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Abstract. We give a definition of twisted map to a quotient stack with projective good moduli space, and

we show that the resulting functor satisfies the existence part of the valuative criterion for properness.

1. Introduction

Given a projective variety X, a classic problem is to study the geometry of curves in X. How many
rational curves in P2 of degree d pass through 3d − 1 points? Or how many rational curves are there on a
quintic threefold? These are two examples of famous questions, which were answered by Kontsevich [Kon95]
by studying degenerations of maps from curves to X. Indeed, Kontsevich constructed the so called moduli
stack of stable maps, a generalization of the moduli stack of stable curves [DM69], which since then proved
to be one the main tool one can use to solve enumerative problems as the ones above ([Kon95,FP97]).

With the recent developments in the theory of algebraic stacks [Alp13, HL15, AHLH18, AHR20], it is
natural to wonder what happens if one replaces the target projective variety X with an algebraic stack
M. For example, if the target algebraic stack is Deligne-Mumford and admits a projective coarse moduli
space, the situation is similar to the case where X is a projective variety. Abramovich and Vistoli (see
[AV02,ACV03,AOV11]) constructed a space of so-called twisted stable maps, that one can use to compactify
the space of stable maps from a curve to M.

If the target is BGm instead, studying degenerations of maps from a curve to BGm is strongly related to
the problem of finding a compactification of the universal Jacobian [Cap94] or, if the target stack is BGLn,
a compactification of the universal moduli space of vector bundles over Mg [Pan96]. Other approaches to
these problems can be found in [Kau10,MT16,FTT16].

The goal for this paper is to study degenerations of maps from a family of curves to an algebraic stack
M admitting a projective good moduli space M → M , with the idea of interpolating between the stable
maps of Kontsevich and Caporaso’s compactified Jacobian. We introduce in Section 2.1 a notion of family
of twisted maps. Our main result can be formulated informally as follows.

Theorem 1.1 (Theorem 5.1). Let M := [X/G] be a quotient stack by a linear group G with a projective
good moduli space, and assume we are given a family of twisted maps ϕ : C∗ → M over the punctured disc
D∗. Then, up to replacing D∗ with a ramified cover, we can extend ϕ to a family of twisted maps C → M
over the whole disk D.

More precisely, we prove that the functor of twisted maps to an algebraic stack having a projective good
moduli space satisfies the existence part of the valuative criterion for properness.

As already said, our definition of twisted map interpolates between the quasistable curves of Caporaso
and the twisted stable curves of Abramovich and Vistoli. We show in 2.2.1 and 2.2.2 that our definition
is minimal: one cannot drop neither the stacky structure nor the destabilizing P1’s and still hope for an
analogue of Theorem 1.1 to be true.

The main contribution of this work, beyond Theorem 1.1, is the explicit nature of our algorithm for
constructing the degeneration of Theorem 1.1 around each destabilizing P1 (see Lemma 4.2). For example,
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2 A. DI LORENZO AND G. INCHIOSTRO

in Section 6 we study some limits obtained from our algorithm in the case where target stack is [A1/Gm]
(namely, the stack parametrizing line bundles with section). In our example, we argue that one can assume
the chain of destabilizing stacky P1’s to have length at most 1, to map to the closed point of [A1/Gm], and
we explicitly describe the line bundle on the family of curves. We expect a similarly accessible description
to be available in general.

Where are we headed. As it is, our definition of twisted maps does not lead to an algebraic stack,
essentially because we are imposing no numerical stability conditions. For instance, when the target stack
is BGm, we can ask for the line bundles to satisfy Caporaso’s basic inequality [Cap94, 0.3], a numerical
condition involving the degrees of the line bundles on the irreducible components of the curve. This is the
key ingredient for making the moduli problem an algebraic stack with a projective good moduli space.

However, our definition of twisted maps can be regarded as a first step towards the construction of a stack
of twisted stable maps to a quotient stack having a projective good moduli space. The next step in our
project is to tackle the case M = [X/Gn

m], leveraging our understanding of the behaviour of degenerations
of twisted maps. In particular, we aim to show that, after imposing some numerical conditions, we actually
get an algebraic stack which is Θ-reductive and has unpunctured inertia: applying the results of Alper,
Halpern-Leistner and Heinloth [AHLH18, Theorem A], we would get a good moduli space of twisted stable
maps to [X/Gn

m].
Another interesting direction to study is when M = BG for a linear algebraic group G; in this case

our functor of twisted maps can be regarded as the functor of G-torsors over families of curves, and our
main theorem shows how to extend these families of G-torsors over curves. Hopefully, after imposing some
numerical stability conditions, one can extract a proper algebraic stack out of our functor; we are currently
investigating this path too.

Organization of the paper. In Section 2 we introduce the main object of interest, namely twisted maps to
an algebraic stack, and we present some basic properties of them. For example, we show that our definition
recovers the one of Abramovich and Vistoli if M is Deligne-Mumford. In Section 3 we show how to extend
maps to codimension one points of the special fiber of the family of curves (Theorem 3.9). In Section 4 we
introduce the main tools to extend maps to codimension two points: we prove two technical propositions
(Proposition 4.1 and Proposition 4.5) concerning extensions of line bundles over stacky surfaces, that will
be essential for proving the main results of this section. Section 5 is divided into two parts. In the first part,
we prove our main result (Theorem 1.1), and in the second part (namely Section 5.1) we prove some results
on the birational geometry of stacky surfaces, which are of independent interest: we study when one can
contract certain (stacky) P1s on a surface. Our results can be understood as a generalization of the results
of Artin in [Art62] to stacky surfaces. Finally in Section 6 we run a specific example: the case of twisted
maps to M = [A1/Gm].

Conventions. In what follows, unless otherwise stated, every stack and morphism is assumed to be essen-
tially of finite type over a field k of characteristic zero. If C is a one dimensional Deligne-Mumford stack
with coarse moduli space C → C, and L is a line bundle on C, there is a minimal natural number n such

that L⊗n descends to a line bundle L on C. The degree of L will be deg(L)
n .
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Andres Fernandez Herrero, Daniel Halpern-Leistner, Ming Hao Quek, Mauro Porta, Zinovy Reichstein,
Minseon Shin and Angelo Vistoli for helpful conversations.
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2. Twisted maps to algebraic stacks

In this section we first define twisted maps with target an algebraic stack M having a projective good
moduli space (Definition 2.2). Then we motivate our definition, showing that it recovers the one for Deligne-
Mumford stacks [AV02]. We finally provide two examples showing that our definition is somehow “minimal”,
i.e. both stacky nodes and destabilizing P1s have to be included in the domain curve.

2.1. Twisted maps. We begin with the notion of quasi stable maps.

Definition 2.1. Let n ≥ 0 be an integer, let (C; p1, ..., pn) be a nodal curve together with n smooth points
and let M be a projective variety with ample line bundle L. We say that f : C → M is quasi stable if
f∗L⊗ ωC(p1 + ...+ pn) is nef, and the irreducible components where f∗L⊗ ωC(p1 + ...+ pn) is not positive
are isomorphic to P1. Such components are called destabilizing P1s.

Recall [AV02, Definition 4.1.2] that a twisted nodal n-pointed curve over B is the data of three morphisms
Σi → C → C → B such that

• C is a Deligne-Mumford stack, the map C → B is proper and étale-locally over B it is a nodal curve;
• Σi ⊂ C are disjoint closed substacks contained in the smooth locus of C such that Σi → C → B are

étale gerbes;
• C → C is a coarse moduli space and is an isomorphism away from Σi and the singular locus of
C → B.

From now on, we will say twisted (n-pointed) curve to indicate a twisted nodal n-pointed curve.

Definition 2.2. Let M be an algebraic stack with projective good moduli space M → M , let n ≥ 0 be
a non-negative integer. A twisted map to M over a scheme B consists of a triplet (π : C → B,ϕ : C →
M, {σi : Σi → C}) such that:

(1) (π : C → B,Σi) is a twisted n-pointed curve over B;
(2) if we denote by C (resp. S) the coarse moduli space of C (resp. ∪Σi), then for every b ∈ B the

pointed map fb : (Cb, Sb) →M is quasi stable;
(3) the smooth points of Cb that are not on the image of ∪σi are schematic;
(4) if D is an irreducible components of Cb with coarse moduli space which is an fb-destabilizing P1,

then for every d the map D → M does not factor as D → Bµd → M.

Remark 2.3. We will mainly deal with the case where n = 0, namely the non-pointed case. The reason
we introduce pointed quasi stable maps is because they arise naturally when taking the normalization of an
unpointed quasi stable map.

We now comment briefly on the last point of Definition 2.2. We begin by showing that if M is a Deligne-
Mumford stack, we recover the definition of twisted stable maps à la Abramovich-Vistoli. For this, we need
the following two lemmas.

Lemma 2.4. Let f : C → P1 be a generically étale morphism which is ramified only over {p, q} ⊆ P1. Then
C ∼= P1 and the map is [a, b] 7→ [an, bn] for some n.

Proof. First observe that p ̸= q. Indeed, since the fundamental group of P1 without a point is trivial, if p = q
then f must be an isomorphism.

Then p ̸= q and consider ωP1(p+ q). A local generator for this line bundle around p is dx
x . Locally around

every point pi in the preimage of p, f can be written as x 7→ xei for some integer ei; therefore, the pullback
of dx

x is dxei

xei
= ei

dx
x : we deduce that h∗ωP1(p + q) = ωC(R) where R is the ramification locus of h. But

ωP1(p+ q) has degree zero, so also h∗ωP1(p+ q) = ωC(R) has degree zero: as C is a smooth connected curve,
this implies that C ∼= P1, R consists of exactly two points, and f is totally ramified. Then f is of the desired
form. □
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Lemma 2.5. Let P1 be the root stack of P1 at the points 0 and 1. Assume that there is a representable
morphism f : P1 → BG for a finite group G. Then there is an integer e, a map f ′ : P1 → Bµe and an
embedding ι : Bµe ↪→ BG such that f = ι ◦ f ′.

Proof. We use the following fact: given a G-torsor P → S and a connected component P0 ⊂ P , the classifying
morphism S → BG factors as S → BH → BG, where H is the subgroup of elements of G fixing P0.

Indeed, if P ′ ⊂ P is another connected component, there exists an element g ∈ G such that gP0 ⊂ P ′:
it is immediate to check that this induces an isomorphism P ′ ≃ P0, hence P ≃

∐
gH∈G/H P0. In particular,

there is a classifying morphism S → BH such that Spec(k)×BH S ≃ P0. On the other hand, the pullback of
the universal G-torsor Spec(k) → BG along BH → BG is isomorphic to

∐
gH∈G/H Spec(k), from which we

deduce that the pullback of the universal G-torsor along S → BH → BG is isomorphic to∐
gH∈G/H

(Spec(k))×BH S ≃
∐

gH∈G/H

P0.

We can then conclude that the two classifying maps S → BG and S → BH → BG are isomorphic.
Let C ′ → P1 be the G-torsor induced by P1 → BG, and let C be a connected component of C ′. It is

smooth as it is étale over P1 and it is proper as Spec(k) → BG is proper. Therefore C is a curve.
We can take the composition h : C → P1 → P1: this is a cover of P1 ramified at at most two points. But

then from Lemma 2.4, the map h must be totally ramified at these two points with ramification index e. We
deduce that h is given by the two sections Xe

0 , (X0 −X1)
e, the covering C → P1 is cyclic or, in other terms,

is a µe-torsor for some integer e. By a descent argument, the subgroup H of elements in G that fix C must
be isomorphic to µe.

We can now apply the fact mentioned at the beginning to conclude that the map P1 → BG factors
through Bµe. □

Proposition 2.6. Let M be a Deligne-Mumford stack with coarse moduli space M , and let ϕ : C → M be
a twisted map over Spec(k), with f : C → M the induced map on the coarse spaces. Then f is Kontsevich
stable and ϕ is a twisted stable map in the sense of Abramovich-Vistoli.

