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Abstract. This paper continues the study initiated in [ISZ25] on the moduli of surfaces
admitting lc-trivial fibrations. Using the techniques developed in [ISZ25], we
(1) provide a classification of the surfaces appearing on the boundary of the KSBA-

moduli space of elliptic surfaces with a bisection;
(2) recover the results of a series of papers on the moduli stacks of elliptic surfaces

with a section [AB22, Inc20, Bru15].
Notably, our proof of (2) avoids the use of explicit steps of an MMP, such as the La
Nave flip from [LN02], which plays a central role in [AB22, Inc20]. As an application,
we compactify the moduli stack of hyperelliptic K3 surfaces.
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1. Introduction

In [ISZ25], we studied the KSBA moduli stack of fibered Calabi–Yau pairs. Elliptic
surfaces with a fiberwise involution fit naturally into this framework after taking the
quotient by the involution, which produces a fibration in log Calabi–Yau curves. In the
present paper, we build on those results to analyze the KSBA compactification of certain
moduli stacks of elliptic surfaces. Specifically, we consider the KSBA moduli of pairs
(X, ϵ1R + ϵ2F ) where:

(1) X is a projective surface which admits a fibration f : X → C whose fibers are
integral genus-one nodal curves, with general fiber smooth and with singular fibers
marked as F ;

(2) X carries a fiberwise involution whose fixed locus is a horizontal divisor R; and
(3) the pair (X, ϵ1R + ϵ2F ) is KSBA-stable for 0 < ϵ1 ≪ ϵ2 ≪ 1.

The key reduction of this paper is to take the quotient X → Y by the fiberwise
involution, which allows us to transfer the KSBA analysis from elliptic surfaces to log
Calabi–Yau fibrations. The resulting surface Y carries a natural divisor RY ⊆ Y recording
the ramification, and the induced fibration

fY : (Y, 1
2
RY ) → C
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forms a fibered log Calabi–Yau pair. This allows us to apply the results of [ISZ25] to
study the original pairs (X, ϵ1R + ϵ2F ).

We begin by analyzing such pairs in full generality, without imposing additional hy-
potheses. Our main results provide a classification of the surfaces that occur on the
boundary of the KSBA moduli space that generically parametrizes pairs (X, ϵ1R + ϵ2F )

as above.

Theorem 1.1. Let MKSBA

ell,2 (ϵ1, ϵ2) be the closure of the locus of elliptic surfaces as above,
and let (X, ϵ1R + ϵ2F ) be a pair appearing on the boundary of this moduli space. Then:

(1) there is a morphism X → C to a nodal curve, with pure 1-dimensional fibers,
(2) the possible singularities of (X, ϵ1R+ϵ2F ) over the smooth locus of C are classified

in Theorems 3.2 and 3.3, and
(3) the possible fibers of (X, ϵ1R + ϵ2F ) → C are classified in Theorems 3.2, 3.3 and

3.4.

Having an involution as above is closely related to the existence of a bisection for
f : X → C. Indeed, any elliptic surface X as above admits a bisection, obtained as the
preimage of a generic section of the ruled surface Y → C. Conversely, if f : X → C

is an elliptic surface with integral nodal fibers and admitting a bisection D ⊆ X, then
f∗OX(D) is base-point free, and the induced morphism

X −→ Y := ProjC
(
Sym(f∗OX(D))

)
realizes X as a double cover of Y . In particular, X admits a fiberwise involution. In
other words, the conditions above are equivalent to requiring that X carry a bisection.

Our second main result, therefore, concerns the special case in which X → C admits
a section rather than merely a bisection. Let 0 < ϵ ≪ 1 be a sufficiently small rational
number, and let

a⃗ = (a1, . . . , an), 0 < ai ≤ 1.

Consider a Weierstrass fibration

(Xη, ϵSη + a⃗Fη) → Cη

over the generic point η of the spectrum of a DVR A, whose fibers are at worst irreducible
nodal curves, and such that the pair (Xη, ϵSη + a⃗Fη) is KSBA-stable. Here:

• Sη is a section of Xη → Cη;
• pη = pη,1 + · · ·+ pη,n is a sum of marked points on Cη, and

a⃗pη :=
∑n

i=1 aipη,i;

• Fη = Fη,1 + · · ·+ Fη,n is the corresponding sum of fibers, and

a⃗Fη :=
∑n

i=1 aiFη,i.

Let Mη denote the moduli part of the canonical bundle formula for Xη → Cη.

Theorem 1.2. The following statements hold:

(1) After a finite base change of SpecA, the KSBA-stable extension (X, ϵS + a⃗F ) of
(Xη, ϵSη + a⃗Fη) over SpecA admits a fibration over a generalized pair

(X, ϵS + a⃗F )
π−→ (C, a⃗p+M)

g−→ SpecA,

with g a family of nodal pointed curves with KC + a⃗p + M ample, and whose
generic fiber is (Cη, a⃗pη +Mη), and such that f ∗(KC +M+a⃗p) ∼Q KX + a⃗F .
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(2) The family C → SpecA is the coarse space of a family of twisted curves C →
SpecA equipped with a fibration (X ,S) → C, whose geometric fibers (Xp,Sp) are
Weierstrass fibrations of the form(

y2x = x3 + axz2 + bz3, [0, 1, 0]
)
,

and such that the induced morphism on coarse spaces is (X ,S) → C giving
(X,S) → C.

(3) The fibers of (X,S) → C over codimension-one points of C have at worst nodal
singularities.

The following diagram summarizes the situation:

(Xη, ϵSη + a⃗Fη) (X, ϵS + a⃗F ) (X , ϵS + a⃗F)

(Cη, a⃗pη +M) (C, a⃗p+M) C

η SpecA

cms

Weierstrass

cms

Moduli spaces of elliptic surfaces with a section have been extensively studied, ranging
from the GIT approach [Mir81], to twisted stable maps [AV02], and to KSBA theory
[LN02, AB19, Inc20, AB21, AB23, ABE22, BFH+24]. Our contribution is to provide
an alternative—and in fact significantly streamlined—proof of certain results in [AB23,
AB22, Inc20]. The stable reduction arguments in loc. cit. rely on an explicit MMP and,
in particular, on an explicit flip—the La Nave flip [LN02]—which renders parts of the
analysis rather technical. In contrast, the present work avoids the La Nave flip entirely
by invoking general results from [ISZ25], especially [ISZ25, Theorem 1.2], together with
the canonical bundle formula. In Section §4, we use the preceding theorem to give a
different proof of [Inc20, Theorem 1.2] and [AB22, Theorem 1.1(a),(b)], as well as [Bru15,
Theorem 9.1.4], where a related statement is established for generic a⃗.

Moduli of hyperelliptic K3 surfaces. A polarized K3 surface (X,L) of degree (L2) =

2g − 2 is called hyperelliptic if L is globally generated but not very ample. By [May72],
for a polarized K3 surface (X,L), if L is not very ample, then

(1) either (X,L) is hyperelliptic; or
(2) (X,L) is unigonal, i.e. X admits an elliptic fibration f : X → P1 with a section

E, and L ∼ E + f ∗OP1(g).

The hyperelliptic and unigonal K3 surfaces form two Noether-Lefschetz divisors in the
moduli of polarized K3 surfaces, called the hyperelliptic divisor and unigonal divisor re-
spectively. As an application, our main results compactify these two divisors, and describe
the objects parametrized by the boundaries explicitly. As the moduli of unigonal K3 sur-
faces is studied in [Bru15, AB23], we only state the result concerning the hyperelliptic
K3 surfaces; see Corollary 4.16.

Theorem 1.3 (Compactification of the moduli of hyperelliptic K3 surfaces). For any
genus g ≥ 3, there exists a Deligne–Mumford stack MKSBA

ell,2 (ϵ1, ϵ2), whose normalization
of this stack is a compactification of the normalization of the hyperelliptic divisor Dg

2,0

in the moduli stack Fg of polarized K3 surfaces of genus g. If a pair appears on the
boundary of MKSBA

ell,2 (ϵ1, ϵ2), it is described in Theorems 3.1, 3.2, 3.3, and 3.4.



4 GIOVANNI INCHIOSTRO AND JUNYAN ZHAO

Outline of the paper. In Section §2, we summarize the results of [ISZ25] that will be
used throughout the paper. Section §3 analyzes the double covers of the components
of KSBA-stable surface pairs fibered in log Calabi–Yau curves over a nodal base, and
classifies the fibers over the nodes. We then combine these ingredients to describe the
KSBA moduli stack of elliptic surfaces with an unmarked bisection. Section §4 system-
atically studies the hyperelliptic divisor in the moduli stack of polarized K3 surfaces and
the corresponding moduli stack of lattice-polarized K3 surfaces, and proves Theorem 1.3.
Finally, in Section §5 we use the results of [ISZ25] to recover the descriptions of the KSBA
moduli stacks of elliptic surfaces with a marked section obtained in [AB22, Inc20, Bru15].

• We work over an algebraically closed field k of characteristic 0. The reader may
assume k = C.

• We say that Y → (X, 1
2
D) is a double cover if Y → X is a double cover branched

along the divisor D.
• The coarse space of a Deligne–Mumford (abbreviated DM) stack X is its coarse

moduli space X → X (cf. [Sta25, Tag 04UX]). We drop the word “moduli” since
many stacks we consider need not have a modular interpretation.

• A “big open” subset of an algebraic stack X is a Zariski open subset containing
all the codimension one points.

• Throughout the paper, we denote by A a DVR, since the letter R is reserved for
the ramification divisor. For any DVR A, let η (resp. 0) be the generic (resp.
closed) point of SpecA. If f : X → SpecA is an object over SpecA (e.g. a family
of pairs), we denote by Xη (resp. X0) the generic (resp. special) fiber of f .

• Let A be a DVR with generic point η. For an object Xη → η, an extension of
Xη is an object X → SpecA such that the fiber product X ×A η is isomorphic
to Xη. This explains the previous convention. A limit of Xη is the special fiber
X0 of an extension X → SpecA. The extensions (resp. limits) of interest are the
KSBA–stable extensions (resp. limits), which are unique.

For the reader’s convenience, we collect here the notations most frequently used through-
out the paper. For the first five lines, when we write “KSBA-moduli stack” of a certain
class of objects C (for example, rational Weierstrass fibrations or K3 Weierstrass fibra-
tions), we mean the closure in the KSBA-moduli space of the locus parametrizing objects
in C.

