γ −→ Gk′ , γ 7−→ gγ .

The cocycle condition is that gγδ = gγ(γ ∗ gδ) where ∗ is the action of Γ on Gk′ . By descent, this defines a
G-torsor over Spec(k), which we can understand as follows.

The cocycle defines an action of Γ on Gk′ via (γ, x) 7→ (γ ∗ x) · g−1
γ , where we denoted by · the group

multiplication. The cocycle condition guarantees that this is indeed an action, namely

x 7→ (γ ∗ x) · g−1
γ 7→ δ ∗ ((γ ∗ x) · g−1

γ ) · g−1
δ = ((δγ) ∗ x) · (δ ∗ g−1

γ ) · g−1
δ = ((δγ) ∗ x) · g−1

δγ .

By taking the quotient of Gk′ with respect to this action, we get the desired G-torsor. For example, the
trivial cocycle γ 7→ 1 gives rise to the trivial G-torsor: the G-torsor given by taking the Γ-invariants in Gk′ .

Definition 3.5. Given a cocycle Φ : Γ→ Gk′ , γ 7→ gγ , for every γ ∈ Γ we have an isomorphism Gk′ → Gk′ ,
x 7→ (γ ∗ x) · g−1

γ . We will call these isomorphisms the transition functions of the cocycle Φ.

The transition functions are the ones that define a “twisted” action of Γ on Gk′ ; the quotient of Gk′ with
respect to this action is the G-torsor associated to the cocycle.
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Example 3.6. Consider the trivial action of Γ on itself, and consider the Γ-torsor associated to the cocycle
Id : Γ → Γ, whose associated transition functions are g 7→ gγ−1. Then the resulting Γ-torsor over Spec(k)
is the quotient of Γ by the action on itself defined by the transition functions: this quotient is exactly
Spec(k′)→ Spec(k), with the Γ-action being the action of the Galois group.

Lemma 3.7. Assume that f : X → Spec(k) is a G-torsor, assume that f is trivialized on the Galois
extension k ⊆ k′ with Galois group Γ, and assume that X is given by the cocycle Γ → Gk′ , γ 7→ gγ . Then
there is a (non-canonical) bijection between Aut(X) and the set

{a ∈ Gk′ such that γ ∗ a = g−1
γ · a · gγ}.

Proof. The automorphisms of f are the automorphisms of fk′ : Xk′ → Spec(k′) which descend, i.e. which
commute with the transition functions. As Xk′ is a trivial torsor, up to choosing an isomorphism Xk′ → Gk′ ,
we can identify the automorphisms of Xk′ with Gk′ , as in Example 3.2. Those which descend are the β’s
which make the following diagram commutative for every γ ∈ Γ:

Gk′

x7→(γ∗x)·g−1
γ

��

β
// Gk′

x 7→(γ∗x)·g−1
γ

��

Gk′
β
// Gk′ .

As β is given by left multiplication for a ∈ Gk′ , it is now straightforward to see the desired bijection. □

3.2. Twisted tori and gerbes.

Definition 3.8. A twisted torus over k is a group scheme G which admits an isomorphism Gk
∼= (Gn

m)k for
a certain n, where k is the algebraic closure of k.

It is well known that if G is a twisted torus, then there is a finite Galois extension k′/k together with an
isomorphism Gk′ ∼= (Gn

m)k′ . We now recall [ELFST14, Proposition 2.4]:

Proposition 3.9. Let k ⊆ k′ a Galois extension with Galois group Γ. Then there is a bijection between
homomorphisms Γ → GLn(Z) and pairs (T, f) where T → Spec(k) is a twisted torus and f : Tk′ ∼= (Gn

m)k′

is an isomorphism. So this induces a bijection between conjugacy classes of homomorphisms Γ → GLn(Z)
and twisted tori T → Spec(k) such that Tk′ ∼= (Gn

m)k′ .

The argument essentially follows from the fact that twisted tori as above are parametrized by the group
H1(Γ,Aut((Gn

m)k′)), and the action of Γ on Aut((Gm)k′) is trivial. So the cocycle condition aγδ = aγγ ∗ aδ
becomes aγδ = aγaδ (namely, a is a homomorphism); and two cocycles a and a′ are conjugated if and only
a is the composition of a′ with an inner automorphism.

Notation 3.10. Given an homomorphism ϕ : Γ→ GLn(Z), we denote by Tϕ the twisted torus induced by
ϕ as in Proposition 3.9.

Lemma 3.11. Let Tϕ be a torus twisted by ϕ. Then, for every scheme S over Spec(k), there is a bijection

Tϕ(S)←→ {x ∈ Gn
m(Sk′) such that x = ϕ(γ)(γ ∗ x)}.

Proof. This follows from descent. Indeed, a morphism S → Tϕ is equivalent, via descent, to a morphism
Sk′ → Gn

m which satisfies the descent condition. This is a morphism x ∈ Gn
m(Sk′) which makes the following
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diagram commutative
Sk′

Id

��

x // Gn
m

g 7→ϕ(γ)(γ∗g)
��

Sk′
x // Gn

m.

□

Now, given a homomorphism ϕ : Γ → GLn(Z) one can perform another construction, the semidirect
product Gn

m ⋊ϕ Γ. The following result clarifies the relation between the group Gn
m ⋊ϕ Γ and BTϕ.