Proof. Assume by contradiction that it is not, let D be an irreducible component of C with coarse moduli
space D ∼= P1, and assume that D is a destabilizing P1. Then f |D : D → M factors as D → Spec(k) → M ,
where Spec(k) → M is the inclusion of a closed point p. By the universal property of the fiber product,
D → M factors through Spec(k)×M M ∼= BG where G is the stabilizer of the closed point p. By Lemma 2.5,
the map ϕ|D : D → M factors via D → Bµe → BG→ M, which is a contradiction. □

2.1.1. Destabilizing components and multidegree. An interesting case is whenM = [Spec(A)/Gm] for Spec(A)
an affine Gm-scheme of finite type over k. Infact M is an algebraic stack and its good moduli space is pro-
jective if and only if it is a point. In this case, we can consider twisted maps to [Spec(A)/Gm]. Observe
that the composition C → [Spec(A)/Gm] → BGm corresponds to a line bundle L over C. The following
proposition shows that condition (4) of Definition 2.2 can then be formulated in terms of the degree of L on
the destabilizing components.

Proposition 2.7. Let (π : C → B,ϕ : C → [Spec(A)/Gm]) be a pair satisfying the first three conditions of
Definition 2.2. Then it satisfies condition (4) (hence it is a twisted map) if and only if for every geometric
point b ∈ B the line bundle Lb on Cb induced by the composition Cb → [Spec(A)/Gm] → BGm has non-zero
degree on every destabilizing component.

Proof. Suppose that for some geometric point b ∈ B we have a destabilizing component Db ⊂ Cb such that
the line bundle L|Db

has degree zero. Then the coarse moduli space of Db is isomorphic to P1. As Db is
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a Deligne-Mumford stack, there exists an integer e such that L|⊗e
Db

comes from a line bundle on the coarse

space Db ≃ P1. As the only line bundle on P1 of degree zero is the trivial one, we deduce that L|⊗e
Db

≃ ODb
.

This implies that we have a factorization Db → Bµe → BGm, hence a map

Db −→ Bµe ×BGm
[Spec(A)/Gm] ≃ [Spec(A)/µe].

Observe now that the coarse space Db ≃ P1 is contracted to a point q in the coarse space of [Spec(A)/µe],
because the latter is affine. This implies that Db → [Spec(A)/µe] factors through some Bµe′ , where µe′ ⊂ µe

is the automorphism group of the geometric point whose image in the coarse space Spec(AGm) is q. We showed
that condition (4) in Definition 2.2 is not satisfied.

Viceversa, suppose that condition (4) is not satisfied: then there exists a factorization

Db −→ Bµe −→ [Spec(A)/Gm] −→ BGm.

This implies that the line bundle L|Db
comes from Bµe, i.e. is a torsion line bundle. □

2.2. Why twisted maps with quasi stable coarse space. In this section we report two examples showing
that if one does not allow neither twisted curves nor destabilizing stacky P1s, then there is no hope to find
a moduli space satisfying the existence part of the valuative criterion for properness.

2.2.1. Stacky nodes are necessary. This example already appeared in the work of Abramovich and Vistoli.
Consider the two homogeneous polynomialsA ∈ H0(P1,O(4)) andB ∈ H0(P1,O(6)) such that 4A3+27B2 has
12 distinct roots. This data corresponds to a Weierstrass fibration (X,S) → P1 with 12 nodal singular fibers,
so it corresponds to a map P1 → M1,1. We can now multiply all the terms in A of degree greater than 2 and

the terms in B of degree greater than 3 by a parameter t. This gives two polynomials in H0(P1
k(t),O(4)) and

H0(P1
k(t),O(6)) respectively. The corresponding Weierstrass fibration (Xk(t), Sk(t)) → P1

k(t) still corresponds

to a map P1
k(t) → M1,1 which induces a map P1

k(t) → M1,1 → M1,1. We can take the limit of this map to

Spec(k[t](t)). It is easy to see, from how we multiplied the coefficients of A and B by t, that if we denote

by C → M1,1 the limiting map, the special fiber of C will have a component D such that D → M1,1 has
degree 6. Even if we replace C with another scheme C ′ → C birational to C (blowing up the special fiber of
C → Spec(R)), the proper transform of D in C ′ will still map to M1,1 with a map of degree 6. This cannot

lift to M1,1: any map from a curve to M1,1 has degree divisible by 12.

2.2.2. Destabilizing P1s are necessary. Let R be a DVR, and consider two genus 2 curves with two marked
points, {(Ci; pi, qi)}2i=1, and consider the curve obtained by gluing together p1 with p2 and q1 with q2. Let
C = C × Spec(R), and let η be the generic point of Spec(R). Consider the trivial line bundle over the two
components of Cη, glued via the multiplication by a constant on the pis and by the multiplication by the
uniformizer π of Spec(R) on the qi. This corresponds to a map f : Cη → BGm. One can check that:

(1) the only twisted curve that one can produce as a limit of Cη over Spec(R) is the scheme C, and
(2) the map f does not extend to C → BGm as the line bundle does not extend.

In particular, if one does not allow destabilizing P1s, one cannot fill in the limit with just twisted curves.

3. Extending maps from deformations of curves I

Let M = [X/G] be a quotient stack by a linear algebraic group G having a projective good moduli space
M . Let R be a DVR over C with generic point η, and let π : Cη → η be a smooth curve. Suppose to have
a map ϕη : Cη → M which induces a map fη : Cη → M . Kontsevich’ theorem tells us that there exists a
unique family of semistable curves C → Spec(R) together with a map f : C →M that extends fη. Can we
lift f to a map ϕ : C → M that extends ϕη? A first step towards solving this problem would be lifting f at
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least at the generic points of the special fiber of C → Spec(R). In this section we show that this is indeed
the case, up to taking ramified covers of the base (see Theorem 3.9).

In what follows by an extension of DVRs we mean a map of DVRs B → B′ which is generically finite. It
is useful to introduce the following definition:

Definition 3.1. We say that a morphism of DVRs f : R → B comes from a family of curves if there is a
flat proper morphism F : C → Spec(R) whose generic fiber is a smooth connected curve, whose special fiber
connected and reduced, and such that

(1) there is a generic point µ of the closed fiber of F and
(2) there is an isomorphism OC,µ → B such that f factors as R→ OC,µ → B.

Lemma 3.2. Assume that f : R→ B comes from a family of curves, and the residue field of R is algebraically
closed. Then:

(1) if we denote by π the uniformizer of R, the element f(π) is a uniformizer for B, and
(2) if R→ R′ is an extension of R, the tensor product B ⊗R R

′ is a DVR.

Proof. Let F : C → Spec(R) be a family of curves as in Definition 3.1. Point (1) follows as B/f(π)B ∼=
B ⊗R R/π is the local ring at a generic point of the special fiber. As the special fiber is reduced, B/f(π)B
is a field, so f(π) is a uniformizer.

As for point (2), let C ′ := C ×Spec(R) Spec(R
′), let π : C ′ → C and F ′ : C ′ → Spec(R′) be the two

projections. We have an isomorphism B ∼= lim−→µ∈U
OC(U). As the tensor product commutes with colimits,

B ⊗R R
′ ∼= lim−→

µ∈U

OC(U)⊗R R
′ ∼= lim−→

µ∈U

OC′(π−1(U)).

As the residue field of R is algebraically closed, the central fibers of F and F ′ are isomorphic, so we denote by
µ′ the (unique) point over µ in C ′. For every open subset V in C ′ containing µ′, let D′ be its complement.
Then the irreducible components of π(D′) are either locally closed subschemes generically finite over the
generic point of Spec(R) or closed subschemes of the special fiber that do not contain µ. Therefore the

closure D := π(D′) does not contain µ and, if we denote by U its complement, then π−1(U) ⊆ V . This
implies that

lim−→
µ∈U

OC′(π−1(U)) ∼= lim−→
µ′∈V

OC′(V ) ∼= OC′,µ′

and the latter is a DVR, as F ′ has reduced closed fiber. □

Corollary 3.3. With the assumption of Lemma 3.2, if F is the algebraic closure of K(R), the fraction field
of R, then F ⊗R B is a field.

Proof. It suffices to check that every non-zero element has an inverse. But a non-zero element of F ⊗R B
can be written as a non-zero element α ∈ K(R′) ⊗K(R) K(B) for R → R′ an extension of DVRs. So from
Lemma 3.2, as K(R′)⊗K(R) K(B) is a field, α has an inverse. □

Notation 3.4. Assume that R → B is a morphism of DVRs that comes from a family of curves. An
extension of B along R is the extension of DVRs B → B⊗RR

′. If we want to emphasize R′, we will say that
F ′ is an extension of B along R→ R′.

Remark 3.5. If B′ is an extension of B along R→ R′ and R→ R′ is an isomorphism on residue fields, then
also B → B′ is an isomorphism on residue fields.

We now recall two results that we will use later
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Remark 3.6. If g : B → B̃ is an extension of DVRs and kB is the residue field of B, then if B̃ ⊗B kB is a
field, g is unramified.

Theorem 3.7 ([Ser97, Chapter 3, Section 2.4, Theorem 3]). Assume that L is the field of fractions of a
smooth curve over an algebraically closed field, and O → Spec(L) is a homogeneous space for a connected
linear group G. Then O has an L-point.

In the proof of Theorem 3.9 we will use the following lemma, which we isolate from the rest of the proof.

Lemma 3.8 (“A curve through the kB-point”). Assume that B is a DVR with residue field kB, and let
f : Spec(A) → Spec(B) be a morphism. Assume that p ∈ Spec(A) is a point that

(1) is in the special fiber of f ,
(2) is smooth for f , and
(3) the inclusion kB → k(p) is surjective.

Then there is a DVR B̃ with a morphism Spec(B̃) → Spec(A) such that the composition Spec(B̃) →
Spec(A) → Spec(B) is surjective, unramified and the extension of residue fields kB → kB̃ is an isomor-
phism.

Proof. Let π be a uniformizer for B, and let mp be the maximal ideal of Spec(A) corresponding to p. Since
p is in the smooth locus of f , the image of π in the tangent space of Spec(A) at p is not 0. In particular, up
to replacing Spec(A) with a neighbourhood of p, we can find n elements f1, ..., fn such that the ideal sheaf
corresponding to p is (f1, ..., fn, π), and the images of f1, ..., fn, π in mp/m

2
p are a basis for mp/m

2
p.

Consider then C, the closed subscheme given by (f1, ..., fn). Since f1, ..., fn are linearly independent in
mp/m

2
p, the closed subscheme C is smooth at p (from the Jacobian criterion) and has dimension one at p.

In particular, its local ring B̃ at p is a DVR with residue field k(p). As π generates the maximal ideal of p

in C, the map Spec(B̃) → Spec(B) is surjective. It is also unramified from Remark 3.6. □

Theorem 3.9. Let Spec(R) be a DVR whose residue field is algebraically closed and of characteristic 0. Let
Spec(B) → Spec(R) be a morphism of DVRs that comes from a family of curves. Assume that:

(i) there is a ring A of finite type over B with a GLn action,
(ii) there is a universally closed morphism [Spec(A)/GLn] → Spec(B), and
(iii) there is a section ϕ : η → Spec(A)η, where η is the generic point of Spec(B).

Then, up to replacing R with an extension R→ R′, B with B′ = B ⊗R R
′ and Spec(A) with Spec(A⊗B B′),

we can extend the induced section ϕ̃ : η → [Spec(A)η/GLn] to a section Spec(B) → [Spec(A)/GLn].