Notation Definition/Description

MKSBA
(ϵ1, ϵ2) KSBA-moduli stack of surface pairs fibered in log-canonical pairs

of the form
(
P1, 1

2
(p1 + · · ·+ p4)

)
WKSBA

rat (ϵ1, ϵ2) KSBA-moduli stack of rational Weierstrass fibrations

WKSBA

K3 (ϵ1, ϵ2) KSBA-moduli stack of K3 Weierstrass fibrations

WKSBA
(ϵ1, ϵ2) KSBA-moduli stack of Weierstrass fibrations with κ = 1

MKSBA

ell,2 (ϵ1, ϵ2) KSBA-moduli stack of elliptic surfaces with a unmarked bi-section

PGIT
1 GIT moduli stack

[
|OP1(4)|ss/PGL(2)

]
of pairs (P1, p1 + · · ·+ p4)

P1 an enlargement of PGIT
1 , see [ISZ25, Section 2.1]
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SpecA Spectrum of a DVR with generic point η and special point 0

FΛ moduli stack of lattice Λ-polarized K3 surfaces

Acknowledgments. We thank Dori Bejleri, Yuchen Liu, Luca Schaffler and Roberto
Svaldi for helpful conversations. GI was supported by AMS-Simons travel grant and by
the NSF grant DMS-2502104. JZ was supported by AMS-Simons travel grant.

2. KSBA-moduli stacks for certain ruled surfaces

In this section, we summarize the structural results and relevant machinery developed
in [ISZ25] that will be used in this paper, for the reader’s convenience. We refer the
reader to [ISZ25, §1, Introduction] for a more detailed overview.

Definition 2.1. A pair (X,D) is called KSBA-stable if
(1) it is semi-log canonical (abbv. slc) and X is connected;
(2) KX +D is an ample Q-Cartier Q-divisor.

The volume of a KSBA-stable pair (X,D) is vol(X,D) = (KX +D)dimX .

Theorem 2.2 (cf. [Kol23, Theorem 8.15]). Fix v ∈ Q>0 and some rational numbers
ci ∈ [0, 1]Q. Then there is a proper Deligne-Mumford stack MKSBA

ci,v
, whose closed points

parametrize KSBA-stable surface pairs (X,
∑
ciDi) with volume (KX +

∑
ciDi)

2 = v,
where each Di is an effective Z-divisor.

Consider two-dimensional log pairs (Y, 1
2
R), where Y is a proper surface and R is a

Weil divisor, that are endowed with a fibration

π :
(
Y, 1

2
R
)
−→ C

to a curve whose fibers are one-dimensional log Calabi–Yau pairs of the form (P1, 1
2
(p1 +

· · ·+ p4)), satisfying that
(a) the divisor R cuts 4 distinct points on a general fiber of π;
(b) denoting by F the sum of the fibers of π meeting R in fewer than 4 points, the

pair
(
Y, (1

2
+ ϵ1)R + ϵ2F

)
is KSBA-stable for every 0 < ϵ1 ≪ ϵ2 ≪ 1.

We now recall the main result of [ISZ25] for the case n = 1 in loc. cit., dividing it into
two parts.

Theorem 2.3 (cf. [ISZ25, Theorem 1.1]). For 0 < ϵ1 ≪ ϵ2 ≪ 1, consider the closure of
the locus of surface pairs (Y, (1

2
+ ϵ1)R+ ϵ2F ) satisfying conditions (a)-(b) as above, with

all the fibers of π being log-canonical, denoted by MKSBA
(ϵ1, ϵ2). Then MKSBA

(ϵ1, ϵ2)

parametrizes KSBA-stable pairs (
Y0, (

1
2
+ ϵ1)R0 + ϵ2F0

)
,

where
• Y0 is a demi-normal surface which admits a morphism g0 : Y0 → C0 to a (possibly

reducible) nodal curve with equi-dimensional fibers;
• R0 is a divisor relatively ample over C0 such that g0|R0 : R0 → C0 is of degree 4,

with the map R0 → C0 possibly not finite; and
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⇌
Figure 1. Surfaces of different types

• F0 is a divisor whose support consists of fibers F0,i of g0 : Y0 → C0 such that
R0|F0,i

is not four distinct points.

The map R0 → C0 is possibly not finite as it could contain some fiber components of
Y0 → C0.

Theorem 2.4 (cf. [ISZ25, Propositions 4.3, 4.4, and 4.6]). With notation as above, let G
be an irreducible component of C0, and let Gn → G denote its normalization. Then there
exists a smooth orbifold curve Gn with coarse space Gn such that the reduced structure of
Y |Gn is the coarse moduli space of one of the following (see Figure 1):

(1) a projective bundle PGn(V) over Gn;
(2) a weighted blow-up of the surface PGn(V);
(3) the gluing of a surface PE(V) ruled over a smooth, possibly non-connected orbifold

curve E with at most two connected components, glued along an involution E → E
acting transitively on the connected components of E .

Remark 2.5. We refer to surfaces in the classes (1), (2), and (3) in Theorem 2.4 as
being of type I, II, and III, respectively. Surfaces of type I and type II differ only over
the nodal locus of C0. In particular, a surface of type II, when restricted to G ∩ Csm

0 , is
the coarse moduli space of a projective bundle as a surface of type I.

Corollary 2.6. Let G be a component of Cst, and suppose that Y |G is a surface of type I
or II. Then the morphism Y |G → G is a projective bundle over G ∩ Csm.

Proof. It follows from the results in [ISZ25] that for the surface Y |G, the only stacky (i.e.
nontrivial orbifold) behavior arises over the nodal locus Csing. Over the smooth locus
G ∩ Csm, every fiber is P1, and hence it is a projective bundle. □

Before stating the next result, we briefly outline the strategy used to prove the pre-
vious results. Since the moduli stack MKSBA

(ϵ1, ϵ2) is separated and every object it
parametrizes is obtained as a degeneration over the spectrum of a DVR A of a general
pair

(Yη, (
1
2
+ ϵ1)Rη + ϵ2Fη),

one may instead start with such a general pair over the generic point η ∈ SpecA and
recover its unique KSBA-stable limit over SpecA. This is carried out in two steps:

(1) Using stable quasimaps [DLI24] one constructs an extension(
Ytw, (1

2
+ ϵ1)Rtw + ϵ2F tw

)
−→ SpecA

as a DM stack, together with a morphism to a family of twisted curves

Ctw → SpecA.
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This fits into the diagram(
Ytw, (1

2
+ ϵ1)Rtw + ϵ2F tw

)
(Ctw,Mtw)

SpecA

π

f g

where Mtw is the moduli part of the canonical bundle formula for the lc-trivial
fibration

(Ytw, 1
2
Rtw) → Ctw.

Every geometric fiber of π is a log Calabi–Yau pair parametrized by the stack P1

[ISZ25, §2.1, Notation], an enlargement of the GIT moduli stack PGIT
1 of pairs

(P1, 1
2
(p1 + · · ·+ p4)) with GIT semistable p1 + · · ·+ p4.

(2) One then runs the relative MMP with scaling for the coarse space of the surface
generalized pair

(Ctw,Mtw) → SpecA,

and lifts this MMP to a sequence of birational contractions of the coarse space of
the threefold pair using [ISZ25, Theorem 1.2](

Ytw, (1
2
+ ϵ1)Rtw + ϵ2F tw

)
→ SpecA.

Each step of the surface MMP

(C(i),M(i)) −→ (C(i+1),M(i+1)),

contracts a rational tail G of C(i)
0 , and there exists a birational contraction(

Y (i), (1
2
+ ϵ1)R

(i) + ϵ2F
(i)
)
99K

(
Y (i+1), (1

2
+ ϵ1)R

(i+1) + ϵ2F
(i+1)

)
such that Y (i+1) is fibered over C(i+1), and M(i+1) is the moduli part of the canoni-
cal bundle formula applied to (Y (i+1), 1

2
R(i+1)) → C(i+1). Moreover, Y (i) 99K Y (i+1)

is an isomorphism over C(i) \G. After finitely many steps, one obtains a relative
log minimal model (Cst,M st) → SpecA, and the corresponding threefold pair
(Y st, (1

2
+ ϵ1)R

st + ϵ2F
st) → SpecA is KSBA-stable.

(3) Finally one uses that the threefold Y (i) admits a “ruled model”: a birational model
Y (i) 99K Z(i) such that Z(i) is easier to describe than Y (i). To obtain our main
results we study the birational transformations relating Z(i) and Y (i).

Corollary 2.7. With the notation as in Theorem 2.3, let p ∈ Cst be either

• a node, or
• a smooth point of Cst, except for finitely many such points.

Then, locally near p, the family (Y st, Rst) −→ (p ∈ Cst) is the coarse space of the pullback
of the universal family (Y ,R) −→ (p ∈ C) along a stable quasimap from C to P1. In
particular, the fiber (Yst

p , Rst
p ) is such that Rst

p is supported over four distinct points.

Proof. By the construction of the birational contractions, the two families of curves Ctw

and Cst are isomorphic in a neighborhood of p, and likewise the pairs (Y tw, Rtw) and
(Y st, Rst) are isomorphic in a neighborhood of the fiber over p. The final assertion follows
from the stability conditions for stable quasimaps; see [ISZ25, Definition 2.1]. □

We conclude this section with the following technical remark, which will be used several
times later in the paper. Readers who prefer to focus on the main ideas may wish to skip
it on a first reading.
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Remark 2.8. Recall that the nodal curves parametrized by P1 are twisted curves, i.e.
Deligne–Mumford stacks rather than projective schemes; see [ISZ25, §2.1]. However, for
the purpose of determining KSBA-stable limits, one may replace these twisted curves by
their coarse moduli spaces, effectively ignoring the twisted nodes. More precisely, since
all of our results concern the coarse spaces of stacky families of surfaces or curves, we
will always take coarse spaces in two steps. Given a family (Z,D) → C fibered in pairs
parametrized by P1, where C is a twisted curve, we first take the relative coarse moduli
space

Z −→ Zrel

of Z → C. This replaces each fiber containing a twisted dumbbell curve by the corre-
sponding (untwisted) dumbbell curve, i.e. it replaces every twisted curve parametrized
by P1 with its coarse space. We then take the absolute coarse moduli space of Zrel; this
agrees with taking the coarse space of Z directly. Equivalently, one may describe this
procedure using [ISZ25, Section 2.1]. There exists a moduli space PCY

1 parametrizing
pairs (C, p1 + · · · + p4) that arise as the coarse moduli spaces of curves in P1. Con-
cretely, such pairs satisfy C ≃ P1 or C is a nodal union of two copies of P1, the pair
(C, 1

2
(p1 + · · ·+ p4)) is slc, and the line bundle ωC(

1
2
(p1 + · · ·+ p4)) is trivial. There is a

natural morphism
P1 −→ PCY

1

sending each twisted curve to its coarse moduli space. Thus, given an open substack C
of a twisted curve and a morphism ϕ : C → P1, let Z → C be the associated family of
twisted curves. To compute the coarse moduli space of Z, one may instead consider the
composition

C −→ P1 −→ PCY
1 ,

and replace C by the relative coarse moduli space C → C ′ of the induced morphism to
PCY

1 . The resulting pulled-back family Z ′ → C ′ has the property that its coarse moduli
space agrees with the coarse moduli space of Z.