Theorem 3.12. Let ϕ : Γ→ GLn(Z) be a homomorphism, let G := Gn
m ⋊ϕ Γ, and let Spec(k)→ BΓ be the

morphism associated to the Γ-torsor Spec(k′) → Spec(k). Consider the following fiber diagram, where the
map BG→ BΓ is associated to the surjection G→ Γ, (g, γ) 7→ γ:

G = Spec(k)×BΓ BG //

��

BG

��

Spec(k) // BΓ.

Then G = BTϕ.

Proof. As BG→ BΓ is a gerbe, we already know that G → Spec(k) is a gerbe. It suffices to prove that, if we
denote with π : G → Spec(k) the first projection, then π has a section ξ, and that there is an isomorphism
Autk(ξ)

∼= Tϕ: indeed, from the first statement it would follow that G ≃ BAutk(ξ), which combined with
the second statement would give us the desired conclusion.

The map π has a section: from the universal property of the fiber product, it suffices to construct a G-
torsor F over Spec(k) whose associated Γ-torsor F/Gn

m is isomorphic to Spec(k′): the latter statement is
equivalent to proving that (1) the pullback to Spec(k′) of F/Gn

m is trivial and (2) the associated cocycle is
the one in Example 3.6.

First observe that there is an action of Γ on (Gn
m)k′ = Spec(k′[t±1 , ..., t

±
n ]), which we denote by ∗Gn

m
, as

there is an action of Γ on Spec(k′) (the Galois action). We also use ∗Γ to indicate the trivial action of Γ on
itself, so that σ ∗Γ γ := γ. This gives an action of Γ on G = Gn

m ⋊ϕ Γ, via

σ ∗ (g, γ) := (σ ∗Gn
m
g, γ).

As ∗Gn
m

acts only on the coefficients of (Gn
m)k′ = Spec(k′[t±1 , ..., t

±
n ]), for every σ and γ ∈ Γ, the operation

σ∗Gn
m

commutes with ϕ(γ), so ∗ is an action of Γ on G that commutes with the multiplication on G. So now
we have an action of Γ on G, and we can check that

Γ −→ G, γ 7−→ aγ = (1, γ)

satisfies the cocycle condition. In particular, it induces a G-torsor over Spec(k), which we denote by F →
Spec(k). This induces a map Spec(k)→ BG.

The Γ-torsor associated to F is obtained as follows. By construction, Fk′ is the trivial G-torsor, so if we
fix an isomorphism between Fk′ → Gk′ we can identify the source with the target. The trivial torsor Gk′

has a (left) action of Gk′ , so one can take its quotient by Gn
m ⊆ G, to get Gn

m\Gk′ . From Remark 3.4, the
cocycle for F (namely, the cocycle aγ) descends for a cocycle for Gn

m\Gk′ (namely, the transition functions
commute with taking the Gn

m-quotient). This is clear from Remark 3.4 as Gk′ is associative: the elements
a−1
γ are multiplied on the right, whereas the action is a left action.

So aγ descend and give transition functions on Gn
m\Gk′ . If we fix the isomorphism Γ → Gn

m\Gk′ , γ 7→
[(1, γ)] so that we can identify the quotient Gn

m\Gk′ with Γ, one can see that the cocycle aγ is the same as
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the one in Example 3.6. In particular, Gn
m\F is isomorphic to the Γ-torsor Spec(k′)→ Spec(k). So from the

universal property of the fiber product, π has a section ξ : Spec(k)→ G.
Autk(ξ)

∼= Tϕ: from Lemma 3.7 we have

Autk(F) = {a = (λ, µ) ∈ (G)k′ such that γ ∗ a = g−1
γ · a · gγ},

and from the universal property of the fiber product the automorphisms of ξ are the automorphisms of F of
the form (λ, 1). Since conjugating with gγ−1 acts as ϕ(γ−1) = ϕ−1(γ), we deduce

Autk(F) ={(λ, 1) ∈ (G)k′ such that γ ∗ a = g−1
γ · a · gγ}

={λ ∈ (Gm)k′ such that γ ∗ λ = ϕ−1(γ)(λ)}
={λ ∈ (Gm)k′ such that ϕ(γ)(γ ∗ λ) = λ}
=Tϕ(Spec(k))

where for the last bijection we used Lemma 3.11. □

4. When BG is not effective

In this section we investigate when the classifying space of a group G is not effective. We begin with the
following criterion, which will be our main tool to prove that BG is not effective.

Theorem 4.1. Let G be a connected reductive group, let b : Spec(R′) → Spec(R) be an étale morphism
of DVRs, let α : Spec(K(R′)) → Spec(R′) and a : Spec(K(R)) → Spec(R) be the inclusions of the generic
points, and let β : Spec(K(R′))→ Spec(K(R)) be the map between the generic points. Let G1 → Spec(K(R))
and G2 → Spec(R′) be two G-torsors, which are isomorphic when pulled back to Spec(K(R′)). If BG is
effective, then the double quotient

Aut(G1)\ Isom(β∗G1, α∗G2)/Aut(G2)

is a single element.

Proof. Let P := PR,R′ . A G-torsor over P consists of two G-torsors over Spec(K(R)) and Spec(R′), and an
isomorphism between their restrictions to Spec(K(R′)). We will argue by contradiction: let ψ and ψ̃ be two
elements in

Isom(G1|K(R′),G2|K(R′))

which are not in the same equivalence class. Let GP be the torsor associated to G1 → Spec(K(R)), G2 →
Spec(R′) and ψ; and G̃P the one associated to G1 → Spec(K(R)), G2 → Spec(R′) and ψ̃.