We will denote by kB the residue field of B, and with K(B) its fraction field; the proof will essentially
proceed as follows. First we use Zariski’s main theorem to reduce to the case where the stabilizer of η is
connected. Using Theorem 3.7, every orbit over kB has a kB-point. After some reduction steps which involve
a refinement of Abhyankar’s lemma ([Kol22, Lemma 2.53]) and Lemma 3.8, we will produce a DVR B′ with
the same residue field as B and with an étale morphism h : Spec(B′) → Spec(A), which maps the generic
point η′ = Spec(K(B′)) of Spec(B′) to a point in the same orbit as ϕ(η). As ψ(η′) and ϕ(η) will be in the

same orbit, they will be isomorphic over K(B), the algebraic closure of K(B).
Then, using non-abelian cohomology, we will show that after possibly extending B along R′ → R, the

points ψ(η′) and ϕ(η) give points in the stack [Spec(A)/GLn] which are isomorphic over Spec(K(B′)).
Finally we use Rydh’s theorem [Ryd11, Theorem B] to argue that Spec(B) is the push-out of Spec(K(B′)) →
Spec(K(B)) and Spec(K(B′)) → Spec(B′) so to obtain the desired morphism Spec(B) → [Spec(A)/GLn].

Example 3.10. To navigate the argument, one can consider the example of BPGLm,B := [Spec(B)/PGLm],
where the action on Spec(B) is the trivial one. This stack is isomorphic to a stack of the form [Spec(A)/GLn],
and our data correspond to a Severi-Brauer variety Xη over the generic point η of Spec(B).
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In this case, the aforementioned morphism ψ could be taken to be given by the trivial Severi-Brauer
variety Spec(B)× Pm over Spec(B), and the base change of R is needed in order to trivialize Xη.

A similar argument applies also to stacks BGB := [Spec(B)/G] where G is a connected reductive group:
in fact, Steinberg’s theorem easily implies that after a suitable extension R→ R′ the pullback of a G-torsor
over η becomes trivial, hence we can extend it in a trivial way.

Proof. We will denote by kB the residue field of B, with K(B) its fraction field, with G the linear algebraic
group GLn and with ∗ the action of G on Spec(A). The first four steps of the proof will be reduction steps:
we will modify A and extend R to reduce to the case where Spec(A) → Spec(B) has reduced closed fiber,
Spec(A) is normal, the stabilizer of ϕ(η) is geometrically connected and the orbit of ϕ(η) is dense. In each
reduction step, we will need to check two things. First, we need to check that assumptions (i), (ii) and (iii)
still hold, after each modification of A. Then we need to check that, after modifying A and R in the nth

step, the assumptions we achieved in the (n − 1)th step still hold. After the reductions step, we will use
Theorem 3.7 and [Ryd11, Theorem B] to conclude the proof.

Reduction step 1. We reduce to the case where the stabilizer of ϕ(η) ∈ Spec(A) is geometrically
connected. Since the stabilizer of ϕ(η) has a K(B)-point (the identity), it follows from [Liu02, Exercise
3.2.11] that if we can reduce to the case of a connected stabilizer, we can then further reduce ourselves to
the geometrically connected case.

The action of G induces a morphism

ξ : Gη → Spec(A) that sends g 7→ g ∗ ϕ(η).

If S◦ denotes the connected component of the identity of the stabilizer of ϕ(η), we can consider the quotient
scheme Gη/S

◦ and the induced morphism Gη/S
◦ → Spec(A) which is Gη-equivariant and quasi-finite.

Therefore the composition

[(Gη/S
◦)/Gη] −→ [Spec(A)η/Gη] −→ [Spec(A)/G]

satisfies the assumptions of Zariski’s main Theorem [LMB18, Théorème 16.5], so it factors as an open
embedding and a finite morphism as below:

[(Gη/S
◦)/Gη] ↪→ Z Φ−→ [Spec(A)/G].

We check that the assumptions (i), (ii) and (iii) hold for Z.
(i) As Φ is finite, it is affine, so Z ×[Spec(A)/G] Spec(A) = Spec(A′) and the morphism Spec(A′) → Z is a

GLn-torsor: we have Z = [Spec(A′)/G].
(ii) From how ξ is constructed, the section ϕ lifts to a section ϕ′ : η → (Gη/S

◦) so to a section ϕ′ : η → Z,
and its automorphism group is S◦. As G = GLn and every GLn-torsor is trivial over η, the map ϕ′ lifts to
a map ϕ′′ : η → Spec(A′), and its stabilizer is isomorphic to S◦ (so in particular it is connected).

(iii) As Z → [Spec(A)/G] is universally closed, also Z → Spec(B) will be universally closed. So replacing
Spec(A) with Spec(A′), we can assume that the stabilizer of ϕ(η) is connected.

Reduction step 2. We reduce to the case where Spec(A) is irreducible, and the orbit of ϕ(η) is dense.

This follows by replacing Spec(A) with the closure of the orbit O(η) of ϕ(η), which we denote by O(η),

and which is connected as O(η) is connected since G = GLn. To check that O(η) is open in O(η) we use

Chevalley’s theorem. The morphism G → O(η), g 7→ g ∗ η is dominant and of finite type, so its image
contains a non-empty open subset U . Then O(η) is covered by gU for g ∈ G.

We check that (i), (ii) and (iii) hold. It is clear that (i) and (iii) hold. As for (ii), since the map

[O(η)/G] → [Spec(A)/G] is universally closed, so also its composition [O(η)/G] → [Spec(A)/G] → Spec(B)
is universally closed, and satisfies the assumption of the theorem. It is clear that the stabilizer of ϕ(η) is still
connected.
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Reduction step 3. We reduce to the case where Spec(A) is normal, connected, and the orbit O(η) of
ϕ(η) is dense.

This follows by taking the normalization ν : Spec(An) → Spec(A), since ν is an isomorphism over O(η).
From the universal property of the normalization G acts on Spec(An), so (i) holds. As the normalization is
finite, also (ii) holds. Finally, as the normalization is an isomorphism over O(η), point (iii) still holds. It is
clear that the stabilizer of ϕ(η) is still connected.

Reduction step 4. We reduce to the case where Spec(A) → Spec(B) has reduced central fiber.
After Step 3, the assumptions of [Kol22, Lemma 2.53] apply: we can perform a ramified extension R→ R′

with ramification index divisible enough so that, if (A′)n is the normalization of A′ := A⊗R R
′, the closed

fiber of Spec((A′)n) → Spec(B ⊗R R
′) is reduced. We check that (i), (ii) and (iii) still hold.

(i) From the universal property of the fiber product G acts on Spec(A ⊗R R′), and from the universal
property of the normalization the action of G on Spec(A′) extends to an action of G on Spec((A′)n).

(iii) As B ⊗R R′ is a DVR from Lemma 3.2, if we denote by η′ its generic point ϕ induces a section
ϕ′ : η′ → Spec(A′), and its orbit (which we denote by O′) is open (and smooth). From the universal
property of the normalization, and since O′ is smooth, the normalization is an isomorphism over O′, so ϕ′

lifts to a map (ϕ′)n : η′ → Spec((A′)n), and the orbit of (ϕ′)n(η′) is open.
Before checking (ii) we check that the reductions of Steps 1 and 3 still hold. We begin by Step 3, namely

that we can assume Spec((A′)n) to be normal and connected. This holds since, up to replacing Spec((A′)n)
with its connected component Spec((A′)nc ) containing (ϕ′)n(η′) (which is the orbit closure of (ϕ′)n(η′)), we
can still assume that Spec((A′)nc ) satisfies the assumptions of Step 3.

The stabilizer of ϕ′(η′) is still geometrically connected, and since the normalization is an isomorphism on
the orbit of ϕ′(η′), also the stabilizer of (ϕ′)n(η′) is geometrically connected: the reduction of Step 1 still
holds.

(ii) Being universally closed is stable under base change so [Spec(A′)/G] → Spec(B ⊗R R
′) is universally

closed. Since the normalization is a finite morphism, and the inclusion of a connected component is finite,
also Spec((A′)nc ) → Spec(A′) is universally closed, so [Spec((A′)nc )/G] → [Spec(A′)/G] is universally closed.
Point (ii) follows as the composition of universally closed maps is universally closed.

This is the end of our reduction steps. So now we can assume that Spec(A) is irreducible and has a dense
open orbit which is the orbit of ϕ(η), and the special fiber of Spec(A) → Spec(B) is reduced.

Step 5. We construct a DVR B̃ with generic point ηB̃ and residue field kB̃, and a morphism ψ : Spec(B̃) →
Spec(A) such that:

(1) the composition Spec(B̃) → Spec(B) gives an extension of DVRs B → B̃ that is étale;
(2) the extension of residue fields kB → kB̃ is an isomorphism;
(3) ψ(ηB̃) ∈ O(η).

Consider Cη the complement of O(η) in Spec(A⊗BK(B)), and let C be its closure in Spec(A). It is clear
that C is G-invariant and does not contain the whole closed fiber of Spec(A) → Spec(B). Therefore there
is an orbit O of G contained in the closed fiber, which does not intersect C, and whose closed points are all
smooth points for Spec(A) → Spec(B). Indeed, as f has reduced fibers, the smooth locus of f is open and
dense in the special fiber. Then one can take the orbit of a smooth point away from C. This orbit has a kB-

point p from Theorem 3.7. Lemma 3.8 gives a DVR B̃ and a morphism ψ : Spec(B̃) → Spec(A) → Spec(B)
that satisfies (1) and (2). As p does not belong to C and C is closed under specialization, it also satisfies
(3).

Step 6. We show that the point ψ(ηB̃) constructed in Step 5 and ϕ(η) are in the same GK(B̃)-orbit, after

possibly replacing B with an extension along R.
As the statement is only over the generic point of Spec(R), we first work over the algebraic closure FR

of K(R). We denote by F (resp. F̃ ) the fiber products FR ⊗K(R) K(B) (resp. FR ⊗K(R) K(B̃)). From
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Corollary 3.3 we know that F is a field, and since B → B̃ is generically finite, we deduce that F̃ is a finite

union of fields, i.e. F̃ =
⋃k

i=1 Fi. By assumption the extension K(R) → K(B) has transcendence degree 1,

and since K(B) → K(B̃) is finite, the fields Fi are C1.
We denote by ϕF the pullback of ϕ along Spec(F ) → Spec(B), then by Step 1 the stabilizer of ϕF (Spec(F ))

is geometrically connected; we denote it by S. Then for every i we have the following exact sequence of
pointed sets:

G(Fi) → (G/S)(Fi) → H1(Fi, S).

But as S is connected and reductive, and Fi is C1, from [Ser97, Chapter 3, Section 2.3, Theorem 1’], the
set H1(Fi, S) is trivial so the map G(Fi) → (G/S)(Fi) is surjective. In particular, there are gi ∈ G(Fi)
that send the pullback of ϕ(η) to the pullback of ψ(Spec(Fi)). Since only finitely many elements of the field
extension K(R) → FR will be needed to write each gi, we can replace the field extension K(R) → FR with
a finite field extension K(R) → K(R′).

Then, consider an extension R → R′ that on the fraction field induces K(R) → K(R′) as before, let

B′ := B ⊗R R
′ with residue field kB′ and fraction field K(B′), and let B̃′ := B̃ ⊗R R

′. There is no reason to

believe that B̃′ is a DVR; however, the map B′ → B̃′ is still étale, the closed fiber of Spec(B̃′) → Spec(B′)

is a point which we denote by p, and the residue field of B̃′ at p is kB. So the local ring of OB̃′ at p, which

we denote by B̃′
c, is a DVR which is étale over B, with residue field kB and whose generic point K(B̃′

c) is

in the same G(K(B̃′
c))-orbit as ϕ

′(Spec(K(B′))). By replacing B with B′ and B̃ with B̃′
c, we get the desired

conclusion.
Step 7. Now we finish the proof. After Step 6, we have an étale extension B → B̃ which induces an

isomorphism on residue fields, and with a diagram as follows:

Spec(K(B̃))

��

// Spec(K(B))

��

// [Spec(A)/G]

��

Spec(B̃) //

33

Spec(B) Id // Spec(B).