In summary, for our purposes, we may safely ignore twisted nodes and postcompose all
morphisms C → P1 with P1 → PCY

1 . While working with P1 is convenient for proving
(3), once this result is established one may work directly with PCY

1 .

3. Moduli of elliptic surfaces with a bisection

Let MKSBA

ell,2 (ϵ1, ϵ2) denote the irreducible closed substack of the KSBA moduli stack
that generically parametrizes pairs (X, ϵ1R + ϵ2F ) with 0 < ϵ1 ≪ ϵ2 ≪ 1, where:

• f : X → C is a smooth elliptic surface over a smooth curve, with no sections, but
admitting a (non-unique) bisection B;

• R ⊆ X is the ramification divisor of the quotient X → Y induced by the linear
system |B|;

• f has at worst irreducible nodal fibers, and F denotes the sum of all nodal fibers;
• the Kodaira dimension satisfies κ(X) ≥ 0, ensuring that the moduli stack is non-

empty.
The main goal of this section is to establish the following structure theorem for pairs

parametrized by the moduli stack, together with a complete classification of the singular
fibers and the corresponding surface singularities.

Theorem 3.1. Any pair (X, ϵ1R+ϵ2F ) parametrized by MKSBA

ell,2 (ϵ1, ϵ2) admits a fibration

f : (X, ϵ1R + ϵ2F ) −→ C
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to a nodal curve C. Moreover, SuppF is the union of some singular f -fibers, and for
any irreducible component G of C with normalization Gν, the surface X|Gν is the coarse
space of one of the following:

(1) a normal elliptic surface XG → G; or
(2) a non-normal fibered surface XG → G whose general fiber is a banana curve.

When we say elliptic surface, we mean a surface X with a morphism X → C whose
generic fiber is a smooth curve of genus one.

The main idea to prove Theorem 3.1 is to reduce to the results in [ISZ25] as follows.
Let f : X → C be a normal elliptic fibration over a smooth curve whose singular fibers
are all irreducible curves with at worse nodal singularities, and let B ⊆ X be a bisection.
Then the linear system |B| is base-point free over C, and therefore induces a double cover

π : X −→ Y := ProjC
⊕
m≥0

Symm f∗OX(B)

over C, where:
(1) Every π-fiber is isomorphic to P1, and fiberwise the map is the standard 2:1 cover

from an elliptic curve to P1 determined by a g12.
(2) The image of B, denoted S, is a section of g : Y → C.
(3) The ramification divisor R ⊆ Y (resp. RX ⊆ X) of π is a 4-section of g (resp. of

f), and they satisfy the relation π∗R = 2RX .
(4) The pair (X, 2aRX +bF ) is KSBA-stable if and only if the pair

(
Y, (1

2
+a)R+bF

)
is KSBA-stable, where 0 < a, b ≤ 1 and F are some marked fibers of f or g.

The other results of this section regard the singularities of the pairs appearing in
MKSBA

ell,2 (ϵ1, ϵ2):

Theorem 3.2 (Singularities over the Smooth Locus I). With the notation as in Theorem
3.1, assume that the surface XGν is normal.

• If a singular fiber of XG → G over G∩Csm is reduced, then both the fiber and the
corresponding singularity of XG appear in Table 2.

• If Fp is a non-reduced fiber of XG → G over a point p ∈ G ∩ Csm, then Fp has
multiplicity 2 and its reduced structure satisfies (Fp)red ≃ P1. In this case, the
corresponding singularity of XG is of type A2k−1 (with k ≤ 4), or of type Dm, or
of type E7.

Theorem 3.3 (Singularities over smooth locus II). With the notation as above, assume
that the surface XGν is non-normal.

• If a singular fiber of XG → G over G ∩Csm is reduced, then it is either a banana
curve, or a k-cycle for k = 3, 4.

• If Fp is a non-reduced fiber of XG → G over a point p ∈ G ∩ Csm, then Fp

has multiplicity 2 and its reduced structure is a dumbbell curve. In this case, the
corresponding singularity of XG is of type A2k−1 (with k ≤ 2), or of type Dm, or
of type E7.

Theorem 3.4 (Singular fibers over nodes). With the notation as above, a fiber of XG → G

over G ∩ Csing is one of the following:
• a reduced curve which is either an elliptic curve or a banana curve, or
• a non-reduced curve of multiplicity m ∈ {2, 3, 4, 6, 8} whose reduced structure is
P1, or
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• a non-reduced curve of multiplicity 2 whose reduced structure is an elliptic curve,
or

• a non-reduced curve whose reduced structure is a banana curve, with multiplicities
either (1, 2) or (2, 2) or (2, 4) or (4, 4) on its two components.

Remark 3.5. The preceding results should be understood as holding only in one direc-
tion. More precisely, we do not claim that all singularities listed above actually occur
on surface pairs parametrized by MKSBA

ell,2 (ϵ1, ϵ2). Rather, our claim is that any singular-
ity appearing on a surface pair in MKSBA

ell,2 (ϵ1, ϵ2) must be among those described in the
previous results.

We now outline the strategy for proving the theorems stated above. We begin by
recalling several results concerning KSBA-stable limits of surface pairs equipped with
a µ2-action; see Section §3.1. The proof of Theorem 3.1 follows immediately from the
results of [ISZ25], reviewed in Section §2, together with some preparatory analysis of
certain ramified covers of the surface pairs carried out in Section §3.1.

The classification of singular fibers requires more work. Theorem 3.4, which treats
singular fibers lying over the nodal locus of C, is proved in Section §3.3. The analysis
over the smooth locus of C is divided into two cases, according to whether the ramification
divisor contains a fiber; these are handled in Sections §3.4 and §3.5, and together, these
results complete the proof of Theorem 3.2 and Theorem 3.3.

3.1. Cyclic covers of KSBA-stable pairs. We now report two results on cyclic covers
which we will use later, many of which are probably known to experts.

Lemma 3.6. Let (X,D) → SpecA be a normal KSBA-stable family over the spectrum
of a DVR A. Then any automorphism of the generic fiber (Xη, Dη) extends uniquely to
an automorphism of (X,D) over SpecA.

Proof. This follows as the moduli stack MKSBA is separated. Indeed, let x ∈ MKSBA
(R)

the object corresponding to the family (X,D) → SpecA. As MKSBA is separated, the
inertia stack Aut(x) → SpecA is a proper algebraic space over SpecA, which is a scheme
finite over SpecA as MKSBA is Deligne-Mumford. Therefore, the assertion follows from
the valuative criterion of the properness of schemes. □

Corollary 3.7. Let (X,D) → SpecA be a KSBA-stable family with normal generic fiber
over the spectrum of a DVR A and τ be an automorphism of (X,D) over SpecA of order
m. Let

X Y

SpecA

π

be the quotient of X under the τ -action, DY be the a Q-divisor supported over the image
of D under π and such that for U ⊆ Y a big open in Y where DY is Cartier, we have

π∗(DY )|U = D|π−1(U).

Let finally R ⊆ Y be the divisorial part of the ramification locus. Then (Y, m−1
m
R+DY ) →

SpecA is KSBA-stable. In particular, R does not contain any component of Y0.

If D has no component fixed by τ , then one can take as DY the image of D by τ .
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Proof. By the assumptions, we have that Y is normal, KY + m−1
m
R+DY is Q-Cartier by

[AP12, Lemma 2.3], and

KX +D = π∗(KY + m−1
m
R +DY ), X0 = π∗Y0,

As (X,D) → SpecA is KSBA-stable, then by the inversion of adjunction, (X,D+X0) is
log canonical. By [KM98, Proposition 5.20], it follows that (Y, m−1

m
R+DY + Y0) is a log

canonical pair whose log canonical divisor is ample over SpecA. Therefore, components
of Y0 are not contained in SuppR, and (Y, m−1

m
R +DY ) → SpecA is KSBA-stable. □

We now record several results specific to our setting, which will be used later in the
paper.

Let (X0, ϵ1R0+ϵ2F0) be a KSBA-stable pair in MKSBA

ell,2 (ϵ1, ϵ2). Take a DVR A and take
a general smoothing (X, ϵ1RX + ϵ2FX) → SpecA of (X0, ϵ1R0+ ϵ2F0). Let (Y, (1

2
+ ϵ1)R+

ϵ2F ) → SpecA be the quotient induced by a bisection of the generic fiber Xη. Then by
Theorem 2.3 the threefold Y admits a morphism with purely 1-dimensional fibers to a
family of at worst nodal curves C → SpecA, whose generic fiber Cη is smooth.

Lemma 3.8. With the same notations as before, there exists a big open subscheme C◦ ⊆
C such that the ramification locus of X → Y over C◦ is divisorial, i.e. every irreducible
component has codimension 1, and is contained in (Y |C◦)sm. In particular, there exists a
line bundle L◦ on Y |C◦ such that R|C◦ is a section of (L◦)⊗2.

Proof. Since C → SpecA is a family of nodal curves with smooth geometric generic fiber,
it suffices to work over the smooth locus Csm of C → SpecA.

Let p ∈ Csm be a point. If the fiber of Y → C over p is P1, then in a neighborhood
U of p the morphism Y |U → U is a P1–fibration. By purity of the branch locus [Sta25,
Tag 0BMB], the ramification locus over U is divisorial and lies in (Y |U)sm.

Now assume the fiber of Y → C over p is a dumbbell curve, defined in Definition 3.11.
By Theorem 2.3, there exists an irreducible component G ⊆ Csm

0 such that Y |G → G is
a fibration whose general fiber is a dumbbell curve. We claim that the node of a general
fiber of Y |G → G is not contained in the branch locus.