First, observe that GP and G̃P are not isomorphic. Indeed, an isomorphism between GP and G̃P consists
of two elements σ ∈ Aut(G1) an τ ∈ Aut(G2) such that ψ = σ ◦ ψ̃ ◦ τ . Since ψ and ψ̃ are not in the same
equivalence class, such an isomorphism cannot exist.

Then notice that GP and G̃P restrict to the same G-torsor over Spec(K(R)), namely G1. But then at least
one between GP and G̃P is not the pull-back of a G-torsor over Spec(R). Indeed, if there were two G-torsors
GR and G̃R which pull back to GP and G̃P respectively, then

(1) GR and G̃R would not be isomorphic as GP and G̃P are not isomorphic, but
(2) They would be isomorphic when restricted to P and hence to Spec(K(R)).

This contradicts [FP15, Corollary 1]. In particular BG→ Spec(k) cannot be effective. □

Notation 4.2. In this section, L ⊆ L′ will be a Galois extension of fields with Galois group Γ. Then the
extension L(t) ⊆ L′(t) is still Galois with Galois group Γ, and Γ acts trivially on t. In particular, it induces
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an étale extension of DVRs Spec(L′[t](t)) → Spec(L[t](t)), we denote by R (resp. R′) the ring L[t](t) (resp.
L′[t](t)).

Proposition 4.3. The morphism B SL2 → Spec(k) is not effective.

Proof. Let R := L[t](t) and R′ := L′[t](t). Pick an element u ∈ L′ ∖ L. Since all the SL2-torsors on a local
ring are trivial (as SL2 is special), from Theorem 4.1 to prove the proposition it suffices to prove that the
double quotient

SL2,R′ \SL2,K(R′) / SL2,K(R)

is not trivial, where SL2,R′ acts by multiplication on the left and SL2,K(R) by multiplication on the right. In
particular, if t is an uniformizer for R, it suffices to check that the following matrix is not in the orbit of the
identity:

M :=

[
t 0
u t−1

]
.

If it was in the orbit of the identity, we could find a matrix

B :=

[
a b
c d

]
∈ SL2,K(R) such that MB =

[
ta tb

ua+ t−1c ub+ t−1d

]
∈ SL2,R′ .

Since ua+ t−1c ∈ R′, we have t(ua+ t−1c) ∈ R′ so either c = 0 or v(c) ≥ 0: either way c ∈ R′. Observe
also that one between a and b does not belong to R, otherwise MB would not have determinant one, as the
first row of MB is a multiple of t. So let’s assume a /∈ R, so v(a) = −1 as ta ∈ R′, where v is the valuation
on R. So we can write a = t−1a1 with a1 unit in R, and t−1(ua1 + c) ∈ R. Therefore

v(ua1 + c) > 0.

If we consider ua1 + c in L′ = R′/(t), we have that the image of u via R′ → L′ belongs to L (it is equal to
− c

a1
modulo t), which is a contradiction. □

Proposition 4.4. Let ϕ : Γ→ GLn(Z) be a homomorphism, and let Tϕ → Spec(L) be its associated non-split
torus as in Notation 3.10. Then BTϕ is not effective.

Proof. We plan to apply Theorem 4.1, using Lemma 3.11 to show that not all the elements of the form
(1, ..., 1, t, 1, ..., 1) are in the same equivalence class of the identity in

(Gn
m)R′\(Gn

m)L′(t)/Aut(Tϕ(L(t)).

Set G1 := Tϕ,R → Spec(R), G2 := Gn
m,R′ → Spec(R′) and f : (G1)|L′(t)

≃→ (Gm)
n
L′(t) an isomorphism. We

will use f to identify

(Gn
m)L′(t) ≃ IsomGn

m-torsors((Gn
m)L′(t), (Gn

m)L′(t))
≃−→ Isom((G1)|L′(t), (G2)|L′(t)).

There is a valuation v : (Gm)L′(t) → Z, which sends p(t) to its valuation at 0 ∈ A1
L′ . By definition, the

valuation is a group homomorphism from the multiplicative group (Gm)L′(t) to the additive group Z. In this
way we get a homomorphism

vn : (Gn
m)L′(t) −→ Zn.

Moreover, for every n × n matrix M with integer coefficients, one has a homomorphism FM : (Gn
m)L′(t) →

(Gn
m)L′(t) defined as

(ai,j) · (λ1, ..., λn) = ((λ
a1,1

1 λ
a1,2

2 · · ·λa1,n
n ), . . . , (λ

an,1

1 λ
an,2

2 · · ·λan,n
n )).
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Similarly, every matrix M = (ai,j) gives a homomorphism GM : Zn → Zn by matrix multiplication. It is
straightforward to check that vn◦FM = GM ◦vn. In particular, every element ϕ(γ) induces a homomorphism
Gϕ(γ), and ϕ(γ) = Id if and only if Gϕ(γ) = Id. Moreover, as Γ acts trivially on t, for every γ ∈ Γ one has

vn(γ ∗ λ) = vn(λ)

where we denoted by ∗ the action on (Gn
m)L′(t) induced by the Galois action of Γ on L′. In particular, using

Lemma 3.11, the valuation vn sends the L-points of (Tϕ)L′(t) to the vectors in Zn that commute with Gϕ(γ)

for every γ ∈ Γ. Similarly, it sends all the elements in (Gn
m)R′ to 0. Thus, since

(1) we can identify the automorphisms of the trivial Tϕ-torsor with Tϕ as in Example 3.2,
(2) we have the bijection of Lemma 3.11, and
(3) vn(γ ∗ g) = vn(g),

we have a surjective map

(Gn
m)Spec(R′)\(Gn

m)Spec(L′(t))/Aut(Tϕ(Spec(L(t))))→ Zn/{w ∈ Zn such that Gϕ(γ)(w) = w for every γ ∈ Γ}.
As there is a γ such that ϕ(γ) is not trivial, there is a γ such that Gϕ(γ) is not trivial. In particular, it
cannot fix all the elements in the standard basis of Zn: this implies that the right hand side is not a single
element, hence the left hand side cannot be a single element. □

Corollary 4.5. Assume that F is a finite group, and let ϕ : F → GLn(Z) be a homomorphism. Then
BGn

m ⋊ϕ F is effective if and only if ϕ is trivial.