As the extension B → B̃ gives an isomorphism of residue fields, from [Ryd11, Theorem B] the square on the
left above is a push-out. Then there is a map Spec(B) → [Spec(A)/G] as desired. □

4. Extending maps from deformations of curves II

In the previous Section we proved some results about extending maps from the generic fiber of a family
of curves over a DVR to the generic points of the special fiber, i.e. to codimension one points of the family.
In this Section we focus instead on extending maps to codimension two points. We will see that in order
to do this we might need to modify a bit the special fiber, i.e. by adding either a stacky structure (twisted
nodes) or by adding a whole new component (destabilizing stacky P1s). We also introduce twisted blow-ups
of smooth surfaces (Section 4.2).

4.1. Purity lemma for smooth points. First, we show how to extend maps when the domain is a pointed
surface that satisfies some regularity assumptions.
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Proposition 4.1. Consider the following diagram, where X is an S2 Deligne-Mumford stack, p a closed
point and G is a linear algebraic group:

X ∖ {p}

��

a // [Spec(A)/G]

��

X // Spec(AG)

Assume that G = GLn or G = Gn
m, and that either one of the following holds:

(1) X is smooth of dimension 2, or
(2) The map X ∖ {p} → [Spec(A)/G] → BG extends to X → BG.

Then there is a unique lifting X → [Spec(A)/G].

Proof. We do the case G = GLn, the case G = Gn
m is analogous. As the lifting will be unique, up to working

on an étale neighbourhood of p we can assume that X is affine. We first show that if X has dimension 2,
then the map X∖{p} → [Spec(A)/GLn] → BGLn extends to X → BGLn. Indeed, the morphism a induces
a GLn-torsor F → X∖{p}, together with a GLn-equivariant map F → Spec(R). Let F be the rank n vector
bundle on X ∖ {p} induced by F . If i : X ∖ {p} ↪→ X is the inclusion, then G′ = i∗F is a reflexive sheaf
on a smooth surface. From [Har80, Corollary 1.4] G′ is a vector bundle. In particular, from the equivalence
between vector bundles of rank n and GLn-torsors, there is a GLn-torsor G → X extending F .

Observe now that:

(1) the map G → X is affine so G is affine,
(2) G is S2, and
(3) F is open in G, with complement of codimension 2.

Our goal is to extend the map α : F → Spec(A) to a G-equivariant map G → Spec(A). But α induces R→
H0(OF ) and from points (2) and (3) above, H0(OF ) = H0(OG). In particular, we have a map A→ H0(OG)
which is compatible with the G-action. This induces the desired equivariant map G → Spec(A). □

4.2. Twisted blow-up. In what follows, we define twisted blow-ups of smooth surfaces: these are birational
transformations in which a point is replaced by a stacky P1. This construction will be needed for the proof
of Proposition 4.5.

Lemma 4.2. Let R be a DVR with parameter π and let A be a smooth 2-dimensional local R-algebra with
maximal ideal m = (π, y), let d > 0,m > 0 two positive integers. Let S := Spec(A/(y)) be the closed
subscheme of Spec(A) of equation y = 0 and let B → Spec(R) be the blow-up of the ideal (πmd, y).

Then there is a Deligne-Mumford stack Bm,d with coarse space ρ : Bm,d → B and a line bundle I on Bm,d

such that:

(1) the closed substack of Bm,d given by π = 0 is a nodal twisted curve;
(2) the closed embedding S → Spec(A) lifts to a closed embedding j : S → Bm,d;
(3) we have j∗I = OS(−mp);
(4) the exceptional divisor of b : Bm,d → Spec(A) is isomorphic to a root stack of P1 at a point;
(5) the degree of I restricted to the exceptional divisor of b is 1

d ;

(6) b∗I⊗k = OSpec(A) for every k ≤ 0, and (πmk, y⌈
k
d ⌉) ⊆ b∗I⊗k for every k > 0.

Moreover, if there is a cyclic group µℓ that acts on A by fixing π (ξ ∗ π = π) and ξ ∗ y = ξy, this action
can be extended to Bm,d in such a way that the action is faithful on the exceptional divisor of b, fixing only
the stacky point and the intersection of the exceptional divisor with j(S), and the quotient [Bm,d/µℓ] has
cyclic stabilizers.
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Finally, the constructions of Bm,d and I commute with étale base change, in the following sense: let
Spec(A′) → Spec(A) be an étale morphism, and assume that the fiber of m is a unique maximal ideal m′

generated by the pullback of π and y. Let B′
m,d and I ′ be the stacks obtained by applying the first part of this

lemma to m′. Then B′
m,d

∼= Bm,d ×Spec(A) Spec(A′), and I ′ is the pull-back of I.

Definition 4.3. The stacks Bm,d will be called an (m, d)-blow up, and I will be called the ideal sheaf of the
(m, d)-exceptional locus. When the integers (m, d) are unnecessary, we will just call it a twisted blow up.

The situation is summarized in the following diagram:

Bm,d
// B // Spec(A)

S

j

ii OO

Point (6) in Lemma 4.2 will allow us to control the algebra
⊕

i b∗E i.

Proof. Recall that B = ProjA(A[u, v]/(πmdu− yv)). The chart D(u) where u ̸= 0 is isomorphic to

Spec(A
[ v
u

]
/(πmd − y

v

u
))

and the exceptional divisor has equation y = 0. The chart D(v) where v ̸= 0 instead is isomorphic to

Spec(A
[u
v

]
/(
u

v
πmd − y)) ∼= Spec(R

[u
v

]
),

the exceptional divisor is generated by the ideal πmd, and the proper transform of S is given by u
v = 0.

Observe also that D(u) is smooth away from a single point (which we denote by q), and at that point there
is a cyclic quotient singularity. We denote by B′ → B the covering stack that resolves this singularity.

Now consider the Q-Cartier divisor given by the d-th root of the exceptional divisor on B ∖ {q}. This
is the divisor with equation πm = 0 on D(v) and 1 away from the exceptional divisor. It induces a map
B ∖ {q} → BGm that from Proposition 4.1 gives a map B′ → BGm. Let Bm,d be the relative coarse moduli
space of this map, and let I be the dual of the resulting line bundle on Bm,d. In particular, I is the ideal
sheaf generated by πm on D(v) (where Bm,d → B is an isomorphism) and 1 on the locus where Bm,d → B
is an isomorphism. We check the desired conditions for Bm,d. As now m and d play no role in the rest of
the argument, we drop them (namely, we define B := Bm,d).

To check (1), we perform a local analysis of B on the stacky point, and we denote by v′ := v
u . Smooth-

locally, the covering stack B′ on the stacky points is isomorphic to [Spec(k[[w, z]])/µmd] with the action given
my ξ ∗ w = ξw and ξ ∗ z = ξ−1w and the map Spec(k[[w, z]]) → Spec(A[v′]/πmd − yv′) given by π 7→ wz
y 7→ zmd and v′ 7→ wmd. Our stack B is obtained by first taking the coarse space of [Spec(k[[w, z]])/µm],
which has an action of µd

∼= µmd/µm, and then taking the stack quotient of this coarse space by µd. In
particular:

• the coarse space of [Spec(k[[w, z]])/µm] is isomorphic to Spec(k[[α, β, γ]]/αβ − γm),
• the action of µd leaves γ invariant, and a generator ξ of µd sends α 7→ ξα and β 7→ ξ−1β, and
• the quotient map Spec(k[[α, β, γ]]/αβ − γm) → Spec(R[v′]/πmd − yv′) sends π 7→ γ, y 7→ αd and
u 7→ βd.

Therefore the ideal (π) gets sent to the ideal of (γ), and Spec(k[[α, β, γ]]/(αβ − γm, γ)) ∼= Spec(k[[α, β]]/αβ)
is the desired twisted nodal curve.

Points (2) and (3) follow from the construction of B. Point (4) follows from the explicit description of B (or
from [GS17], since the exceptional divisor with the reduced structure is smooth with coarse space P1). Point
(5) follows from a local analysis: Id is the ideal sheaf of the exceptional divisor, and it has corresponding
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Weil divisor −(md)E where E is the reduced exceptional divisor of B → Spec(A). From the singularities of
B one can check that E2 = − 1

md , so the degree of Id restricted to the exceptional is 1. Then the degree of

I is 1
d . The first part of (6) follows since we have a map OB → I⊗k as I is an ideal sheaf, for k ≤ 0. We can

push forward this map to get ϕ : OX → b∗I⊗k. The sheaf b∗I⊗k agrees with OSpec(A) away from the closed

point, which has codimension 2, so (b∗I⊗k)∗∗ ∼= OSpec(A). One can now check that ψ and ϕ are inverse to

each other. For the second part of (6), so for k > 0, it suffices to check that for the two sections πmk and

y⌈
k
d ⌉ vanish on the ideal sheaf Ik. Again this can be checked locally on B ∖ {q} = B ∖ {q} = D(v), as I is

S2. Here the desired statement follows from the explicit description of D(v).
For the moreover part, observe that if we can put the same action of µℓ on y also on u (namely, ξ∗u = ξu)

then this action can be extended to B and therefore also to B′. As the divisor πm is µℓ-invariant, the action
extends also on B. We now check that the stabilizers are cyclic, by explicitly describing this action on B. As
µℓ is cyclic and B is smooth away from its stacky point, we just check how the action is defined on the stacky
point of B. Recall that smooth locally at this stacky point, B is isomorphic to [Spec(k[[α, β, γ]]/(αβ−γm))/µd],
and the action of µℓ on its coarse space is trivial on π and the characters of y and v′ = v

u are inverse to
each other. We can consider then the action of µℓd on Spec(k[[α, β, γ]]) that leaves γ invariant, and acts
faithfully with dual characters on β and α. One can check that this gives an action of µℓ = µℓd/µd on
[Spec(k[[α, β, γ]]/(αβ − γm)/µd] which extends the desired action: the stabilizers are cyclic as they are a
subgroup of µℓd. The commutativity with étale base changes follows from the explicit construction of B. □

4.3. Lifting line bundles via twisted blow-ups. We now study the local structure of a nodal singularity
that does not smooth over a DVR R with uniformizer π. This will be the pushout of a diagram that has the
two branches of the node B1 and B2, together with the inclusions of the singular locus S → B1 and S → B2.
We adopt the following

Notation 4.4. We denote by R1 and R2 the localizations of two smooth smooth R-algebras of dimension 2,
so that Bi = Spec(Ri), and the maps R→ Ri are injective. Let m1 = (π, x) (resp. m2 = (π, y)) be maximal
ideal of R1 (resp. R2). As R1/(x) ∼= R2/(y) are isomorphic to R, we identify both with R := R1/x. So
S = Spec(R) and let i1 : S → B1 (resp. i2 : S → B2) be the closed embedding given by x = 0 (resp. y = 0).

We can then form a cocartesian diagram

S B1

B2 N

The scheme N is a (constant) nodal singularity over Spec(R), where Bi are the two branches of the node.
We denote p ∈ N the single node over the closed point of Spec(R).

Proposition 4.5. With the notation from Notation 4.4, let A be a ring and let Gn
m act on Spec(A). Consider

the action of the k-th Gm on Spec(A) and the induced Z-grading on A, and let d ∈ N be such that the graded
ring A is generated in degrees [−d, d]. Assume that there is a diagram as follows:

N ∖ {p} b //

��

[Spec(A)/Gn
m]

��

N
a // Spec(AGn

m).

By composing with the map [Spec(A)/Gn
m] → BGn

m, we have n line bundles on N ∖ {p}, and assume that
the line bundles corresponding to the first k − 1 factors of BGn

m lift, but the remaining n− k − 1 do not.



14 A. DI LORENZO AND G. INCHIOSTRO

Then we can perform a birational transformation ρ : Nd → N which:

• is an isomorphism on ρ−1(N ∖ {p});
• Nd → Spec(R) is flat and the special fiber is a nodal twisted curve with 3 irreducible components and
a single stacky point q ∈ Nd;

• the map ρ contracts a single (stacky) curve P1 whose coarse space is P1;
• there is a commutative diagram as follows, where α is representable and we denote again by p the
intersection of the double locus of Nd and the closed fiber:

Nd ∖ {p} α //

��

[Spec(A)/Gn
m]

��

N
a // Spec(AGn

m);

• the line bundle corresponding to the k-th factor of BGn
m lifts to a line bundle on Nd with degree 1

d on

the stacky P1, and the line bundles corresponding to the first k − 1 factors of BGn
m still lift as well.