Indeed, a double cover of a dumbbell curve Γ that is branched at the node together
with four additional points (two on each component) is never nodal; its normalization
acquires worse-than-nodal singularities at the preimage of the node. Since by assumption
X|G → G has generically at worst nodal singularities, the double cover cannot branch at
the node. Thus the branch locus avoids the nodes of fibers, and hence is contained in the
smooth locus of Y |G.

Combining the two cases gives the desired big open subset C◦. □

The following is a lemma which will be useful for the remaining part of the paper.

Lemma 3.9. Let X and X ′ be S2 varieties, and let f : X → C and f ′ : X ′ → C be
projective morphisms to a base scheme C with pure-dimensional fibers. Assume that
there is a birational map

π : X 99K X ′

over C which is an isomorphism over C◦ := C \ Z, where Z is a closed subscheme of
codimension ≥ 2. Suppose further that L and L′ are Q-Cartier Q-divisors on X and X ′,
respectively, which are relatively ample over C, and that

L|f−1(C◦) = L′|f ′−1(C◦)
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under the identification induced by π. Then X and X ′ are isomorphic over C, and under
this isomorphism L corresponds to L′.

Proof. Choose an integer r > 0 such that rL and rL′ are Cartier. For every integer m ≥ 0

set
Am := f∗OX(mrL), A′

m := f ′
∗OX′(mrL′).

Since mrL and mrL′ are relatively ample over C, the graded OC-algebras

A :=
⊕
m≥0

Am, A′ :=
⊕
m≥0

A′
m

are finitely generated, and we have isomorphisms

X ≃ ProjC(A), X ′ ≃ ProjC(A′),

with OProj(1) corresponding to rL and rL′, respectively. Over C◦, the birational map π

is an isomorphism, and by assumption

L|f−1(C◦) ≃ L′|f ′−1(C◦).

Hence for every m ≥ 0 we obtain an isomorphism of OC◦-modules

Am|C◦ ≃ A′
m|C◦ .

We may assume that C is affine. As codimX Z ≥ 2 and f has pure dimensional fibers,
and as

Γ(Am, C) = H0(X,mrL) = H0(X|C◦ ,mrL|C◦) = H0(X ′|C◦ ,mrL′|C◦) = Γ(A′
m, C),

the isomorphism over C◦ extends uniquely to an isomorphism Am
≃−−→ A′

m. These iso-
morphisms are compatible with the natural multiplication maps, and therefore assemble
to an isomorphism of graded OC-algebras A ≃ A′. Taking relative Proj over C then
gives the desired isomorphism X ≃ X, and under this isomorphism, the class of rL
corresponds to the class of rL′. Hence L corresponds to L′ as Q-Cartier Q-divisors. □

Corollary 3.10. In Lemma 3.8, one can take C◦ = Csm.

Proof. This follows from Lemma 3.9. Indeed, consider the double cover of Y |Csm branched
along R|Csm . By construction, the inverse image of R|Csm is relatively ample over Csm.
Hence the resulting double cover satisfies the hypotheses of Lemma 3.9, and must there-
fore be isomorphic to X over Csm. This shows that no further shrinking of the base is
necessary, so one may take C◦ = Csm. □

3.2. Classification of fibers on double covers: preparation. One of the main goals
of this section is to classify the singular fibers that appear by taking the double cover of
a surface pair (Y, 1

2
R) such that (Y, (1

2
+ ϵ1)R + ϵ2F ) is a surface pair in MKSBA

(ϵ1, ϵ2).
As preparation, we first classify certain ramified double covers of curves.

Definition 3.11. A dumbbell curve is the nodal union of two smooth rational curves
meeting at a single point. A twisted dumbbell curve is a twisted curve C whose coarse
space is a dumbbell curve C, and which has a unique stacky point lying over the node of C
with stabilizer µ2. The stabilizer preserves both components and acts on each component
via z 7→ z2.

Equivalently, a twisted dumbbell curve is obtained by taking the nodal union of the two
µ2–root stacks of P1 at ∞, and gluing them along their common closed substack Bµ2.

Definition 3.12. A reduced projective curve C of arithmetic genus 1 is called
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• a banana curve if C = C1 ∪ C2 is the nodal union at two points of two smooth
rational curves;

• a pinched banana curve if C = C1∪C2 is the union of two smooth rational curves
at a singular point, which is a tacnode of C;

• an n-cycle, for n ≥ 3, if C = C1∪ · · · ∪Cn is the nodal union of n smooth rational
curves such that

Ci ∩ Cj =

{
singleton, |i− j| = 1

∅, |i− j| ≥ 2

for any i, j = 1, ..., n where Cn+1 := C2 and Cn+2 := C2.
• A four-leaf-clover curve if C = C1 ∪p C2 ∪p C3 ∪p C4 is the union of four smooth

rational curves meeting at a common point p, each pair of components intersecting
transversely, and such that the embedded dimension of C at p is 3. Equivalently,
C is isomorphic to V(xy, z(x+ y + z)) ⊆ P3.

The next two lemmas will be used later in the classification of the singular fibers, whose
proofs involve only simple computations.

Lemma 3.13. The double cover of P1 branched along a divisor D of degree 4 is one of
the following:

• a smooth elliptic curve, if SuppD consists of four distinct points;
• an irreducible nodal genus one curve, if SuppD consists of three distinct points;
• an irreducible cuspidal genus one curve, if SuppD consists of two distinct points,

one of which has multiplicity 3;
• a banana curve, if SuppD consists of two distinct points, each of which has mul-

tiplicity 2;
• a pinched banana curve, if SuppD consists of a single point.

Lemma 3.14. Let C = C1 ∪ C2 be a dumbbell curve, and D ⊆ Csm be a divisor on C

such that degD|Ci
= 2 for i = 1, 2. Then the double cover of P1 branched along a divisor

D of degree 4 is one of the following:
• a banana curve, if SuppD consists of four distinct points;
• a 3-cycle, if SuppD consists of three distinct points;
• a 4-cycle, if SuppD consists of two distinct points;

Lemma 3.15. Let C = C1 ∪p C2 be a dumbbell curve with the node p. Let D ⊂ C be a
Cartier divisor such that for i = 1, 2 one has deg(D|Ci

) = 2 and Supp(D|Ci
) = {p, pi},

where pi ∈ Ci \ {p}. Then the double cover of P1 branched along D is a pinched banana
curve.

Proof. One may verify the claim by writing a local equation near the node p. Locally at
p, the dumbbell curve C is given in A2 by the equation xy = 0, and the divisor D is étale
locally the restriction of the line V(x− y). Hence the double cover of C branched along
D is locally given by

Spec k[x, y, w]/(w2 − (x− y), xy) = Spec k[y, w]/
(
y(y + w2)

)
,

which is the standard local equation of a tacnode. Away from p, the cover is étale over
each component Ci except at the two branch points {p, qi}; thus its normalization restricts
to a double cover of P1 branched over two distinct points, which is again isomorphic to
P1. Therefore, the resulting curve is a pinched banana curve. □
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Lemma 3.16. Let C = C1 ∪p C2 be a dumbbell curve. Let D ⊂ C be a Cartier divisor
such that for i = 1, 2 one has deg(D|Ci

) = 2 and Supp(D|Ci
) = {p}. Then the double

cover of C branched along D is a four-leaf-clover curve.

Proof. The same argument as in the proof of Lemma 3.15 applies. Locally at p, the curve
C is given by the node xy = 0, and the divisor D is the restriction of the non-reduced
line V((x+ y)2). Therefore, the local equation of the double cover is

Spec k[x, y, z]/(z2 − (x+ y)2, xy) = Spec k[x, y, z]/
(
(z − (x+ y))(z + (x+ y)), xy

)
.

This exhibits four smooth branches meeting transversely at the origin in embedding
dimension 3, hence the double cover is a four-leaf-clover curve. □

3.3. Classification of fibers over nodal locus of C. Let (Y, (1
2
+ ϵ1)R + ϵ2F ) ∈

MKSBA
(ϵ1, ϵ2) be a stable pair, and assume it is the central fiber of a one-parameter

family over the spectrum of a DVR A(
Y ,

(
1
2
+ ϵ1

)
R+ ϵ2F

)
−→ C −→ SpecA

fibered over a twisted curve C, whose generic fiber is a surface ruled over a smooth
curve Cη. To get the corresponding family of elliptic surfaces, one takes the double cover
ramified over R, which we denote by X → Y . In this subsection, we consider a node
p ∈ C0 (resp. p ∈ C0) in the central fiber of C → SpecA (resp C → SpecA, where C → C

is the coarse space map), and we study the fibers Xp and Xp. By Lemma 3.8, there exists
a Q-Cartier Weil divisor L on Y with Cartier index ≤ 2 such that R is a section of L⊗2.
Observe that R is a Cartier divisor on Y , so there are two possibilities: either L is Cartier
over p, or it is not Cartier but L⊗2 is Cartier. We will study these two cases separately.

Notation. Let G1 and G2 be the two irreducible components of C0 passing through p

in the étale topology1. Similarly, let Y1 and Y2 denote the surfaces over G1 and G2, and
similarly with Xi. Denote by G1, G2, X1, X2, Y1, Y2 the corresponding coarse spaces. The
fiber of Yi over p, denoted by Yp, is either P1 or a dumbbell curve by Corollary 2.7 and
Remark 2.8.

3.3.1. L is Cartier. In this case, we have line bundles Li on Yi with a section Ri := R|Yi

of L⊗2
i . So we can take the double cover of Yi ramified over Ri, this agrees with Xi.

Proposition 3.17. With the previous notations, we have the following.

(1) If Yp ≃ P1, then the fiber (Xi)p has multiplicity | StabC(p)|. The reduced structure
of the fiber is a quotient of an elliptic curve by a (possibly trivial) cyclic group.

(2) If Yp is a twisted dumbbell curve, then the fiber (Xi)p has either
• an irreducible component of multiplicity 2 or 4 with reduced structure P1, or
• two irreducible components of multiplicities (1, 2) or (2, 2), whose reduced

structure is a dumbbell curve.

Proof. Let µn = StabC(p). We begin with the case when Yp ≃ P1. As L is Cartier, the
map X → Y is generically étale over Yp, and thus the multiplicities of the fibers (Xi)p
and (Yi)p agree. Indeed, we can write X as

SpecY(OY ⊕ L−1)

1Here p could be a node of a single irreducible component in the Zariski topology of C, so étale locally
the node has two branches
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with the usual algebra structure of µ2-covers (see e.g. [KM98, Definition 2.52]), and
check explicitly this is generically étale in codimension one, away from the ramification
locus R. We now compute the multiplicity of (Yi)p. To ease the notations, we drop the
subscript i as it plays no role.