Proof. If ϕ is trivial, then B(Gn
m×F ) is effective from Proposition 2.18, so let’s assume that ϕ is not trivial,

let G := Gn
m ⋊ϕ F and consider L ⊂ L′ a field extension with Galois group F (which exists, for example,

if L = Spec(k(t))). From Theorem 3.12 and Proposition 4.4, the map BG ×BF Spec(L) → Spec(L) is not
effective. Then from Lemma 2.13 the stack BG cannot be effective. □

We are ready to prove the main result of this section.

Theorem 4.6. Assume that G is a group such that BG is effective. Then the connected component of the
identity of G is a split torus contained in the center of G.

Proof. First we show that the connected component of the identity of G, which we denote by H, is a torus.
Observe that the map BH → BG is separated, hence effective from Proposition 2.6. Therefore if BG was
effective, also BH would be effective.

Since G is reductive by our conventions, and H is a normal subgroup of G, then H is reductive [Alp23,
Proposition 6.3.17]. Every reductive connected group which is not a torus admits a homomorphism SL2 → H
with finite kernel. Indeed, up to a finite base change, we can assume that H is split reductive: by picking a
root α of H, we can consider the associated split reductive subgroup Hα ⊂ H of rank one [Mil17, Theorem
21.11]; there is then a homomorphism SL2 → Hα which is an isogeny onto the derived subgroup of Hα

[Mil17, Proposition 20.32], and the composition SL2 → Hα → H has the claimed property.
Hence we have a separated morphism B SL2 → BH. Therefore if BH → Spec(k) was effective, also

B SL2 → Spec(k) would be effective. Proposition 4.3 gives the desired contradiction.
So H is a torus, and from Proposition 4.4 it has to be split. From [Bri15], if we denote by F := G/H, we

have a finite and surjective morphism f : H ⋊ϕ F → G. So B(H ⋊ϕ F )→ BG is effective, thus B(H ⋊ϕ F )
is effective. It follows then that ϕ is trivial from Corollary 4.5, and H is contained in the center of H ⋊ F ;
as f is surjective f(H) is contained in the center of G as desired. □

Corollary 4.7. Assume that X is an algebraic stack over Spec(k) with a separated good moduli space X,
and assume that X → X is effective. Then the stabilizers of the closed points are central extensions of split
tori by finite groups.
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Proof. This follows as the inclusion of the residual gerbe is a closed embedding (hence effective), composition
of effective morphisms is effective, and Theorem 4.6. □

Remark 4.8. Observe that in Proposition 4.4 and Proposition 4.3, to prove that SL2 is not effective and
that Gn

m ⋊ϕ F is effective if and only if ϕ = Id, we just used extensions as the ones in Notation 4.2, and
the trivial gerbe T → Spec(L[t](t)). Hence, to show that BG is effective, it suffices to prove that given an
extension of DVRs as in Notation 4.2, with local bug-eyed cover P , any morphism P → BG descends to
Spec(R)→ BG.

5. From effective to the quotient presentation

In this section we prove the other direction of Theorem 1.1, namely that if a good moduli space morphism
X → X is effective, then X is a quotient of a DM stack by a torus (see Theorem 5.10). After introducing
a general definition that will be useful later, we will proceed with the main result in two steps. First, in
Section 5.1 we will prove the desired result in the case X = Spec(L) is the spectrum of a field. Then, in
Section 5.2 we prove the general result by spreading out line bundles and using Proposition 5.8.

Definition 5.1. We say that an algebraic stack X admits n generating line bundles if there are n line
bundles on X such that the corresponding map X → BGn

m is representable in DM stacks.

The following lemma motivates the name above.

Lemma 5.2. Let G be a group and assume that BG has a generating set of line bundles. Then any such
set form a generating set for the rational Picard group Pic(BG)Q; viceversa any set of line bundles whose
classes generate Pic(BG)Q also form a generating set on BG in the sense of Definition 5.1.

Proof. Let L1, . . . ,Ln be a generating set in the sense of Definition 5.1. Identifying Pic(BG)Q with the vector
space of rational characters of G, let χ1, . . . , χn be the associated characters, and let ϕ : G → Gn

m be the
associated homomorphism of groups. Observe that ϕ induces precisely the DM morphism BG→ BGn

m, and
that the torsor associated to L1⊕ · · ·⊕Ln is [(A1 ∖ {0})n/G], where the action of G is the defined by ϕ; the
fact that this quotient stack is DM is equivalent to saying that the kernel of ϕ is finite: let us denote it F ,
and say that it has order e.