The construction of Nd commutes with étale base change.
Moreover, if there is an action of µℓ on R1 (resp. R2) which is trivial on π (i.e. ξ ∗ π = π) and acts

faithfully on x (resp. y), such that a and b commute with this action, then we can put an action of µℓ on
Nd such that α and β are equivariant. This action leaves P1 invariant and it acts faithfully on it.

The stack Nd in the statement of Proposition 4.5 is obtained as follows: first, one performs an (m, d)-blow
up on one of the two branches Bi (for example, Bm,d → B2) centered at the point p of the irreducible
component B2. Then, one glues B1 and Bm,d along the proper transform of S.

Figure: the stacky surface Nd.

The integer d depends on the action of the kth factor of Gn
m on Spec(A), as specified in the statement of

Proposition 4.5. The integer m depends on the map N ∖ {p} → BGn
m → BGm, where the last morphism is

the projection on the kth factor.
More precisely, the composition above corresponds to a Gm-torsor Tk → N ∖ {p}, obtained by gluing the

two restrictions Tk|B1∖{p} → B1 and Tk|B2∖{p} along S ∖ {p} = Spec(R0). Such a gluing corresponds to an
invertible element f ∈ R0, and the integer m is obtained by the valuation of f at the closed point of R.

Remark 4.6. If we can lift all the line bundles coming from [Spec(A)/Gn
m] → BGn

m to N , then from
Proposition 4.1 we can uniquely lift the map a to N → [Spec(A)/Gn

m].

Proof of Proposition 4.5. First observe that if we can find a map α which satisfies all the conditions except
for its representability, then we can find a representable one, as we can take its relative coarse moduli space.
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As our construction of Nd will commute with étale base change, we consider the case B1 := Spec(R[[x]]) and
B2 := Spec(R[[y]]). We also denote by X := [Spec(A)/Gn

m].
We begin by analyzing the first diagram of the proposition. As N ∖ {p} is a push-out, the data of a map

N ∖ {p} → X is equivalent to two maps ϕi : Bi ∖ {p} → X , and an isomorphism ϕ1 ◦ i1,η → ϕ2 ◦ i2,η, where
ij ,η denotes the restriction of the inclusion ij to the generic point η of S.

From Proposition 4.1, the two maps ϕi extend (we still denote the extensions by ϕi), so in order for a
not to lift we need that the isomorphism ϕ1 ◦ i1,η → ϕ2 ◦ i2,η does not extend. More explicitly, the maps ϕi
induce n Gm-torsor {Ti,j → Bi}nj=1, which are trivial torsor as Bi is regular and local. When restricted to
S, these give torsors (Ti,j)|S , and we have an isomorphism fT,j : (T1,j)|Sη

→ (T2,j)|Sη
for every j when we

restrict these torsors to η, the generic point of S. If we denote by Li the line bundle associated to Ti,k, the
map fT,k induces a map fη : (L1)|Sη

→ (L2)|Sη
. Up to swapping fT,k with its inverse, we can assume that

this extends to a map f : (L1)|S → (L2)|S which is an isomorphism on the generic point. More explicitly,
the map fη induces an isomorphism (L1)|S → (L2)|S(−mp) where p is the closed point of S, for a certain
strictly positive integer m (positive as the k-th line bundle does not extend to N).

Now, the map ϕ2 induces a map φ : A → OT2
(OT2

) = R[[y]][t±1
1 , ..., t±1

n ] where T2 is the Gn
m-torsor over

B2, and by definition of d the generators of A as a k-algebra map into Rt−d
k ⊕Rt−d+1

k ⊕ ...⊕Rtdk, where R =

R[[y]][t±1
1 , ..., t±1

k−1, t
±1
k+1, ..., t

±1
n ]. For these choices of d andm, let b : Bm,d → B2 be the blow-up of Lemma 4.2,

with line bundle I, and let j : S → Bm,d be the lifting of S → B2 to Bm,d → B2 of Lemma 4.2. Then
I|S = (L2)|S(−mp), and consider SpecBm,d

(
⊕

j∈Z Ij) be the Gm-torsor associated to I. From Lemma 4.2,

we have an inclusion b∗(
⊕

j∈Z Ij) =
⊕

j∈Z b∗Ij ⊆ R[[y]][t±i] and since R[[y]][t±1
1 , ..., t±1

k−1, t
±1
k+1, ..., t

±1
n ] is a flat

R[[y]]-algebra, an inclusion

⊕
j∈Z

b∗Ij ⊗R[[y]] R[[y]][t
±1
1 , ..., t±1

k−1, t
±1
k+1, ..., t

±1
n ] ⊆ R[[y]][t±1

1 , ..., t±1
n ].

We interpret both terms in this equality. The right hand side is OT2
(T2): the regular functions on the

total space of the Gn
m-torsor over B2. The left hand side are the regular functions on the total space of

the Gn
m-torsor over Bm,d that on the j-th component, for j ̸= k, is the pull back of T2,j , and on the k-th

component is the torsor associated to the line bundle I of Lemma 4.2. We denote this torsor by T .
Then the situation is as in the following diagram:

OT (T ) =
⊕

j∈Z b∗Ij ⊗R[[y]] R[[y]][t
±1
1 , ..., t±1

k−1, t
±1
k+1, ..., t

±1
n ]

� _

��

A
φ

// R[[y]][t±1
1 , ..., t±1

n ].

Claim. The map φ : A→ R[[y]][t±1
1 , ..., t±1

n ] lifts to A→ OT (T ).
Observe that this would finish the argument. Indeed, we would have a graded map b∗A → OT (T ), so

an equivariant map T → Spec(A). This in turns induces a map Bm,d → X such that when restricted to S
(which embeds in Bm,d via j) gives a Gn

m-torsor whose k-th line bundle is (L2)|S(−mp), and such that the
isomorphism fT,k extends.
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Proof of the claim. Let g be a generator of A in degree k. Observe the following commutative diagram,
where K(R) is the fraction field of R, π is the uniformizer of R and u a unit of R:

OT2
(T2) = R[[y]][t±1

1 , ..., t±1
n ]� w

**

y=0
// R[t±1

1 , ..., t±1
n ]� v

((

K(R)[[y]][t±1
1 , ..., t±1

n ] // K(R)[t±1
1 , ..., t±1

n ]

A

φ

==

!!

K(R)[[x]][t±1
1 , ..., t±1

n ] // K(R)[t±1
1 , ..., t±1

n ]

tk 7→πmutk

OO

OT1(T1) = R[[x]][t±1
1 , ..., t±1

n ]

' �

44

x=0 // R[t±1
1 , ..., t±1

n ].

( �

66

If we chase the generator g via the diagram above, we see that φ(g) ∈ (πmk, y). In particular, from Lemma 4.2
points (6), every generator of A maps via φ to

⊕
j∈Z b∗Ij [[y]][t±1

1 , ..., t±1
k−1, t

±1
k+1, ..., t

±1
n ]. Therefore the map

φ lifts.
The moreover part follows as above, from Lemma 4.2. □

4.4. Iterated twisted blow-ups. We end this Section with a mild generalization of Proposition 4.5, which
can be understood as follows. In the proof of Theorem 1.1 we will use Proposition 4.5 iteratively, to lift each
Gm-torsors associated to N ∖ {p} → [Spec(A)/Gn

m] → BGn
m; and once we will lift all the Gm-torsors, we

can lift the map from Remark 4.6. Doing so will not represent any new significant challenge, however there
are some technical aspect that we prefer to isolate from the proof of Theorem 1.1 in order to simplify its
exposition. This is why we introduce Corollary 4.7.

With the same notation as in Notation 4.4, let B(1)
2 → B2 be a twisted blow up of B2 at p: observe

that in B(1)
2 we have a distinguished point that lies in the intersection of the proper transform of S with

the exceptional divisor. With a little abuse of notation, we call such a point p and we denote the proper

transform of S in B(1)
2 by the same name.

By construction B(1)
2 is a Deligne-Mumford stack and

(1) there is a Zariski open morphism B(1)
2 ∖ {p} ↪→ B(1)

2 ;

(2) we can take an étale neighbourhood B(1)
2,p of p in B(1)

2 , and we can apply Lemma 4.2 to obtain a stack

B(2)
2,p → B(1)

2,p;

(3) The blow-ups constructed étale locally glue (from the last part of Lemma 4.2) and give a diagram
as below

B(1)
2,p ∖ {p} ≃ B(2)

2,p ∖ E B(2)
2,p

B(1)
2 ∖ {p} B(2)

2 .
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The stack B(2)
2 is a Deligne-Mumford stack, flat over Spec(R), that is isomorphic to (B2)|η over the generic

point η of Spec(R) and whose fiber over the closed point of Spec(R) consists of a chain of two stacky P1’s
and an open subset of a curve, meeting in two stacky points with cyclic stabilizers, as in the figure below.

Again, we can consider the proper transform of S in B(2)
2 : this meets the new exceptional divisor in a

(schematic) point p, so we can apply again points (1)-(3) above.

Doing this operation r times, we obtain an iterated twisted blow up B(r)
2 : this is flat over Spec(R), it is

isomorphic to B2|η over the generic point, and the special fiber consists of a chain of r stacky P1’s with
twisted nodes.

We can glue back B(r)
2 to B1 along S: we denote the resulting stack by N (r).

Figure: an iterated twisted blow-up.

Corollary 4.7. Let Spec(A) be an affine scheme endowed with a Gn
m action as in Proposition 4.5. Let N (r)

be a stack obtained by performing an iterated twisted blow up on N , as explained above. Assume that there
is a diagram as follows:

N (r) ∖ {p} b //

��

[Spec(A)/Gn
m]

��

N
a // Spec(AGn

m).

By composing with the map [Spec(A)/Gn
m] → BGn

m, we have n line bundles on N (r) ∖ {p}, and assume that
the line bundles corresponding to the first k − 1 factors of BGn

m lift, but the remaining n− k − 1 do not.
Then we can perform a birational transformation ρ : N (r+1) → N (r) which:

• is an isomorphism on ρ−1(N (r) ∖ {p});
• N (r+1) → Spec(R) is flat and the special fiber is a nodal twisted curve made of r + 1 irreducible
components which are stacky P1’s, and r twisted nodes;

• the map ρ contracts a single (stacky) curve P1 whose coarse space is P1;
• there is a commutative diagram as follows, where α is representable and we denote again by p the
intersection of the proper transform of S with the closed fiber:

N (r+1) ∖ {p} α //

��

[Spec(A)/Gn
m]

��

N
a // Spec(AGn

m);
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• the line bundle corresponding to the k-th factor of BGn
m lifts to a line bundle on N (r+1) with degree

1
d on the stacky P1, and the line bundles corresponding to the first k − 1 factors of BGn

m still lift as
well.

The construction of N (r+1) commutes with étale base change.

Remark. The stack N (r+1) in the statement of Proposition 4.5 is obtained by performing an (m, d)-blow
up. As in Proposition 4.5, the integers m and d are determined by the morphism N ∖ {p} → [Spec(A)/Gn

m].

The proof of Corollary 4.7 essentially relies on the following.

Lemma 4.8. Assume that X is a DM stack which is S2 and of dimension 2, and let p be a closed point
and U its complement. Assume that one has a line bundle L on U , that extends to a line bundle on an étale
neighbourhood j : V → X of p. Then it extends to a line bundle on X .

Proof. Up to working on a chart, we can assume that X = X is a scheme. If i : U → X is the inclusion,
then i∗L is S2. The pull-back of S2 sheaves under étale morphisms is still S2, so j

∗i∗L is S2. As it agrees
with a line bundle away from the preimage of p, the sheaf j∗i∗L is a line bundle, so its stalk at the preimage
of p is one dimensional. So the stalk of i∗L at p is one dimensional, so i∗L is a line bundle as desired. □

Proof of Corollary 4.7. First, we perform an additional iteration of the twisted blow-up. Write B(r)
1 and B(r)

2

for the two components of N (r). We define B(r+1)
2 by performing an (m, d)-blow up of B(r)

2 centered at p as
explained above (the values of m and d and the branch on which to perform the blow up are determined

exactly as in Proposition 4.5), and then we define N (r+1) by gluing together B(r)
1 and B(r+1)

2 along S.