We first show that Y ×G Bµn is generically a scheme, where the map Bµn → G is the
closed embedding of the residual gerbe at p. Indeed, locally near p, Y is the pull-back of
the universal family via a representable morphism ϕ : G → P1, hence Y ×G Bµn can be
identified with the stack-quotient of the curve corresponding to ϕ(p) in P1 by the action
of µn via the morphism

StabG(p) → StabP1(ϕ(p)).

The latter is injective as ϕ is representable, so Y ×G Bµn is a stack-quotient of the form
[P1/µn] with the action of µn being faithful. In particular, it is generically a scheme.
Then the multiplicities of Yp and Yp agree, and we can compute the former. We have

Yp = Y ×G {p} = Y ×G (G ×G {p})

and
G ×G {p} = [Spec(k[[x]]/xn)/µn]

where µn acts by ζ ∗ x = ζx, as the map G → G is, locally around p, a root stack at p.
Then

Yp = Y ×G [Spec(k[[x]]/xn)/µn].

Now, Yp is generically a scheme, as its reduced structure (namely, Y×GBµn ≃ [P1/µn]) is
generically a scheme. Let SpecA→ Yp be an étale neighborhood of a schematic point. As
the multiplicity of the fiber can be computed étale locally, and as the reduced structure
of Yp agrees with Y ×G Bµn, the multiplicity of the fiber agrees with the multiplicity of
SpecAred in SpecA. Consider the following fiber diagrams:

(SpecA)× µn
//

��

SpecA

��

Spec k[[x]]/(xn) // [Spec
(
k[[x]]/(xn)

)
/µn]

(SpecAred)× µn
//

��

(SpecA)× µn

��
Spec k // Spec k[[x]]/(xn).

Here we shrink the étale neighborhood SpecA further so that the µn-torsor on the left
becomes trivial. On the right, we again use the fact that Yp ≃ P1, which implies that
the fiber product is reduced. Since the morphism Y → G is flat, then (SpecA) × µn →
Spec k[[x]]/(xn) is flat as well. Consequently, the fiber has multiplicity n.

Regarding the second statement, observe that (Xi)p,red is the coarse moduli space of
the double cover of (Y×G Bµn,

1
2
R×G Bµn). In other terms, it is the coarse moduli space

E//µn of [E/µn] where E is the elliptic curve that is the double cover (P1,R×G p).
We now address the second point. Proceeding as before, we have that Y ×G Bµn =

[C/µn] where C is the dumbbell curve2, and µn is a subgroup of Aut(C,R) where R
consists of two distinct points on each branch of C. If µn does not fix an irreducible
component of C, one can proceed exactly as before. If instead µn fixes an irreducible
component of C and acts nontrivially on the other one, then n = 2. In this case, the fiber
Yp will have an irreducible component of multiplicity 2 (corresponding to the componet
where µ2 acts nontrivially) and an irreducible component of multiplicity 1. □

2the dumbbell curve rather than the twisted dumbbell curve from Remark 2.8
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3.3.2. L is of Cartier index 2. In this case, étale locally at the generic points ξ of Yp, the
morphism Y → C is isomorphic to

Spec k[t, x, y, π]/(xy − π2n) −→ Spec k[x, y, π]/(xy − π2n).

In particular, the local fundamental group at ξ is isomorphic to Z/2nZ, and hence,
topologically, the only nontrivial double cover is

Spec k[t, x′, y′, π]/(x′y′ − πn) −→ Spec k[t, x, y, π]/(xy − π2n),

where x 7→ (x′)2 and y 7→ (y′)2. The set-theoretic fiber of the ramified cover X → Y
consists of a single point over every point of Yp. The same holds for the induced morphism
Xi → Yi: the map Xi → Yi is again a µ2-cover, and its codimension-one ramification
locus can be identified as the set of codimension-one points of Yi over which the fiber
of Xi → Yi consists of a single set-theoretic point. In particular, in our situation, the
morphism Xi → Yi is ramified along both R|Yi

and Yp. Ramification along Yp has the
effect of preserving the reduced structure of the double locus of the central fiber of X ,
while doubling its multiplicity.

Theorem 3.18 (Fibers over nodes). With the notation as above, a fiber of XG → G over
G ∩ Csing is one of the following:

• a reduced curve which is either an elliptic curve or a banana curve, or
• a non-reduced curve of multiplicity m ∈ {2, 3, 4, 6, 8} whose reduced structure is
P1, or

• a non-reduced curve whose reduced structure is a banana curve, with multiplicities
either (1, 2) or (2, 2) or (2, 4) or (4, 4) on its two components.

• a non-reduced curve of multiplicity 2 with reduced structure an elliptic curve.

The first bullet point is the case when the twisted curve C is a scheme at the nodes of
the special fiber, i.e. with the previous notation the case in which µn = {1}. The second
case is when the fiber of the morphism Y → C at a node of the special fiber of C is P1, or
a dumbbell curve Yp with µn acting transitively on the irreducible components of Yp (so
n = 4). The third case is when Yp is a dumbbell curve and µn does not act transitively
on its irreducible components.

3.4. Singular fibers over the smooth locus: no ramified fibers. Let (Y, (1
2
+ϵ1)R+

ϵ2F ) be a stable pair parametrized by MKSBA
(ϵ1, ϵ2). By Theorem 2.3, such a pair admits

a fibration Y → C onto a nodal curve C. In this subsection, we classify the singularities
of the components of the double cover of Y branched along R, restricted over the smooth
locus Csm. By Remark 2.5, it suffices to consider surfaces of either type I or type III.

Let G be an irreducible component of C, and denote by C◦ = G ∩ Csm the smooth
locus of C along G.

Proposition 3.19. Assume that the surface YG → G is of type I. Let XG be the double
cover of YG ramified along R|G. Then over G◦, all possible singularities of XG are exactly
those listed in Table 2.

Proof. Since YG is of type I, Corollary 2.6 implies that YG◦ → G◦ is a P1-bundle. The
non-slc fibers of the pair (YG◦ , 1

2
R|G◦) were classified in [ISZ25, §4.2.1]. Taking the double

cover branched along R|G◦ , one immediately obtains the corresponding singularities on
XG.

We illustrate the argument with one example; all other cases follow by the same local
analysis. Suppose that R has at a point p a singularity locally given by y2 − zk+1 = 0,
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where z = 0 cuts out the fiber of YG → G through p. Then the ramified double cover has
local equation

x2 + y2 + zk+1 = 0,

which is an Ak-singularity. By running through all singularities appearing in [ISZ25,
Tables 2–3], one obtains precisely the list of singularities of XG◦ recorded in Table 2. □

Fiber Surface Local equation

Ak, k = 1, 2, 3 smooth

A1 Ak, k ≥ 1 x2 + y2 + zk+1 = 0

Ak, k = 2, 3 A1 x2 + yz + yk+1 = 0

Ak, k = 2, 3 A2 x2 + z2 + yk+1 = 0

A2 Dn, n ≥ 4 x2+(y+ z)(y2− zn−2) = 0

A3 Dn, n ≥ 4 x2+(y2−zn−2)(z−y2) = 0

A2 E6 x2 + y3 + z4 = 0

A2 E8 x2 + y3 + z5 = 0

A3 E6 x2 + z3 + y4 = 0

A2 E6k+1, k ≥ 1 x2 + y3 + yz2k+1 = 0

A2 Jk,0, k ≥ 2 x2 + y3 + yz2k = 0

Table 2. Classification of singularities of fibers and surfaces
The equation of the fiber is z = 0

Proposition 3.20. Assume that the surface YG → G is of type III, i.e. it is generically
nodal along a curve Γ, with normalization Y ν

G . If R intersects Γ at a point q, then on
each component of Y ν

G , the restriction of R intersects Γ. Moreover, on any component of
Y ν
G , Γ and R intersect transversely. In particular, the double cover XG of YG branched

along RG has a fiber which is either a pinched banana curve or a four-leaf-clover curve.

Proof. For the first statement, since R is a Q-Cartier divisor, if it meets the double locus
Γ, then its pullback to the normalization of YG must meet the preimage of Γ on every
irreducible component. This shows that the restriction of R intersects each branch of Γ.
If R and Γ do not meet transversely at q, then the pair

(
Y ν
G , (

1
2
+ ϵ)R|Y ν

G
+ Γ

)
is not log

canonical at q. The last statement follows directly from Lemma 3.15 and Lemma 3.16. □

Proposition 3.21. Assume that the morphism YG → G is of type III, i.e. it is generically
nodal along a curve Γ ⊂ YG. Then away from Γ, the double cover XG of YG branched
along R|G has at worst Ak-singularities over G◦.

Proof. On each component of the normalization of YG, the divisor RG := R|G is a bisection
of the projection to G. Over G◦, the morphism YG → G is smooth, so the only possible
singularities of RG are ordinary double points. Analytically, these are locally given by an
equation of the form x2−yk+1 = 0. The double cover of a smooth surface branched along
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such a hypersurface has an Ak-singularity. Therefore, away from Γ, the double cover XG

has at worst Ak-singularities over G◦. □

3.5. Singular fibers over the smooth locus: with ramified fibers. In this sub-
section we consider the case when the ramification divisor R contains a fiber Fp of the
morphism Y → C over a point p ∈ C. Here, (Y, (1

2
+ ϵ1)R + ϵ2F ) is a stable pair

parametrized by MKSBA
(ϵ1, ϵ2), which is necessarily fibered over C.

Lemma 3.22. The point p is a smooth point of C; in particular, the fiber Fp cannot lie
in the double locus of Y . Moreover, the multiplicity of R along Fp is equal to 1.

Proof. If p were a singular point of C or if the multiplicity of R along F were greater than
1, then the pair (Y, (1

2
+ ϵ)R) would fail to be slc, contradicting our assumptions. □

Now let G be the component of C such that p ∈ G, let G◦ := G ∩ Csm, and let YG be
the component of Y lying over G. Let XG be the component of the double cover of Y
branched along R that lies over G.

Lemma 3.23. Assume that YG is of type I or II. Let q ∈ Fp be a singular point of R,
and set Θ := R|G − Fp to be the residual curve to Fp in R|G. Then:

• Θ has at worst a double point at q; and
• if Θ is smooth at q, then the local intersection number (Θ, Fp)q ≤ 4.