Given any character χ of G, we have that χe(F ) = 0, hence the character χe : G → Gm factors as
G

ϕ→ Gn
m → Gm. This implies that ϕ∗ induces a surjective morphism between the spaces of rational

characters, and that χ1, . . . χn generate X(G)Q. In terms of classifying stacks, this amounts to saying that
L1, . . . ,Ln generate Pic(BG)Q.

Now let F1, . . . ,Fm be generators for Pic(BG)Q, and let η1, . . . ηn be the associated characters, so that
there exist coefficients aij ∈ Q with χi =

∑
aijηj . Define ψ : G → Gm

m as g 7→ (η1(g), . . . , ηm(g)). There
exists an integer d such that the matrix dA = (daij) has integer coefficients and it induces a homomorphism
ℓdA : Gm

m → Gn
m having the property that the composition ℓdA ◦ψ is equal to ϕd. This implies, as the kernel

of ϕ is finite, that also the kernel of ψ must be finite, hence the torsor associated to F1 ⊕ · · · ⊕ Fm is a DM
stack, i.e. these line bundles form a generating set in the sense of Definition 5.1. □

5.1. Base step: effective good moduli spaces of dimension zero. In this subsection we prove one
direction of Theorem 1.1, in the case where the good moduli space of X is a point.

Lemma 5.3. Assume that f : X → Spec(M) is a gerbe, and it is effective. Then there are n generating line
bundles on X .

Part of the following argument was suggested by Siddarth Mathur and Minseon Shin to the second author.
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Proof. Observe that f is a good moduli space. Indeed, one can check that a morphism is a good moduli
space étale locally on the target, so let Spec(L′) → Spec(L) be an extension such that X|L′ has a section.
By our conventions the stabilizers are reductive, so up to possibly extending L′ further, we have that the
automorphisms of X|L′ are a reductive group. Then X|L′ ∼= BG for a reductive group G → Spec(L′), and
BG→ Spec(L′) is a good moduli space.

Recall that while the gerbe X → Spec(M) might not be banded, there is a group object Z → Spec(M)
satisfying the following two conditions:

(1) there is an isomorphism ψx : Z|T → Z(AutT (x)), for every x : T → X , where Z(AutT (x)) denotes
the center of AutT (x), and

(2) the morphism ψx is canonical. Namely, for every isomorphism α : x → y over T , if we denote by
Innα : AutT (x)→ AutT (x), σ 7→ ασα−1, we have ψy = Innα ◦ψx.

In particular, if AutT (x) is abelian, the gerbe X → Spec(M) is banded (the proof is analogous to [Sta22, Tag
0CJY]).

Let G ⊆ Z be the connected component of the identity. For every map x : Spec(M) → X where M is a
field, we have that BAutX (x)→ Spec(M) is effective. Indeed, the map BAutX (x)→ Spec(M) is the second
projection of X ×Spec(L) Spec(M)→ Spec(M), and being effective is stable under base change.

This implies by the characterization of effective classifying stacks (Theorem 4.6) that the connected
component of the identity of AutSpec(M ′)(x) is a split torus, contained in the center. Hence G|Spec(M ′)

coincides with this connected component and it is a split torus; from [Con14, 3.1.8] we deduce that also G is
a torus. We now show that G is a split torus.

We begin by rigidifying f (see [Alp23, Section 6.2.8]), so let X ′ := X � G. We have a factorization
X h−→ X ′ g−→ Spec(M) where the diagonal relative to h is represented by torsors under G|X ′ , and X ′ is DM
over Spec(M). As f is effective, by Corollary 2.11 the morphism h is also effective. The morphism h is
banded by G, let c ∈ H2(X ′,G) be the corresponding element.

We will prove that c is torsion using [Sta22, Tag 03SH]. Indeed, let Spec(M)→ Spec(L) be an extension
such that G|Spec(M) becomes a split torus. Then X|Spec(M) → X ′|Spec(M) is a gerbe banded by Gn

m for a
certain m. As X ′ is a DM gerbe over the spectrum of a field, from [Alp23, Theorem 4.5.1] there exists a
finite flat cover ϕ : U → X ′|Spec(M) of some degree d where U is a regular scheme. The composition

H2(X ′,G|X ′)
ϕ∗

−→ H2(U,G|U ) ∼= H2(U,Gm
m)

ϕ∗−→ H2(X ′,G)

is the multiplication by d, so c ∈ H2(X ′,G|X ′) is torsion since H2(U,Gm
m) is a torsion group, as it agrees with

the Brauer group of the regular scheme U . Let k be the order of c.
Observe now that, as G is abelian, the multiplication by k is an homomorphism; it is surjective with finite

kernel as étale locally it is such. Specifically, there is an exact sequence

1→ F → G x 7→xk

−−−−→ G → 1

on the étale site of Spec(M), and F → Spec(M) is a finite group-object over Spec(M), which gives

H2(X ′, F |X ′)→ H2(X ′,G|X ′)
x 7→xk

−−−−→ H2(X ′,G|X ′).

In particular, there is a gerbe F → X ′ banded by F |X ′ whose image via H2(X ′, F |X ′)→ H2(X ′,G|X ′) is X .
More precisely, using [Gir65, IV.3.1.8], there is a gerbe F → X ′ banded by F |X ′ such that

X ∼= (F ×X ′ BG|X ′) � (F |X ′) ∼= (F ×Spec(M) BG) � (F |X ′).