Let φk : N (r) ∖ {p} → BGn
m → BGm, where the last map is the projection on the kth factor, and let

N (r)
p be an étale neighbourhood of p, so that we have the restricted morphism φk,p : N (r)

p ∖ {p} → BGm.

Applying Proposition 4.5 we can lift this map to N (r+1)
p , and this extension is unique. We also have the

restriction φk,0 : N (r) ∖ {p} → BGm, hence we obtain a commutative diagram

N (r)
p ∖ {p} ≃ N (r+1)

p ∖ E //

��

N (r+1)
p

��

φ′
k,p

##

N (r) ∖ {p} //

φk,0

55
N (r+1)

φ′
k // BGm.

The dotted arrow exists on the codimension one points of N (r+1) since those are the codimension one
points of N (r) (where φk,0 is defined), and the generic point of the exceptional divisor for the twisted blow-up
(where φ′

k comes from the line bundle I of Lemma 4.2). Then the dotted arrow exists from Lemma 4.8. The
other statements are straightforward to check using Proposition 4.5. □

5. Proof of the existence part of the valuative criterion

This section is devoted to the proof of our main theorem. On a first approximation, the argument proceeds
as follows. We first deal with the case where the generic fiber is smooth. For this case, using the properness
of Kontsevich spaces, we find a limit of the map on good moduli spaces. We will lift this to a map to the
stack, up to adding some stacky structure along the nodes of the generic fiber, in two steps. First, we will
lift it along the generic points of the special fiber using Theorem 3.9. Then we will use Proposition 4.1 to
extend it along the closed points of the special fiber.
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To deal with a nodal generic fiber, we reduce to the smooth case by taking the normalization of the
generic fiber, and we use the fact that a nodal curve is a pushout. Therefore, we first extend the map to the
normalization of the generic fiber, using the case of a smooth generic fiber. After that, using Proposition 4.5,
we show that we can extend the pushout data up to performing some (m, d)-blowups. Finally we will use
some results from Section 5.1 on contracting (stacky) rational curves to obtain point (4) in Definition 2.2.

Theorem 5.1. Let R be a DVR with algebraically closed residue field, let η (resp. x) be the generic (resp.
closed) point of Spec(R). Let M = [X/G] be a quotient stack by a linear algebraic group G having a projective
good moduli space M . Assume we are given a pointed twisted map (π : Cη → η, ϕ : Cη → M, {σi : Σi,η → Cη})
over η.

Then, up to replacing Spec(R) with a ramified cover, we can extend the pointed twisted map over η to a
pointed twisted map (π : CR → Spec(R), ϕ : CR → M, {σi : Σi,R → CR}) over Spec(R).

Proof. First observe that we can assume G = GLn: indeed, by hypothesis we have G ↪→ GLn, hence
M = [X/G] = [Y/GLn], where Y is the quotient of X ×GLn by G.

Let (π : Cη → η, ϕ : Cη → M, {σi : Σi,η → Cη}) be a family of pointed twisted curves, with coarse space
Cη. Let Ση :=

⋃
Σi,η be the extra stacky points and let Sη be its coarse moduli space.

Case 1: Cη is smooth and its coarse space is not a destabilizing P1.
Then the resulting map (Cη, Sη) → M is a stable map. From properness of Kontsevich stable maps,

it can be extended to a map (CR, SR) → M over Spec(R), up to replacing R with a ramified cover of it.
We perform a root stack C′

R → CR, ramified over SR, so that its restriction to the generic fiber (C′
R)|η is

isomorphic to Cη.
We first extend the map (C′

R)|η → M to the generic points of the special fiber. If ξ is one such generic
point, OC′

R,ξ is a DVR and the induced map Spec(OC′
R,ξ) → Spec(R) comes from a family of curves, in the

sense of Definition 3.1. Moreover, as M = [X/G] is a quotient stack, it has a Zariski open cover given by
substacks of the form [Spec(A)/G] and hence we have a factorization[

Spec(A⊗AG OC′
R,ξ)/G

]
//

µ′

��

[Spec(A)/G] //

µ

��

M

��

Spec(OCη ) //

55

Spec(OC′
R,ξ) // Spec(AG) // M

where µ (and therefore also µ′) is universally closed from [AHLH18, Theorem A.8].
Therefore Theorem 3.9 applies, and we have a map Spec(OC′

R,ξ) → M extending our map on (C′
R)η. This

allows us to extend the map C′
η → M to the generic points of the special fiber of C′

R → Spec(R). We can
now spread out this map: up to removing a finite set of points {p1, ..., pn} of the special fiber, we get an
extension C′

R ∖ {p1, ..., pr} → M.
Observe that C′

R has cyclic quotient singularities, so we can take its covering stack C′′
R → C′

R. We show
now that we can extend the map to C′′

R → C′
R in a unique way.

As the extension will be unique, we can replace C′′
R to the strict henselization of the local ring at the

points pi, that we denote by Ri. The map Spec(Ri) → M lifts to Spec(Ri) → Spec(AG), and similarly
Spec(Ri) ∖ {p} → M lifts to Spec(Ri) ∖ {p} → [Spec(A)/G]. As C′′

R is smooth, Spec(Ri) is smooth. So
from Proposition 4.1 we can extend this map uniquely to Spec(Ri) → M. This gives the extension to a map
C′′
R → M, and now we can take CR → M to be its relative coarse moduli space. One can check that this

procedure gives a pointed twisted stable map over Spec(R).
Case 2: (Cη,Σ1,Σ2) is such that its coarse space is a destabilizing P1.
The coarse space of Cη is P1

η, and the two gerbes give two points p1, p2 in P1
η. Those are sections

of P1
η → η, so we have a map η → M , and in turn as M is proper, a map Spec(R) → M . We can
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extend (P1
η, p1, p2) → η, as P1

η = Proj(K(R)[X0, X1]), to the trivial family over Spec(R), to get (P1
R, S1, S2),

where S1 and S2 are obtained by taking the closure of p1 and p2. Observe that, up to acting on P1
η via

Aut((P1
η, p1, p2)) ≃ Gm(K(R)), we can assume that S1 and S2 remain disjoint in the limit.

If µki is the stabilizer of Σi, we can take a root stack of P1
R along S1 and S2 with orders k1 and k2

respectively. If we denote this root stack by P1
R, then P1

η
∼= Cη, and we have the following diagram of solid

arrows:

P1
η

��

//
))P1

R

�� ##

//M

��

η // Spec(R) // M.

We now proceed as in the previous case and we obtain the desired extension.
General case: We now assume that (Cη,Ση) → M is a family of twisted pointed curves over η. Let

(Cn
η ,Ση + Θη) → M be the normalization of Cη → η, where Θη is the preimage of the nodal points. Up

to replacing R with a cover of it, we can assume that the connected components of Θη are gerbes over η.
Therefore from cases (1) and (2) we can extend the twisted pointed map (Cn

η ,Ση +Θη) → M over Spec(R)
to get maps ((C′)nR,ΣR +ΘR) → M.

Let Θi,η and Θi,R be the connected components of Θη and ΘR, indexed by i ∈ I. Recall that Cη is
obtained from Cn

η via the gluing data Θi,η ≃ Θσ(i),η, where σ : I → I is an involution with no fixed
points. By construction, the gerbes Θi,R are obtained as root stacks over their image in the coarse space
of (C′)nR; from this, it follows easily that the gluing data over the generic point extend to isomorphisms
Θi,R ≃ Θσ(i),R, and therefore from (C′)nR and the extended gluing data we can obtain a new family of curves
C′
R. We summarize now the situation in the diagram of solid arrows below:

Cn
η

��

// (C′)nR
//

��

M

��

Cη //

��

55

C′
R

//

ϕ

;;

��

M

η // Spec(R).

We wish to extend the dotted arrow ϕ. Observe that ϕ is already defined away from the one dimensional
nodes of C′

R, hence we just need to extend it at the nodes. Indeed, if the node is an isolated singularity,
then we can apply Proposition 4.1 to extend the map on the node. Otherwise, if the node is not an isolated
singularity, we cannot in general extend the map (see Section 2.2.2). Nevertheless, we will show that the
map can be extended after performing some twisted blow-ups as in Corollary 4.7.

Therefore, let us fix a node Θi,R which is not an isolated singularity of C′
R. Let then Ti,R → C ′

R be the map
Θi,R → C′

R on coarse spaces. As Ti,R → Spec(R) is an isomorphism, we have a section s : Spec(R) → Ti,R →
M . As M = [X/GLn] is a quotient stack, there is a ring A with an action of GLn on it such that there is a
Zariski open morphism Spec(AGLn) → M and an isomorphism Spec(AGLn) ×M M ∼= [Spec(A)/GLn]. We
can choose the map Spec(AGLn) →M to be a neighbourhood of s(x), namely a neighbourhood of the image
of the closed point via s.

In what follows we will adopt the following notation: we denote by pi the closed point of Θi,R and we
use the symbol Ni to denote a small enough étale neighbourhood of pi, which is obtained by gluing two
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smooth irreducible components B1 and B2 along a closed subscheme S, thus forming the codimension one
singularity.

We will now proceed in three steps. First, we will collect some numerical invariants d,m1, ...,mn that
depend only on the neighbourhood of s(x) we choose and on the map Ni∖{pi} → M; second, we will perform
some twisted blow-ups and, using the uniqueness of the extension in Corollary 4.7 once the numerical
invariants are chosen. Finally, we will apply Theorem 5.6 to guarantee that the resulting limit satisfies
condition (4) in Definition 2.2.

Step 1: we collect the numeric invariants d,m1, ...,mn. To do so, consider the inclusion of the diagonal
torus (Gm)

n → GLn. We first show that the map Ni ∖ {pi} → [Spec(A)/GLn] lifts to Ni ∖ {pi} →
[Spec(A)/(Gm)

n], using Smith’s normal form.
As [Spec(A)/(Gm)

n] ∼= [Spec(A)/GLn] ×BGLn
(BGm)

n and from the universal property of the fiber
product, it suffices to check that the vector bundle induced by Ni ∖ {pi} → [Spec(A)/GLn] → BGLn

splits as a sum of line bundles. If we denote by B1 and B2 the two branches of Ni, the data of a map
Ni ∖ {pi} → [Spec(A)/GLn] is the data of two vector bundles Ej → Bj together with an isomorphism
ϕ : (E1)|Sη

→ (E2)|Sη
, where S is the singular locus of Ni (and which is isomorphic to Spec(R)). Up to

choosing two isomorphisms α : O⊕n
B1

→ E1 and β : O⊕n
B1

→ E1, the map ϕ corresponds to a matrix A with

entries in the fraction field of R. If π is a uniformizer of R , there is an ℓ ≥ 0 such that πℓA has coefficients
in R, therefore from Smith’s normal form we can find two matrices D′

1 and D′
2 with entries in R such that

D′
1π

ℓAD′
2 = ∆ is diagonal. As S → Bj is a closed embedding of affine schemes, if Bj = Spec(Bj), we can

find two matrices D1 and D2 with entries in B1 and B2 respectively which restrict to D′
1 and D′

2. Those
remain invertible as their determinant is not 0 when restricted to the closed point of S (and also of Spec(Bj).
Therefore if we change basis on Ej according to Dj , we can assume that the morphism ϕ is a diagonal
matrix.

Moreover, the diagonal entries are of the form (u1π
m1 , ..., unπ

mn) where uj are units, and mj ≤ mj+1

for j < n. Therefore, from the uniqueness properties of Smith’s normal form, the integers mj are uniquely
determined.