Proof. If multq(Θ) ≥ 3, then the pair (Y, (1
2
+ϵ)R) would have worse than slc singularities

at q, which contradicts our assumptions. The second assertion follows from the fact that
generically Θ is a 4-section of the fibration YG → G. □

Proposition 3.24. Assume that YG is of type I or II. Then XG → G has a double fiber
over p, whose reduced structure is P1. Locally over p ∈ G◦:

(1) If Θ is smooth at q, then XG has an A2k−1-singularity with k ≤ 4.
(2) If Θ is singular at q, then XG has either a Dk-singularity with k ≥ 4, or an

E7-singularity.

Proof. For the first statement, write local equations as follows. Let x = 0 be a local
equation of Fp. The double cover of Y branched along R has a fiber which locally is of
the form

Spec k[x, y, w]/(w2 − xf(x, y), x),

which is generically non-reduced of multiplicity 2; its reduced structure is necessarily
isomorphic to Fp ≃ P1.

If Θ is smooth at q, then by Lemma 3.23 we have k := (Θ, Fp)q ≤ 4, and the branch
divisor has a local equation x− yk = 0. Thus the double cover has an A2k−1-singularity.

If Θ is singular at q, then by Lemma 3.23, q is a double point of Θ, so locally Θ is
given by x2 − yk = 0.

• If Fp is not given by x = 0, then after a coordinate change we may assume Fp

is given by y = 0. In this case the branch divisor has a Dk-singularity, hence so
does XG.

• If Fp is given by x = 0, then the condition that (Y, (1
2
+ ϵ)R) is slc forces k ≤ 3,

and the resulting singularity is of type E7, hence XG has either a D4 or an E7-
singularity at q.

□
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Example 3.25. Let R ⊆ P1 ×P1 be a reduced divisor of class O(4, 4), consisting of the
union of eight distinct fibers of the two projections. Then the double cover f : X → P1×P1

branched along R is a K3 surface with 16 A1-singularities, and the composition of f with
either projection pi : P1 × P1 → P1 has four multiple fibers of multiplicity 2.

Lemma 3.26. Assume that YG is of type III, i.e. it is generically nodal along a curve Γ.
On any irreducible component of the normalization of YG, let q ∈ Fp be a singular point
of R, and write

Θ := R|G − Fp

for the residual curve to Fp in R|G. Then:
(1) q is disjoint from Γ;
(2) Θ has at worst a double point at q; and
(3) if Θ is smooth at q, then the local intersection number (Θ, Fp)q ≤ 2.

Proof. If q ∈ Γ, then Fp, Θ, and Γ all pass through q. Since R|G = Fp +Θ, the divisor R
contains three distinct branches through the node of YG at q, and hence the pair(

YG, (
1
2
+ ϵ)R

)
is not slc at q. Thus q /∈ Γ. The remaining assertions follow exactly as in Lemma 3.23. □

By the same argument as in Theorem 3.18, one obtains the following analogue.

Proposition 3.27. Assume that YG is of type III. Then the morphism XG → G has a
double fiber over p, whose reduced structure is a dumbbell curve. Locally over p ∈ G◦:

(1) If Θ is smooth at q, then XG has an A2k−1-singularity with k ≤ 2.
(2) If Θ is singular at q, then XG has either a Dk-singularity or an E7-singularity.

4. Compactification of moduli of hyperelliptic K3 surfaces

An important application of Theorem 3.1 is the compactification of the moduli stack
of hyperelliptic K3 surfaces.

Definition 4.1. A polarized K3 surface (S,H) consists of a projective surface S with at
worst ADE singularities such that ωS ∼ OS and H1(S,OS) = 0, and an ample line bundle
H.

Recall that one has the following trichotomy for polarized K3 surfaces.

Theorem 4.2 ([May72, SD74]). Let (S, L) be a primitively polarized K3 surface with
(L2) = 2g − 2. Then exactly one of the following holds.

(1) (Generic case) The linear system |L| is very ample, and the morphism ϕ|L| : S ↪→
|L|∨ ≃ Pg embeds S as a surface of degree 2g − 2 in Pg. In this case, a general
member of |L| is a smooth non-hyperelliptic curve.

(2) (Hyperelliptic case) The linear system |L| is base-point free, and the induced mor-
phism ϕ|L| realizes S as a double cover of a normal surface of degree g − 1 in Pg.
In this case, a general member of |L| is a smooth hyperelliptic curve, and |2L| is
very ample.

(3) (Unigonal case) The linear system |L| has a fixed component E, which is a smooth
rational curve. The linear system |L − E| defines a morphism S −→ Pg whose
image is a rational normal curve. In this case, a general member of |L− E| is a
union of smooth elliptic curves, and |2L| is base-point free.
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Remark 4.3. The integer g is called the genus of the polarized K3 surface (S, L), and it
satisfies g ≥ 2. When g = 2, a general polarized K3 surface (S, L) is realized as a double
cover of P2 branched along a sextic curve; this case is exceptional among all genera.
Therefore, for the remainder of this section, we will assume g ≥ 3.

Let (S, L) be a hyperelliptic K3 surface of genus g. Then the Picard group Pic(S)

contains a primitive rank-two sublattice

Λg := Λg
2,0 :=

2g − 2 2

2 0

 ,

generated by two effective divisor classes L and F . The class L defines a double cover

S −→ Fn, 0 ≤ n ≤ 4,

see e.g. [Rei76, p. 1]. The divisor F is the pullback of the fiber class of Fn, and hence it
satisfies F 2 = 0 and is nef; it induces an elliptic fibration

f : S −→ P1.

The branch divisor RFn on Fn is smooth and of the class

4e+ 2(n+ 2)f,

where e and f denote respectively the classes of the negative section and of a fiber of
the ruling on Fn. If moreover (S, L) is a general hyperelliptic K3 surface, then n = 0

when g is even and n = 1 when g is odd, reflecting the parity constraint imposed by the
discriminant form of Λg

2,0. By the Riemann-Roch theorem, the class

B := L−
⌊g
2

⌋
F

is effective and satisfies
B · F = 2,

and hence defines a bisection (not necessarily integral) of the elliptic fibration f .

Lemma 4.4. With the notations as above. Let R ⊆ S be the ramification locus of
S → Fn, and Fsing be the sum of the singular locus of f , counted via the canonical bundle
formula. Then (S, ϵ1R + ϵ2Fsing) is KSBA-stable for any 0 < ϵ1 ≪ ϵ2 ≪ 1.

Proof. It suffices to show that

KS + ϵ1R + ϵ2Fsing ∼Q ϵ1R + ϵ2Fsing

is ample. As (R.Fsing) > 0 and ϵ1 ≪ ϵ2, then one has (ϵ1R + ϵ2Fsing)
2 > 0. For any

integral curve C ⊆ S, if C is not contained in a fiber of f , then (ϵ1R + ϵ2Fsing.C) > 0,
because (F.C) > 0 and ϵ1 ≪ ϵ2. If C is a component of an f -fiber, then

(ϵ1R+ ϵ2Fsing.C) = ϵ1(R.C) = ϵ1
2
(π∗RFn .C) = ϵ1

2
(RFn .π∗C) = ϵ1

2
(4e+ 2(n+ 2)f.mf)

for some f > 0, which is positive. Therefore, the divisor ϵ1R + ϵ2Fsing is ample as
desired. □

Definition 4.5. For any number 0 < c < 1, we set Hc := (1 − c)L + cF ∈ Λg ⊗ R and
we say that c is very irrational if Hc /∈ Λ′ ⊗ R for any proper sublattice Λ′ ⊊ Λg.

The sublocus of hyperelliptic K3 surfaces inside the moduli stack Fg of polarized K3
surfaces of genus g need not be normal. The correct object to consider is the moduli stack
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of lattice polarized K3 surfaces, which is the normalization of the hyperelliptic locus; see
Proposition 4.13.

Definition 4.6 (cf. [Dol96, AE25]). For any very irrational 0 < c < 1, let FΛg ,c be the
moduli stack which sends a base scheme T to

(f : S → T ;φ)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

S → T is a proper flat morphism, each geometric fiber

St̄ is an ADE K3 surface, and φ : Λg −→ PicS /T (T ) is

a group homomorphism such that the induced map

φt̄ : Λ
g → Pic(St̄) is an isometric primitive embedding of

lattices and that φt̄(Hc) ∈ Pic(Xt̄)R is an ample class.


.

We call FΛg ,c a moduli stack of lattice polarized K3 surfaces, where the lattice is Λg and
the polarization is given by Hc = (1− c)L+ cF.

Remark 4.7. In the definition of the moduli stack FΛg ,c, the class L is not required
to be ample; only Hc is assumed to be ample. Nevertheless, in the situations we shall
consider, the class L will in fact turn out to be ample.

Theorem 4.8 (cf. [AE25, Proposition 5.4, Theorem 5.5]). The stack FΛg ,c is a separeted
smooth DM stack, and is independent of the choice of c.

Remark 4.9. More precisely, for any two parameters 0 < c ̸= c′ < 1, the stacks FΛg ,c

and FΛg ,c′ are canonically isomorphic, although their universal families may differ. There
is a natural wall–crossing structure: there exist finitely many critical values

0 = c0 < c1 < · · · < cn = 1

such that for each i = 0, . . . , n− 1, the universal family over c ∈ (ci, ci+1) is independent
of the specific choice of c. The intervals (ci, ci+1) are called small cones. Equivalently, the
small cones are the connected components of the complement of the set of parameters c
for which there exists a vector

v ∈ ΛK3 \ Λ⊥ with v2 = −2,

such that (Hc·v) = 0 and the lattice ⟨Λ, v⟩ ⊆ ΛK3, is hyperbolic. See [AE25, Definition 4.9,
Proposition 4.14, Definition 5.2].

Lemma 4.10. Let 0 < ϵ≪ 1 be a very irrational number, and let

(S, (1− ϵ)L+ ϵF ) ∈ FΛg ,ϵ

be a Λg-polarized K3 surface of genus g ≥ 3. Then the class F is nef. In particular, Hc

is ample for any 0 < c < 1, i.e. all the c ∈ (0, 1) are in the same small cone.

Proof. By assumption Hϵ = (1 − ϵ)L + ϵF is ample; in particular, L is nef and big. Let
π : S̃ → S denote the minimal resolution, so S̃ is a smooth K3 surface. Denote by L̃ and
F̃ the pullbacks of L and F , respectively.