In particular there is a map F ×Spec(M)BG → X which is a gerbe banded by F |X ′ . As F is finite, this map is
separated, hence effective. But then also F ×Spec(M) BG → Spec(M) is effective, as composition of effective

https://stacks.math.columbia.edu/tag/0CJY
https://stacks.math.columbia.edu/tag/0CJY
https://stacks.math.columbia.edu/tag/03SH
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morphisms is effective. Therefore, from Lemma 2.21 also BG → Spec(M) is effective: from Theorem 4.6 the
group G is a split torus.

Therefore the class c of X → X ′ is in H2(X ′,Gm
m) for a certainm. As c is torsion there existsm line bundles

on X which are n-twisted, for n divisible enough [Lie08]. This implies that the corresponding morphism
X → X ′ × BGm

m is relatively DM. As X ′ → Spec(L) is DM, the composition X → X ′ × BGn
m → BGn

m is
relatively DM. □

Lemma 5.4. Let B be a semi-local ring, and let X → Spec(B) be a good moduli space. Then:
(1) the restriction map i∗ : Pic(X ) →

⊕
p→X Pic(BGp) is injective, where the sum runs over all the

closed geometric points p of X and BGp is the residual gerbe at p;
(2) assume furthermore that B is local with closed point p, that there exists a group G → Spec(k)

which is a central extension of a split torus by a split finite group, and that the residual gerbe at
the unique closed geometric point p of X is BGk(p). Then if X ∼= [Spec(A)/G], the restriction map
i∗ : Pic(X )→ Pic(BGk(p)) is an isomorphism.

Moreover, with the assumptions of (2), the composition φ : Pic(X )→ Pic(BGk(p))→ Pic(BG) is an isomor-
phism, where the last morphism is the one given by Lemma 2.15.

Proof. (1) follows from [Alp13, Theorem 10.3]. Indeed, if i∗L is trivial, then the action of Gk(p) on the fiber of
L at p is trivial, so from loc. cit. L is pulled back from a line bundle on Spec(B). As the latter is semi-local,
every line bundle on Spec(B) is trivial.

For (2), we already know injectivity from (1). To prove surjectivity, consider the composition BGk(p) →
[Spec(A)/G]→ BG, where the latter morphism is the one induced by the G-torsor Spec(A)→ [Spec(A)/G].
Observe that this composition coincides with the morphism BGk(p) → BG induced by the field extension
k ⊂ k(p). Therefore, we have that the composition of pullback maps

Pic(BG) −→ Pic([Spec(A)/G]) −→ Pic(BGk(p))

is an isomorphism because of Lemma 2.15. It follows then that the last map must be surjective.
The moreover part follows directly from point (2) and Lemma 2.15. □

Lemma 5.5. With the assumptions and notations of Lemma 5.4 and B local, if X admits a generating set
of line bundles, then the morphism Pic(X )Q → Pic(BGp)Q is an isomorphism. If BGp is effective and Gp is
split, then the vice versa hold.

Proof. Let G := Gp. In one direction, we only have to prove surjectivity. Given a DM morphism X → BGn
m,

the composition BG → X → BGn
m is also DM. In particular, there is a Gn

m-torsor P → BG which is a DM
stack. As shown in the proof of Lemma 5.2, this datum is equivalent to the datum of a homomorphism
of groups φ : G → Gn

m having finite kernel F and such that φ∗ : X(Gn
m)Q → X(G/F )Q is surjective,

hence Pic(BGn
m)Q → Pic(BG)Q is surjective. As the latter map factors through Pic(X )Q, we deduce that

Pic(X )Q → Pic(BG) is surjective as well.
In the other direction, suppose that Pic(X )Q → Pic(B)Q is surjective: then if there are generating line

bundles on BG, they extend (up to taking high enough tensor powers) to line bundles over X , and the
associated extended torsors will still be DM by upper-semicontinuity of the dimension of the automorphism
groups of points. But we know that, thanks to Lemma 5.3, for BG effective the stack BG has generating
line bundles. □

Proposition 5.6. Assume that π : X → Spec(L) is an effective good moduli space map, and L is a field.
Then X admits n generating line bundles.
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Proof. First consider the residual gerbe j : G → X at the closed point of X . Recall that j is a closed
embedding. Indeed, it is locally closed from [Alp23, Proposition 3.5.16], and by passing to a local quotient
presentation [AHR20], one can check that it corresponds to the inclusion of the closed orbit. So the compo-
sition π ◦ j is effective. In particular, from Lemma 5.3, there are generating line bundles L1, . . . ,Ln on the
residual gerbe. We want to prove that they extend to line bundles L1, ...,Ln on X .

From [AHR20], there is an étale cover Spec(L′)→ Spec(L) and an isomorphism [Spec(A)/G] ∼= X ×Spec(L)

Spec(L′), where G is the automorphism group of the closed point of X ×Spec(L) Spec(L
′), and it is split; up

to taking refinements of this cover, we can assume that Spec(L′)→ Spec(L) is Galois with Galois group Γ,
and that the closed G-orbit of Spec(A) has an L′-point.

Observe moreover that as BG → [Spec(A)/G] → Spec(L′) is effective (the first morphism is the closed
immersion of the closed orbit, the second is effective by base change), we deduce from Corollary 2.11 that
BG→ Spec(L′) is effective, hence from Theorem 4.6 we have that G is a central extension of a split torus by
a finite group. Up to taking a refined cover, we can assume that the finite group is split, hence by Lemma 5.4
the pullback homomorphism Pic([Spec(A)/G])→ Pic(BG) is an isomorphism.