To determine the integers d1, . . . , dn, we look at the action of Gn
m on Spec(A): the kth factor of Gn

m defines
a grading on A, and we set dk to be an integer such that the graded ring A is generated in degree [−dk, dk].

Step 2: We extend the map Ni∖{pi} → [Spec(A)/(Gm)
n]. We start by extending the induced morphism

Ni ∖ {pi} → BGn
m.

For this, we first apply Proposition 4.5, thus obtaining a stack N (1)
i where we can extend the composition

Ni ∖ {pi} → BGn
m → BGm, the last map being the projection on the first factor. The stack N (1)

i is obtained
by performing an (m1, d1)-blow up on one branch, and then glue the two branches back together.

We can then apply Corollary 4.7 to produce a stack N (2)
i together with an extension of the composition

Ni ∖ {pi} → BGn
m → BG2

m, the last map being the the projection on the first two factors. Again, the stack

N (2)
i is obtained by performing an (m2, d2)-blow up on the second branch and then gluing back together the

two branches.
After applying Corollary 4.7 enough times, we obtain a stackN (n)

i which is birational toNi, its exceptional
divisor consists of a chain of stacky P1’s, with twists in the nodes, and more importantly it has a morphism
to BGn

m that extends the one defined on Ni ∖ {pi}.
We can now apply Remark 4.6 to obtain a map N (n)

i → [Spec(A)/Gn
m]. Composing this map with the

morphism [Spec(A)/Gn
m] → [Spec(A)/GLn], we finally obtain N (n)

i → [Spec(A)/GLn] → M.
We can repeat the process above for every closed non smoothable node pi on the central fiber of C′

R →
Spec(R), thus producing several N (n)

i for every i, and a morphism ⊔iN (n)
i −→ M.
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Observe that the complement in N (n)
i of the exceptional divisor is by construction isomorphic to Ni∖{pi},

and Ni is an étale neighbourhood of pi. The construction of N (n)
i are uniquely determined by the integers

d,m1, ...,mn, so they commute with étale base change. Then we can glue them to get a twisted curve C′′
i,R,i.e.

we get the following diagram, where the vertical maps are étale neighbourhoods

⊔iNi ∖ {pi} ⊔iN (n)
i

C′
R ∖ (⊔ipi) C′′

i,R M.

The morphism ⊔iN (n)
i → M, which extend ⊔iNi ∖ {pi} → M, are uniquely determined by the integers

d,m1, ...,mn, the map C′
R∖ (⊔ipi) → M, and a choice of a maximal torus in GLn (the diagonal one) so they

descend to C′′
i,R → M as in the diagram above. In other terms, after performing twisted blow ups at the

non-smoothable nodes in the central fiber of C′
R → Spec(R), we are able to extend the map.

Step 3: the goal of this last step is contracting stacky P1s that factor via Bµk → M for some integer k.
In fact, at the end of step (2), we have proved that we can extend the morphism Cη → M the map whose

domain is a new family of curves C′′
R. We are then left with showing that if the generic fiber is a twisted

map, then we can assume that also the generic one is a twisted map. More precisely, we claim that we can
perform a further birational modification C′′

R → CR over Spec(R) so that the morphism C′′
R → M descends

to a morphism CR → M and the new family of twisted curves CR → Spec(R) satisfies also condition (4) in
Definition 2.2. This claim follows from Theorem 5.6. □

5.1. Contracting (stacky) P1s on a stacky surface. The goal of this section is to collect a few re-
sults, analogous to those of Artin [Art62], on contracting rational (stacky) curves on 2-dimensional Deligne-
Mumford stacks. We focus on the case where the coarse moduli spaces of our surface singularities are
An singularities, as those are the singularities which are of interest for one parameter families of curves.
Therefore we begin with the following.

Lemma 5.2. Consider the singularity X = Spec(k[x, z, y]/xy − za), with a > 1, and assume that µk acts
on k[x, z, y]/xy − za by sending ξ ∗ x = ξx, ξ ∗ y = ξ−1y and ξ ∗ z = z. Consider the blow-up of the closed
point of X. Then the action extends to the two exceptional divisors, and the action on the two components
of the exceptional divisor is balanced. Such an extension is unique.

Proof. First observe that we can extend the action of interest to an action on A3. We can extend it to the
blow-up of A3 at the origin: this is Proj(k[x, y, z, u, v, w]/(xu−yv, xw−zv, yw−zu)), and extend our action
by defining ξ ∗ u = ξ−1u, ξ ∗ v = ξv and ξ ∗ w = w. We can take the proper transform of the hypersurface
xy− za, which will be the desired blow-up with the desired action extended. The uniqueness follows as both
actions agree on a dense open subset, and our blow-up is separated. □

Remark 5.3. It is easy to check how the action is defined on the blow-up of Lemma 5.2. Indeed, the chart
where w = 1 is isomorphic to k[ uw ,

v
w , z]/

v
w

u
w −za−2, with the action that sends ξ ∗ v

w = ξ v
w and ξ ∗ u

w = ξ−1 u
w

and ξ ∗ z = z. The charts where u = 1 or the one where v = 1 can be described analogously.

Proposition 5.4. Assume that X is a proper 2-dimensional Deligne-Mumford stack, which is a scheme in
codimension one, with coarse moduli space X. Let P1 ⊆ X be a proper substack with coarse moduli space
isomorphic to P1. Assume that:

(1) There are two distinct points p, q ∈ P1 with stabilizer µk, such that P1 ∖ {p, q} is a scheme,
(2) The singularities of X (resp. X) at p and q are of type Am−1 and An−1(resp. Akm−1 and Akn−1

respectively,
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(3) X is smooth at every point of P1 ∖ {p, q}, and
(4) There is a contraction f : X → Y whose exceptional divisor is just the coarse moduli space of P1,

and Y has An′-singularities for an integer n′.

Then there is a Deligne-Mumford stack Y with coarse moduli space Y and with a representable map ψ : X → Y
lifting f , which induces isomorphisms AutX (p) → AutY(ψ(p)) and AutX (q) → AutY(ψ(q)) .

Proof. We can assume k ≥ 2. Let C ∼= P1 be the coarse space of P1 on X and CZ its proper transform on
a minimal resolution ξ : Z → X of X at p and q. We first check that CZ is not a −1 curve. Indeed, X
has Gorenstein singularities so KX .C is an integer. Moreover, C2 < 0 as it is contracted by X → Y . By
inversion of adjunction for log-canonical surface singularities, (KX + C)|C = ωC(DiffC) where DiffC is the
different (see [Kol13, Definition 2.34] or [BI21, Section 2.2] with ∆ = 0). Then from [BI21, Corollary 4.9
and Lemma 4.11 (1)], since p and q are quotients by µkm and µnk,

(KX + C).C = deg(ωC(Diff)) = −2 + 1− 1

km
+ 1− 1

kn
≥ −2 +

1

2
+

1

2
= −1.

As C2 < 0, we have KX .C > −1. But the singluarlties of X are Du Val, so ξ∗KX = KZ , so KZ .CZ > −1:
the curve CZ is not a −1-curve. Then from the minimality of the resolution ξ, there are no −1 curves
contracted by Z → Y , so Z → Y is a minimal resolution which contracts km + kn − 1 rational curves. As
Y has An′ -singularities, Y has an Ak(m+n)−1-singularity at the image of p and q; we denote it by z.

This singularity is the µk-quotient of an Am+n−1-singularity, so let Y be the stacky surface having this
singularity, with a µk stabilizer at the singular point, and with a map Y → Y . Consider Y ′ → Y a minimal
resolution of singularities around z. This is obtained by blowing up the closed singular points ⌊m+n

2 ⌋ times
(see Observation 5.3). Then there is a map Y ′ → X . Indeed, we can similarly resolve the singularities on
X by blowing up the singular points, and it is easy to see (for example using [GS17]) that such a resolution
is isomorphic to Y ′. Therefore we have two birational, proper and representable maps a : Y ′ → Y and
b : Y ′ → X . Now, consider X ′ → X the covering stack of X around P1. As X ′ → X is an isomorphism
away from P1, and X ∖ P1 ∼= Y ∖ {z} by construction, there is a dense open subset U of X ′ that admits a
morphism U → Y. We wish to extend this morphism to X ′ using [DH18, Lemma 7.4]. So let Spec(R) → X ′

be a morphism from a DVR, that sends the generic point on U (i.e. away from the preimage of P1 in X ′). As
Y ′ → X is proper and representable, and an isomorphism over U , we can lift uniquely the map Spec(R) → X ′

to a map Spec(R) → Y ′. In turn, by composing it with Y ′ → Y, we have a (unique) map Spec(R) → Y.
Therefore from [DH18, Lemma 7.4] we have a morphism X ′ → Y. Consider now X r → Y its relative coarse
moduli space. The stabilizer points AutX ′(p) and AutX ′(q) are isomorphic to µkm and µkn, so AutX r (p)
and AutX r (q) are quotients of µk: the composition X ′ → X r factors via X ′ → X → X r, so there is a map
X → X r and in turn a map X → Y. It is easy to check (for example, using [DH18, Lemma 7.2]) that the
compositions Y ′ → Y and Y ′ → X → Y are isomorphic. As Y ′ → Y is surjective on automorphism groups,
also X → Y is surjective on automorphism groups. Then it is also injective in automorphism groups as both
have automorphisms groups isomorphic to µk along the points p, q and z, and elsewhere they are isomorphic.
So X → Y is representable, as desired. The statement about automorphisms groups now follows since an
injective map µk → µk is an isomorphism. □

Proposition 5.5. With the assumptions and notations of Proposition 5.4, assume also that there is an
algebraic stack M and a representable map ϕ : X → M. Assume that there is a factorization ϕ|P1 : P1 → M
as P1 → Bµk → M for a certain k. Then there is a Deligne-Mumford stack Y with coarse moduli space Y
and with a representable map Y → M which factors X → M. The map Y → M is unique.

Proof. Let Y be the surface constructed at the end of Proposition 5.4. We check that there is a map
Y → M which factors X → M. Since the resulting map will be unique, from étale descent and using
[AHR20, Theorem 13.10], we can assume that M = [Spec(A)/GLn]. Consider now π : Y ′ → Y the canonical
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covering stack, and let y ∈ Y ′ be the locus where X → Y is not an isomorphism. From Proposition 4.1, we can
extend uniquely the map Y ′∖{y} → M to a map ψ : Y ′ → M. We aim now at showing that Y is the relative
coarse moduli space of Y ′ → M. It suffices to check that the kernel of the maps AutY′(y) → AutY(π(y))
and AutY′(y) → AutM(ψ(y)) agree. But this follows from the commutativity of the following diagram:

AutX (q)
OO

∼=
��

injective
// AutM(ϕ(y))

AutY(π(y)) AutY′(y).
surjective
oo

OO

Therefore the relative coarse moduli space of Y ′ → M is Y. To see that ϕ agrees with X → Y → M it

suffices to check that the compositions X ϕ−→ M → BGLn and X → Y → M → BGLn agree. But those are
two vector bundles which, by assumption, agree on all points of codimension 1, so they agree. □

Combining Propositions 5.4 and 5.5, one obtains the following:

Theorem 5.6. Assume that C → Spec(R) is a family of twisted curves over the spectrum of a DVR with
closed point p. Assume that M is an algebraic stack with a representable map ϕ : C → M. Let P1 ⊆ Cp be an
irreducible component of Cp, with coarse space isomorphic to P1. Assume that there are two (possibly stacky)
nodes of Cp on P1, and assume that the restriction ϕ|P1 : P1 → M factors via a map P1 → Bµm → M for
a certain m.

Then one can contract P1. In other terms, there is a family of twisted curves Y → Spec(R), with two
morphisms X → Y and Y → M such that the composition X → Y → M is isomorphic to ϕ and such that
the morphism X → Y on coarse spaces is an isomorphism away from P1 and it contracts P1.