Suppose that F was not nef. Then F̃ is also not nef, so there exists a connected smooth
rational curve C̃ ⊂ S̃ such that C := π(C̃) satisfies

a := (C̃ · L̃) = (C · L) ≥ 0, b := (C̃ · F̃ ) = (C · F ) < 0.

Since Hϵ is ample, one has
(1− ϵ)a+ ϵb > 0.
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Consider the sublattice of Pic(S̃) generated by L̃, F̃ , and C̃; its intersection matrix is
2g − 2 2 a

2 0 b

a b −2

 .

By the Hodge index theorem, its determinant must be positive. A direct computation
shows that this determinant is

(2− 2g)b2 + 8 + 4ab > 0.

Since g ≥ 3, this determinant is at most 4(b(a− b)+ 2). Hence the only possible solution
is a = 0 and b = −1, contradicting the inequality (1 − ϵ)a + ϵb > 0. Thus F must be
nef. □

Corollary 4.11. For every fixed g ≥ 3 and every 0 < c < 1, the moduli stacks FΛg ,c are
canonically isomorphic, and their universal families are isomorphic. Moreover, for each
g ≥ 3 there is a canonical isomorphism

ϕg : FΛg ,c
∼−−→ FΛg+2,c,

whose universal families of K3 surfaces are isomorphic and whose effect on the polarizing
lattices is given by L 7→ L+ F and F 7→ F .

Proof. Fix g ≥ 3 and consider the moduli stack FΛ,ϵ with 0 < ϵ ≪ 1. By Lemma 4.10,
the divisor Hc is ample for every 0 < c < 1 and every (S,Hϵ) ∈ FΛ,ϵ. Therefore, all
0 < c < 1 lie in the same generalized small chamber, and the corresponding stacks FΛ,c

have isomorphic universal families.
Now let (S, (1 − ϵ)L + ϵF ) ∈ FΛg ,ϵ with g ≥ 3. Lemma 4.10 implies that F is nef,

hence L+ F and (1− ϵ)(L+ F ) + ϵF are ample. This defines a natural morphism

ϕg : FΛg ,ϵ −→ FΛg+2,ϵ, (S, (1− ϵ)L+ ϵF ) 7−→ (S, (1− ϵ)(L+ F ) + ϵF ).

Conversely, given (S, (1 − ϵ)L + ϵF ) ∈ FΛg+2,ϵ, we claim that L − F is nef, and hence
the inverse morphism of ϕg is constructed. Since (L − F )2 > 0, nefness implies that
(1− ϵ)(L− F ) + ϵF is ample, giving the inverse morphism. If L− F were not nef, then
for some curve C we would have

a := (L− F ) · C < 0, b := F · C ≥ 0.

Repeating the intersection-matrix argument in the proof of Lemma 4.10 shows that the
only numerical possibility is a = −1 and b = 0, contradicting the fact that L is nef. Thus
L− F must be nef, completing the proof. □

Therefore, it is reasonable to denote FΛg ,c simply by FΛg for any 0 < ϵ < 1. Moreover,
there are essentially only two stacks, depending on the parity of g. Since the results in the
remainder of this section are insensitive to g, we henceforth write FΛ for FΛg , regardless
of parity.

By the proof of Corollary 4.11, for any g ≥ 5 and any (S, (1 − c)L + cF ) ∈ FΛ, the
divisor L is ample. We observe that that this fails for g = 3, 4. Indeed, for g = 3, let
π : S → F2 be the double cover branched along a smooth divisor of class 4(e+ 2f). Then
S is a K3 surface, and L := π∗(e + 2f) is not ample, although (S, (1 − c)L + c π∗f) is a
Λ3-polarized K3 surface for 0 < c < 1. Similarly, for g = 4, let π : S −→ F3 be the
double cover branched along a smooth divisor of class 4(e+ 2f). Then S is a K3 surface,



MODULI OF SURFACES FIBERED IN (LOG) CALABI-YAU PAIRS II: ELLIPTIC SURFACES 23

and L := π∗(e + 3f) is not ample, but (S, (1 − c)L + c π∗f) is a Λ4-polarized K3 surface
for 0 < c < 1.

For every g ≥ 3, the hyperelliptic polarized K3 surfaces (S, L) form a divisor in the
moduli stack Fg of primitively polarized K3 surfaces of genus g. When g = 4k + 3 ≥ 7,
the hyperelliptic locus has two components; one of these generically consists of double
covers of F4 branched along a divisor of the class 4e+12f, which is a disjoint union of the
negative section and a trisection. The K3 surfaces parametrized by this component are
always elliptic with a section, and we will not consider them here. For all other genera
g ≥ 3, the hyperelliptic locus is irreducible. We refer to this irreducible component as
the hyperelliptic divisor and denote it by Dg

2,0.

Remark 4.12. As stated in [Rei76, Page 2], the hyperelliptic locus in Fg has two
components for all odd genera g ≥ 5. However, when g = 4k + 1, the polarization is not
primitive, so this case does not lie in the moduli stack Fg of primitively polarized K3
surfaces.

Proposition 4.13. For g ≥ 4, the moduli stack FΛ is isomorphic to the normalization
Dg,ν

2,0 of the hyperelliptic divisor Dg
2,0.

Proof. We prove the statement for g even; the odd case is identical. Let 0 < ϵ ≪ 1 be
very irrational, and let

(S , (1− ϵ)L+ ϵF) −→ FΛ,ϵ = FΛ

be the universal family. Then L is big and nef over FΛ; taking the ample model of L
(which is an isomorphism for g ≥ 5) yields a natural morphism

FΛ −→ Fg

by the universality of Fg, whose image is contained in Dg
2,0. Since FΛ is smooth, there

exists a morphism
α : FΛ −→ Dg,ν

2,0 .

We claim that α is representable, birational, and finite; the result then follows from
Zariski’s main theorem for DM stacks.
Quasi-finiteness. Let [(S, L)] ∈ Dg

2,0 be a hyperelliptic K3 surface. Let π : S̃ → S be
the minimal resolution. If

[(S, (1− ϵ)L+ ϵF )] ∈ FΛ,ϵ

lies above it, then S̃ factors as
S̃ → S → S,

contracting finitely many (−2)-curves; thus there are finitely many choices of S. The class
L is the pullback of L. By [Huy16, Proposition 11.1.3], a K3 surface has only finitely
many elliptic fibrations up to isomorphism, so there are finitely many choices of F . Hence
α is quasi-finite.
Birationality. A general (S, L) ∈ Dg

2,0 is a double cover of F1, and L = π∗(e+ (g
2
− 1)f).

If [(S, (1− c)L+ cF )] lies in the fiber of α over [(S, L)], then F must be the pullback of f.
Hence α is generically injective. Since both stacks are irreducible of dimension 18, then
α is birational.
Representability. It suffices to check that stabilizers inject. As ϵ is very irrational, any
stabilizer of (S, (1− ϵ)L+ ϵF ) preserves L and hence acts on the ample model of L. If the
induced automorphism is trivial, then the stabilizer is trivial, proving the representability.
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Properness. Finally, we prove that α is proper, and therefore finite. Since both stacks
are separated, it suffices to verify the existence part of the valuative criterion. Let h :

(S ,L) −→ (0 ∈ B) be a one–parameter family of hyperelliptic K3 surfaces of genus g
such that there exists a commutative diagram

(S ◦, (1− c)L◦ + cF◦)
g◦ //

h̃◦
((

(S
◦
,L◦

)

h◦
zz

B◦

where B◦ = B \ {0}, and g◦ is the ample model morphism over B◦ with respect to L.
We may assume that g◦ is an isomorphism. Furthermore, possibly after a finite base
change, there exists a section of F◦ over B◦; we continue to denote it by F◦. Let F be
the closure of F◦ inside S as a subscheme. Take a Q-factorialization of S and run a
relative F -MMP over S . This yields a family of K3 surfaces

S −→ B,

a birational morphism g : S −→ S which is isomorphic in codimension one, and a
Q-Cartier divisor F such that the divisor (1− ϵ)g∗L+ ϵF is relatively ample over B. We
claim that F is a Cartier divisor. Then every fiber of the pair

(
S , (1− ϵ)g∗L+ ϵF

)
over

b ∈ B is a Λ-polarized K3 surface: this follows because the general fiber has this property
and the intersection numbers remain constant throughout the family. The line bundle L
is ample and base-point free over B, and it induces a double cover

S −→ T ,

where the general fiber of T → B is a Hirzebruch surface Fn, and the special fiber over
0 ∈ B is either Fn or P(1, 1,m) for some m ≤ 4.

In the former case, there exists a prime divisor G on T , Cartier over B, such that for
a general b ∈ B its restriction to the fiber is the fiber class of the fibration Fn → P1. The
divisor F is then the pullback of G along

S −→ S −→ T ,

and therefore is Cartier. In this situation, F is already Cartier, and no Q-factorialization
or MMP is required.

In the latter case, we take a Q-factorialization of T , denoted by T , such that the
special fiber over 0 ∈ B becomes isomorphic to Fn, and the strict transform of G on
T , denoted by G, is ample over T . Composing with the morphism S → S yields a
generically 2:1 rational map

S 99K T .

Let R denote the closure of the ramification locus of this map. Let S̃ be the normalization
of the double cover of T branched along R. Then S̃ is isomorphic to S in codimension
one, and both are ample models of the Q-Cartier divisor (1− ϵ)L+ ϵF . Hence they are
in fact isomorphic. Consequently, F is the pullback of the Cartier divisor G on S , and
is therefore Cartier. □

Remark 4.14. The above proposition does not hold for g = 3: the morphism FΛ3 →
D3

2,0 is even not birational. Indeed, it is generically 2 : 1: a general (S, L) ∈ D3
2,0 is a

double cover of P1 × P1, with L the pullback of O(1, 1). However, there are two choices
for F , namely the pullbacks of O(1, 0) and O(0, 1).
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Let
π : (S , (1− c)L+ cF) −→ FΛ

be the universal family. Then L induces a double cover

S Y

FΛ

,

which fiberwise is the aforementioned ramified cover S → Fn. Denote by R the ramifi-
cation locus. As the divisor F is relatively nef over FΛ by Lemma 4.10, it induces an
elliptic fibration

S C := PFΛ
(π∗F)

FΛ

.

Denote by Fsing ⊆ S the closure of the sum of the singular fibers. Then by Lemma 4.4,
the family (S , ϵ1R + ϵ2Fsing) → FΛ is KSBA-stable, and hence there exists a natural
morphism β : FΛ → MKSBA

ell,2 (ϵ1, ϵ2), which is dominant. Let MKSBA,ν
ell,2 (ϵ1, ϵ2) be the

normalization of MKSBA
ell,2 (ϵ1, ϵ2), and

βν : FΛ → MKSBA,ν
ell,2 (ϵ1, ϵ2)

be the morphism induced by β.