If we denote by G′ := G ×Spec(L′) Spec(L) and by π : G′ → G the first projection, then G′ ∼= BG is an
isomorphism as the residual gerbe pulls back to the residual gerbe; then π∗Li extends to a line bundle on
[Spec(A)/G] from Lemma 5.4. We denote these extensions by L̃1, ..., L̃n.

Consider now the line bundles L′
i := ⊗γ∈Γγ

∗L̃i: these are by construction invariants, hence they descend
to X along the Γ-torsor [Spec(A)/G] → X . Consider then the Gn

m-torsor on X induced by L′
1, . . . ,L′

n: we
only need to check that this torsor is DM.

For this, is enough to check that it is DM when restricted to the residual gerbe: this is the case, because
as L̃i originally comes from G, it is Γ-invariant once restricted to G′, i.e. γ∗L̃i|G′ = L̃i|G′ = π∗Li; this implies
that L′

i|G ≃ L
⊗|Γ|
i , hence the associated Gn

m-torsor is DM because the Gn
m-torsor associated to L1, . . . ,Ln is

so. □

5.2. Inductive step: extending a generating set. In this subsection prove Theorem 1.1.

Lemma 5.7. Consider a smooth algebraic stack X := [Spec(A)/G] with good moduli space X → X =
Spec(AG), where G is effective and split and AG is local. Let U be an open subscheme of Spec(AG). Assume
that U := [Spec(A)/G]×Spec(AG)U admits n generating line bundles {L̃i}ni=1. Then there are n+m generating
line bundles {Li} on X , such that (Li)|U ∼= L̃i if i ≤ n, and (Li)|U ∼= OU otherwise.

Proof. As X is smooth, we have a surjection Pic(X )Q → Pic(U)Q. In particular, we can extend the generating
line bundles L̃1, . . . , L̃n on U to line bundles L1, . . . ,Ln on X .

By Lemma 5.4 we have an isomorphism Pic(X )
∼=→ Pic(BG): in particular, as the Q-vector space Pic(BG)Q

is finitely generated, we must have Pic(X )Q ≃ Qn+m for some value of m. Complete L1, . . . ,Ln to a basis
L1, . . . ,Ln+m of Pic(X )Q; we can pick the Li in such a way that Li|U is trivial for i > n.

Observe moreover that BG has a generating set of line bundles because of Lemma 5.3. Then, as the
restriction of L1, . . . ,Ln+m generate the rational Picard group of BG, by Lemma 5.2 they also form a
generating set for BG in the sense of Definition 5.1, i.e. the torsor associated to the restriction of L1 ⊕ · · · ⊕
Ln+m is DM. By upper-semicontinuity of the dimension of the stabilizer groups for G-actions, the torsor
associated to L1 ⊕ · · · ⊕ Ln+m must be DM too. □

Proposition 5.8. Let X → Spec(R) be a good moduli space with R local ring and X smooth. Let p be the
closed point of Spec(R) and U = Spec(R) ∖ {p} be it its complement. Set U := U ×Spec(R) X , and suppose
that U admits a generating set. Then also X admits a generating set.

Before proceeding with the proof, we recall the following fact, which is a slight improvement of Zariski’s
main theorem.
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Theorem 5.9. Let X be a separated DM stack and Y → X an étale, quasi-finite surjective morphism from a
Noetherian scheme Y . Then there is a finite morphism F → X such that the second projection Y ×X F → F ,
when restricted to the connected components of Y ×X F , is an open embedding.

The proof is essentially the proof of [Alp23, Theorem 4.5.1] (see in particular the second diagram of page
178). Note that among the hypotheses in loc. cit it is required the stack X being of finite type, but the
whole proof works as well with the hypotheses above.

Proof of Proposition 5.8. First observe that the stabilizer of the geometric closed point of X is an effective
group, which then is a central extension of a split torus by a finite split group (Theorem 4.6). So there is a
finite extension L of the residue field of R, such that the residual gerbe of X ×Spec(R) Spec(L) is BG, where
G is an effective group. From the main result of [AHR20], there is a cartesian diagram as follows, with étale
surjective horizontal arrows, where AG has a unique closed point:

[Spec(A)/G]

��

// X

��

Spec(AG)
j
// Spec(R).

We can now apply Theorem 5.9 to j to get the following diagram, where every square is cartesian

F ′ //

��

iF

((

[Spec(A)/G]

i

''

��

F

��

// X

π

��

Spec(RF ⊗R A
G)

jF

((

// Spec(AG)

j

''

Spec(RF ) // Spec(R).

We denote by πF the morhphism F → Spec(RF ); and up to replacing RF with the normalization of one
of the connected components of Spec(RF ) which dominate Spec(R), we can assume that RF is normal.
Moreover, up to further extending, we can assume that Spec(RF ) → Spec(R) generically is Galois with
Galois group Γ. In particular, Γ acts on Spec(RF ), Spec(RF ⊗R A

G), F and F ′ in a way such that all the
arrows in the diagram above are equivariant. Finally, by assumption, iF and jF are open embeddings once
restricted to each connected component of their domains. We first plan on descending a generating set on
F ′ to F , using Lemma 5.7.

First, we restrict π to U . Let m be the number of line bundles in the generating set of U . We can pull
back this set to UA := U ×X [Spec(A)/G], which is by construction a quotient stack by G, and extend it to
a generating set for [Spec(A)/G] using Lemma 5.7; now we have n+m line bundles on [Spec(A)/G] which
are a generating set. We can pull back this generating set to F ′, and now so we have n +m line bundles
L1, ...,Ln+m on F ′.