Proof. Consider the map P1 → Bµk. As it is representable, there is a µk-cover C → P1 which is a scheme.
Up to possibly replacing k, we can assume that C is connected. Then the composition C → P1 → P1 is
ramified at at most two points (the nodes on P1) and from Lemma 2.4, C = P1 and the map is [a, b] 7→ [ak, bk].
Then P1 has two points with µk-stabilizers. Then the results of Propositions 5.4 and 5.5 apply, which give
a surface Y with a map Y → M as desired. One can check from the construction of Y in Proposition 5.4
that Y → Spec(R) is a family of twisted curves, as desired. □

6. An example: the case M = [A1/Gm].

In this section we study a particular example: the case where the target stack is Θ := [A1/Gm]. Recall
that a morphism X → Θ from a scheme X is equivalent to the data of a line bundle L on X, and a section
OX → L. We give three examples of degenerations of maps to Θ. In each one of these examples, we will
have a DVR R with generic point η = Spec(K(R)) and closed point 0. We will start from a curve Cη over
η, with a map fη : Cη → Θ and we will try to extend it to Spec(R).

6.1. Example 1: smooth generic fiber. Assume that we have a smooth genus 2 curve Cη over η, the
generic point of Spec(R), with a marked K(R)-point p. This corresponds to a section OCη

→ OCη
(p), so to

a morphism Cη → Θ. We want to extend this curve over Spec(R).
As the good moduli space of Θ is the point, we first extend the stable map Cη → Spec(K(R)) to Spec(R)

(which will also be the Kontsevich limit of the map Cη → Spec(k)). Let CR be such extension, and assume
that the special fiber C0 := (CR)0 is nodal. We aim at extending the map fη : Cη → Θ to a stacky
modification of CR. The first step of Theorem 5.1 is to extend the morphism fη to the generic points of C0.

In the proof of Theorem 5.1 we use Theorem 3.9, however in this case it is easier. We can take a proper
closed subscheme Dη ⊆ Cη containing p such that on its complement the line bundle OCη

(p) is trivial. Let D
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be the closure of Dη. The subscheme D will not contain the generic points of C0, and the map OCη
→ OCη

(p)

is isomorphic to OCη

·1−→ OCη
on the complement of Dη, so it extends to the complement of D. Therefore,

at the end of this step we have an extension of the map fη to a map defined the generic points of C0, that
then spreads out to an extension of the map defined over U := CR ∖ {p1, ..., pn} for a finite set of closed
points pi.

Observe that there are multiple extensions one can pick. Indeed, for example, if Γ is an irreducible
component of C0 which is Cartier in CR, we can compose any map OU → L with OU → L → L(nΓ) for
every n > 0. It is not hard to check, however, that this is the only freedom we have. Namely, once we
fix CR, two extensions of fη that are isomorphic in codimension one are isomorphic. And among all these
extensions we have a ”minimal” one: the one whose section does not vanish along any of the generic points
of the fibers. We will choose this limit in the remaining part of this example.

We now have to extend the morphism U → Θ to CR, up to replacing some of the nodes with twisted
nodes. For this step, it is useful to compare our limit with the corresponding limit in Mg,1. Indeed, there

are two cases. We denote by (CDM , pDM ) the limit of (Cη, p) in Mg,1. If CDM is stable, then C0 = CDM

and the line bundle with section is the Cartier divisor given by pDM . If however CDM is not stable, since
instead (CDM , pDM ) is stable, the marked point is on a destabilizing P1. In this case, the curve C0 (which
is obtained by contracting the destabilizing P1 to a point) will have a twisted node n. Indeed, there is no
principal sheaf of ideals I on k[[x, y]]/xy such that k[[x, y]]/(xy, I) ∼= k. So on an étale chart around n, we
will have a multisection with the action of µn acting on the fibers of the map to Spec(R). Moreover, the
degeneration of OCη

(p) and its section will be a line bundle L on C0 with a section vanishing only at the
twisted node.

Figure: The zero locus (in red) of s ∈ H0(L) on an étale chart around a node with a µ2-stabilizer. In this
picture, the singularity is Spec(k[[x, y]]µ2) with (x, y) 7→ (−x,−y) and V (s) = {x− y = 0}.

6.2. Example 2: nodal but stable generic fiber. Assume now that the generic fiber is as the special fiber
of Section 6.1. Namely, assume that we have a twisted curve C whose coarse moduli space is a stable curve
(i.e. it has no destabilizing P1). Assume also that we have a line bundle L with a section that vanishes only
along a stacky node n, and assume that C ∖ {n} is connected. Let k be the the order of the automorphism
group of n.

Let C ′ the curve obtained by separating the node n. Namely, C ′ is a partial normalization of C which
is isomorphic to C away from n and isomorphic to its normalization in a neighbourhood of n. Let also
i1 : n1 → C ′ and i2 : n2 → C ′ be the inclusions of the nodal points in C ′, i.e. the points lying over the node
n of C. Then C is isomorphic to the push-out C ′ ∪n (n1 ∪ n2). This implies that the data of a map C → Θ
is equivalent to the data of a map f ′ : C ′ → Θ, and an isomorphism f ′ ◦ i1 → f ′ ◦ i2.

Consider then the product family f ′ : C ′ × A1 → A1, let η = Spec(k(t)) and assume that we have a
morphism Cη → Θ given by a morphism C ′

η → Θ and the isomorphism (f ′ ◦ i1)η → (f ′ ◦ i2)η given by
tm ∈ Gm(k(t)) for m > 0. This data is equivalent to the data of a line bundle Lη on C ′

η whose fiber

Lη,n1
≃ k(t) over n1 is glued to the fiber Lη,n2

≃ k(t) over n2 via the isomorphism k(t)
·tm→ k(t).
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At this step we have to choose a d such that the graded ring k[t] (graded by the Gm-action) is generated
in degree at most d. Assume also that the stabilizer at p has order k. Then, following the procedure of
Theorem 5.1, we need to perform a (m, d)-blow up on one of the branches of the node. The resulting
exceptional component will have an exceptional (stacky) P1 with two stacky points p1 and p2: the point p1
has automorphism group µk. The action is faithful, and assume that µk acts on a generator y of the stalk
at p1 by ξ ∗ y = ξ−1y. Whereas p2 (which smooths along this degeneration) has automorphism group µk′d

where k′ = k
mcd(k,d−1) . The zero of the section is still along the twisted node, and along the P1. The degree

of our line bundle along P1 is 1
dk . It can be understood as the line bundle of the divisor 1

dk [0]−
1
k [0] +

1
k [∞]

on a root-stack of P1.

Figure: quotient of the (m, d)-blow up. In red the zero locus of the section.

6.3. Example 3: nodal unstable generic fiber. For this last example, we assume that the generic fiber
is as the special fiber of Section 6.2.

Namely, assume that we have a twisted curve C whose coarse moduli space has a single destabilizing
P1. Let P1 be the stacky-P1 on C that is destabilizing, with n1 and n2 the two nodes with automorphisms
groups µk and µk′d respectively, where k′ = k

mcd(k,d−1) . Assume that we have a line bundle L with a section

that vanishes only along a stacky node n1 ∈ P1, and along P1. Assume that the restriction of L to P1 is
OP1( 1

dk [0]−
1
k [0] +

1
k [∞]), and that C ∖ {n1} is connected. Let C ′ ∪P1 be the curve obtained by separating

the nodes n1 and n2. Namely, C ′ ∪ P1 is a partial normalization of C which is isomorphic to C away from
n1 and n2, and isomorphic to its normalization in a neighbourhood of n1 and n2. Let also i1 : n1 → C ′,
i2 : n2 → C ′ and j1 : n1 → P1, j2 : n2 → P1 be the inclusions of the nodal points in C ′ and P1. The
following picture helps keeping track of the notations

Figure: the normalization of C ′.
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As before C is a push-out of a diagram, that is C = (C ′ ⊔ P1) ∪(n1∪n1)∪(n2∪n2) (n1 ∪ n2). Therefore the

data of a map C → Θ is equivalent to two maps f ′ : C ′ → Θ and g′ : P1 → Θ, and two isomorphisms
f ′ ◦ i1 → f ′ ◦ i2 and g′ ◦ j1 → g′ ◦ j2.

Consider then the product family f ′ : (C ′ ∪ P1) × A1 → A1, let η = Spec(k(t)) and assume that we
have a morphism Cη → Θ given by two morphisms f ′ : Cη → Θ and g′ : P1

η → Θ, and two isomorphism
(f ′ ◦ i1)η → (f ′ ◦ i2)η and (g′ ◦ j1)η → (g′ ◦ j2)η given by tm1 and tm2 ∈ Gm(k(t)).

Now, the limit we will obtain will be easier than the one in Section 6.2:
Claim. We can assume that m1 ≥ 0 and m2 = 0.
Assuming the claim, we can perform an (m2, d)-blow up along n2, so the degeneration of P1 along Spec(R)

will have two irreducible components: one is the exceptional divisor E of the (m2, d)-blow-up, and another
component D. One can check (for example, using that the degree of L on E is 1

kd and Proposition 2.7) that

we can use Theorem 5.6 to contract D. So the limit will have a single destabilizing P1.

Figure: Contraction of Theorem 5.6.

Proof of the Claim. The map P1 → Θ corresponds to the line bundle G := OP1( 1
dk [0]−

1
k [0] +

1
k [∞]) on P1

with the 0 section. We show that there is an automorphism of (P1,G) that acts via t−m2 on the fiber of G
at n2 and by δ ≫ 0 on the fiber of G at n1.

First, we can act on Gm(k(t)) on the fibers of the line bundle. This will allow us to assume m2 = 0: if we
multiply each fiber by πm2 then the gluing map becomes 1. To introduce the next automorphism, we first
present its analogue on OP1(1) (i.e. in the case where there is no stacky structure).

We can construct the total space of OP1(1) as the complement of the locus (a, b) = (0, 0) in [A3/Gm],
where the action of Gm is with weights (1, 1, 1). Our automorphism will send (a, b, v) 7→ (tδa, b, tδv). This
restricts to P1 (the section v = 0) to be the multiplication by tδ on one chart of P1, and by its inverse on
the other chart. When a = 0, the action on the fibers of the line bundle is the multiplication by tδ, and
when b = 0 it is the multiplication by 1 (as (tδa, 0, tδc) is in the same Gm-orbit as (a, 0, v)). We will use an
analogue of this action on P1 to multiply the fibers of the line bundle by tδ for δ ≫ 0 on n1, and by 1 on n2.

Recall that P1 is constructed as follows. First, we performed an (m, d)-blow up. The exceptional D′ is the
d-th root stack of P1 at [0]. Then we consider the µk-action on D′ by scaling, and we extend it to an action
on OD′([0] 1d ). The quotient is the root stack of P1 at [∞] with root k, and at [0] with root dk. The descended

line bundle is OD([0]
1
kd ) (it is the quotient of the line bundle I of Lemma 4.2, restricted to the exceptional).

We denote this root stack by D, and we tensor the descended line bundle by OD(− 1
k [0]+

1
k [∞]) (this is the line

bundle that does not extend in Lemma 4.2, restricted to the exceptional). Our final curve P1 is the relative
coarse moduli space of P1 → BGm, where the map is given by the line bundle OD(

1
dk [0]−

1
k [0] +

1
k [∞]). We
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will construct an automorphism of the line bundle OD(
1
dk [0]) which, when tensored by OD(− 1

k [0] +
1
k [∞]),

will descend to the desired automorphism on the corresponding line bundle on P1.
We can construct our automorphism étale locally. Namely, we construct a µk-invariant automorphism on

OD′([0] 1d ). The total space of this line bundle is still a quotient of A3
a,b,v ∖ {(a, b) = (0, 0)} by Gm, where

the action has weights (d, 1, 1). As before, we choose an automorphism of the form

(a, b, v) 7→ (tdkδa, b, tkδv) for δ ∈ Z.

The action on the fiber b = 0 is trivial, and on the fiber b = 0 is by the multiplication by tkδ. A generator ξ
of the group µk sends

ξ ∗ (a, b, v) 7→ (ξa, b, ξ ∗ v)
so the automorphism above commutes with this action (as dkδ is a multiple of k). □
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