We now study the action of Γ on Li. Consider the inclusion of the closed residual gerbe BGL →
[Spec(A)/G], where L is a field, and its pull-back

⊔f
ℓ=1 BG′

L′ = BGL ×[Spec(A)/G] F ′. There is an action
of Γ on

⊔f
ℓ=1 BG′

L′ , which acts transitively on its topological space. From Lemma 5.4, there are injective
morphisms Pic(F ′) →

⊕f
ℓ=1 Pic(BG′

L′) so one can understand the action of Γ on Li by understanding its
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action on
⊔f

ℓ=1 BG′
L′ . In particular, Γ acts trivially on Li, as they are pulled back from [Spec(A)/G], namely⊗

γ∈Γ γ
∗Li = L⊗|Γ|

i . Therefore {Li} is a Γ-invariant generating set and the characters induced by Li on
each connected component of

⊔
BG′

L′ are the same.
The scheme Spec(RF ) has an open subset UF = U×Spec(R)F and d closed points p1, ..., pd, and the action

of Γ is transitive on the closed points. For each of the points pi, we can take an open subscheme Spec(Ri) of a
connected component of Spec(RF⊗RA

G) such that the composition Spec(Ri)→ Spec(RF ) is the localization
of Spec(RF ) at pi. So each Fi := Spec(Ri) ×Spec(RF⊗RAG) F ′ has n +m generating line bundles, and we
plan on gluing those along the generic points of Spec(Ri) for every i to get n +m generating line bundles
on F . But the n+m generating line bundles we choose glue along the generic fiber of Fi → Spec(Ri): the
first n of them came from line bundles on X ×Spec(R) U , and the other m restrict to the trivial line bundle
generically. So F admits a generating set, we denote it by G1, ...,Gn+m, where the first m line bundles are
the pull-back of a generating set of X ×Spec(R) U .

We now plan on descending a generating set from F to X . Recall that we have an action of Γ on Spec(RF ),
so we have the following diagram, where all squares are cartesian:

F

��

// X ′ //

��

X

π

��

Spec(RF ) // [Spec(RF )/Γ] // Spec(R).

The data of a line bundle on X ′ is the data of a Γ-equivariant line bundle on F . So for i ≤ n we define
G′i := Gi and for 1 ≥ i ≥ n we define G′m+i :=

⊗
γ∈Γ γ

∗Gm+i. Now the line bundles G′i admit an action by Γ.
To check that {G′m+i} is still a generating set we pull them back to F . Since Li was a Γ-invariant generating
set, the pull-backs of G′i forms a generating set.

So they descend to n+m line bundles on X ′, which we denote by H1, ...,Hn+m. Since X is smooth, the
scheme Spec(R) is normal, so [Spec(RF )/Γ]→ Spec(R) is a coarse moduli space. So up to replacing Hi with
some powers, they descend to a generating set on X as desired. □

Theorem 5.10. Assume that X is a smooth algebraic stack admitting a good moduli space π : X → X. If π
is effective, then X has a generating set, namely it admits a morphism X → BGn

m for n big enough, which
is representable in DM stacks.

Proof. Consider the following set

U := {U ⊆ X : U is open and admists a generating set}.
It is ordered by inclusion, and every two elements U1,U2 ∈ U admit U3 which contains both. Indeed, since
X is smooth, we can extend each line bundle in the generating sets of U1 and U2 to U1 ∪ U2. Consider now
the direct sum of direct sum of the extensions of the line bundles coming from U1 and U2: the associated
Gn1+n2

m -torsor will be DM both when restricted to U1 and when restricted to U2, thus U1 ∪ U2 ∈ U.
Observe also that U is not empty, as from Proposition 5.6 we have a generating set over the generic fiber

of π, which we can spread out.
Consider then U a maximal element of U, and assume by contradiction that U ̸= X . Let p ∈ X ∖ U be a

generic point of an irreducible component of X ∖U . From Proposition 5.8 the stack X ×X Spec(R) admits a
generating set, which we can spread out to a generating set of U ′, an open subset of X containing p. Then
U ∪ U ′ admits a generating set, which contradicts the maximality of U . So U = X as desired. □

Remark 5.11. Observe that if X admits a DM morphism X → BGn
m, then its moduli space X → X is

always effective if X is separated; while for the vice versa we need some assumptions on the singularities
of X , to extend the line bundles. For example, there are examples of Gm-gerbes X → X over singular
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X whose class in H2(X,Gm) is not torsion (see for example [Gro68b, II.1.11.b]); those would be effective,
but not a global quotient of a DM stack by a torus. To check that any Gm-gerbe is effective, it suffices to
check the following. Given any Gm-gerbe X ′ → T , where T is a DM gerbe, over the spectrun of a DVR R
which is trivial over a dense open substack U ⊆ T , is indeed trivial. But then X ′ → T is trivial: the map
H2(T ,Gm)→ H2(U ,Gm) is injective. So X ′ ∼= BGm×Z and the second projection is effective. On the other
hand X cannot be the quotient of a DM stack by a torus. Otherwise, there would be a map X → BGn

m.
This corresponds to n line bundles on X which are twisted, and up to replacing some these line bundles
with an appropriate multiple, they would be m-twisted for m big enough. But then its determinant would
be an nm twisted line bundle, so X → X would be nm-torsion from [Lie08, Propisition 3.1.1.8]. It would
be interesting to give a finer characterization of the singularities on X for which the thesis of Theorem 5.10
still holds.
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