Proposition 4.15. The morphism βν is an open immersion.

Proof. Since both FΛ and MKSBA,ν
ell,2 (ϵ1, ϵ2) are separated DM stacks of finite type over C,

Zariski’s main theorem reduces the claim to proving that βν is representable, quasi-finite,
and birational.

Let (S, ϵ1R + ϵ2Fsing) be a general object of MKSBA
ell,2 (ϵ1, ϵ2) and consider any (S, (1 −

c)L+ cF ) mapping to it. For such S, the Picard rank is ρ(S) = 2, and there is a unique
elliptic fibration f : S → P1 for which Fsing is a multiple of the fiber class. Hence the
class F is uniquely determined. Moreover, f admits a smooth bisection, which induces a
double cover S → Fn. Since ρ(S) = 2, every bisection of f is the pullback of a section of
Fn, and they all induce the same double cover S → Fn. Therefore the polarization class
L is uniquely determined as well, and βν is birational.

Next we verify representability. For any (S, (1 − c)L + cF ) ∈ FΛ, an automorphism
σ fixes L, and in particular it fixes the ramification locus R of the double cover induced
by L. Similarly, since σ fixes F , it also fixes Fsing. This yields a natural homomorphism

Aut(S, (1− c)L+ cF ) −→ Aut(S, ϵ1R + ϵ2Fsing),

which is injective because both groups are subgroups of Aut(S). Hence β is representable,
and therefore so is βν .

Finally, to check that β is quasi-finite, let (S, ϵ1R + ϵ2Fsing) be in the image of β. A
preimage under β consists of S together with the class F , which is uniquely determined
by Fsing. Thus it remains to show that there are only finitely many possibilities for the
choice of L. Let S̃ → S be the minimal resolution and let L̃ be the pullback of L. Since
L̃ realizes S̃ as a double cover of one of the Hirzebruch surfaces F0, . . . ,F4, and since L̃
is the pullback of a unique line bundle on Fn, it follows that there are only finitely many
possibilities for L̃, and hence for L. Therefore β is quasi-finite.
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Having established representability, quasi-finiteness, and birationality, Zariski’s main
theorem implies that βν is an open immersion. □

Corollary 4.16 (Compactification of the moduli of hyperelliptic K3 surfaces). For any
genus g ≥ 3, there exists a Deligne–Mumford stack MKSBA

ell,2 (ϵ1, ϵ2) whose objects are
described in Theorems 3.1, 3.2, 3.3, and 3.4. The normalization of this stack is a com-
pactification of the normalization of the hyperelliptic divisor Dg

2,0 in the moduli stack Fg

of polarized K3 surfaces of genus g.

5. Moduli of Weierstrass fibrations

In this section, we use the results in [ISZ25] to classify the singular objects parametrized
by the KSBA moduli stack for Weierstrass fibrations.

5.1. Geometry of Weierstrass fibrations. Let (X,S) → C be a general Weierstrass
fibration. We begin by observing that the linear series |2S| is base-point free. Therefore,
the doubled section 2S induces a double cover

π : X −→ Y := ProjC ⊕m≥0 Sym
m f∗OX(2S)

over C, where

(1) every π-fiber is a P1, and fiberwise it is a standard hyperelliptic involution quotient
from an elliptic curve to P1 induced by a g12;

(2) the image of S is a section of g : Y → C, which we denote by Σ;
(3) the ramification divisor R ⊆ Y (resp. RX ⊆ X) of π is a 4-section of g (resp. f)

which satisfies that π∗R = 2RX ;
(4) Σ is an irreducible component of R;

The surface Y is a ruled surface over C, and hence one can identify Y with PE for some
vector bundle E of rank 2 on C. Moreover, one can assume that H0(C, E) ̸= 0 and
H0(C, E ⊗ L) = 0 for any L ∈ Pic(C) with degL < 0. Let σ ∈ H0(Y,OY (1)) ≃ H0(C, E)
be a section, where OY (1) = OPE(1) under the identification

Pic(Y ) = Pic(PE) = Z[OPE(1)]⊕ g∗ Pic(C).

If X is smooth, then R is a smooth curve, and hence R = Σ⊔ T for some smooth divisor
T ∼ 3σ + g∗D, where D is a divisor on C. The letter T stands for “trisection” since
T → C is of degree 3.

5.2. KSBA-moduli stack of Weierstrass fibrations. Let 0 < ϵ≪ 1 be a sufficiently
small rational number, and let

a⃗ = (a1, . . . , an), 0 < ai ≤ 1.

Consider a Weierstrass fibration

(Xη, ϵSη + a⃗Fη) → Cη

over the generic point η of the spectrum of a DVR A, whose fibers are at worst irreducible
nodal curves, and such that the pair (Xη, ϵSη + a⃗Fη) is KSBA-stable. Here:

• Sη is a section of Xη → Cη;
• pη = pη,1 + · · ·+ pη,n is a sum of marked points on Cη, and

a⃗pη :=
∑n

i=1 aipη,i;
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• Fη = Fη,1 + · · ·+ Fη,n is the corresponding sum of fibers, and

a⃗Fη :=
∑n

i=1 aiFη,i.

Denote by WKSBA
(ϵ, a⃗) the KSBA moduli stack which generically parametrizes pairs of

the form (Xη, ϵSη + a⃗Fη).

Theorem 5.1. Let Mη be the moduli part of the canonical bundle formula for Xη → Cη.
Then the following statements hold:

(1) After a finite base change of SpecA, the KSBA-stable extension (X, ϵS + a⃗F ) of
(Xη, ϵSη + a⃗Fη) over SpecA admits a fibration over a generalized pair

(C, a⃗p+M) → SpecA,

which is a family of nodal pointed curves with KC + a⃗p + M ample, and whose
generic fiber is (Cη, a⃗pη +Mη).

(2) The family C → SpecA is the coarse space of a family of twisted curves C →
SpecA equipped with a fibration (X ,S) → C, whose geometric fibers (Xp,Sp) have
equation (

y2x = x3 + axz2 + bz3, [0, 1, 0]
)
,

and such that the induced morphism on coarse spaces is (X ,S) → C giving
(X,S) → C.

(3) The fibers of (X,S) → C over codimension-one points of C have at worst nodal
singularities.

The following diagram summarizes the situation:

(Xη, ϵSη + a⃗Fη) (X, ϵS + a⃗F ) (X , ϵS + a⃗F)

(Cη, a⃗pη +M) (C, a⃗p+M) C

η SpecA

cms

Weierstrass

cms

Theorem 5.1 describes the KSBA-stable limits of Weierstrass fibrations.

5.3. Proof of Theorem 5.1. Take the quotient of Xη by the involution induced by the
linear system |2Sη|, and denote the result by (Yη,

1
2
Rη). Then for any 0 < ϵ≪ 1, the pair

(Xη, 2ϵSη + a⃗ Fη) is KSBA–stable if and only if the pair(
Yη,

1
2
Rη + ϵΣη + a⃗ Fη

)
=

(
Yη,

1
2
Tη + (1

2
+ ϵ)Ση + a⃗ Fη

)
is KSBA–stable, where we abuse notation by denoting the marked fibers of Xη → Cη and
those of Yη → Cη uniformly by Fη. Moreover, we denote by Rη the ramification locus,
which can be written as Rη = Ση + Tη, where Ση is a section and Tη a 3-section.

To find the KSBA–stable limit over SpecA, we apply Corollary 3.7. Namely, we obtain
the KSBA–stable extension of (Yη, (12 + ϵ)Ση +

1
2
Tη + a⃗Fη), denoted by (Y, (1

2
+ ϵ)Σ +

1
2
T + a⃗F ), by first taking the KSBA–stable limit of(

Yη, (
1
2
+ ϵ1)(Ση + Tη) + a⃗Fη + ϵ2F

′
η

)
where F ′

η is the sum of all fibers for which the support of the restriction of R to them
has fewer than four points; and then decreasing the coefficient of T to 1

2
and decreasing

ϵ2 to 0. The procedure has two steps.
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(1) The first step is preparatory: we study the pair (Y,Σ) in more detail; see §5.3.1.
(2) In the second step, we construct the desired stable limits by first taking the

canonical model of

(Y, (1
2
+ ϵ1)Σ + 1

2
T + a⃗F + ϵ2F

′),

and then letting ϵ2 decrease to 0; see §5.3.2.

5.3.1. Step 1: the family (Y,Σ) → SpecA. By Theorem 2.3, the pair (Yη, (
1
2
+ ϵ1)Dη +

a⃗Fη + ϵ2F
′
η) extends to a KSBA–stable family(

Y, (1
2
+ ϵ1)D + a⃗F + ϵ2F

′) C

SpecA

.

Here, 0 < ϵ1 ≪ ϵ2 ≪ 1 are two rational numbers. Let Σ be the closure of Ση and T the
closure of Dη \ Ση. We have the following key observation.

Lemma 5.2. The divisor Σ is Q-Cartier.

Proof. By Corollary 2.7, away from finitely many smooth points x1, . . . , xr ∈ C, the map
π : (Y, 1

2
D) → C is the induced morphism between the coarse moduli spaces of

(Y , 1
2
D) −→ C,

where C is a family of twisted curves over SpecA, and the universal family comes from a
morphism C → P1. The fibers of π are either P1 or the nodal union Γ of two copies of P1.
Moreover, D intersects Γ at the smooth locus of Γ. In particular, since C is Q-factorial,
the space Y is also Q-factorial in a neighborhood of D . Thus Y is Q-factorial near D,
and away from the points x1, . . . , xr.

It remains to show that Y is Q-factorial over a neighborhood of each xi. Let Gi denote
the irreducible component of the special fiber C0 that contains xi. In cases (1) and (2)
of Theorem 2.4, the surface Gi ×C Y is smooth over xi. In case (3), the surface Gi ×C Y

has a unique singularity of the form

Spec
(
k[[x, y, s, t]]/(xy − sn)

)
lying over xi, for some integer n. Here t is a uniformizer of the DVR A, while s is the
pullback of a local equation of Gi ⊂ C at xi. But this singularity is Q-factorial; hence Y
is Q-factorial in a neighborhood of xi. □

Lemma 5.3. The divisors Σ and T are disjoint.

Proof. For the generic Weierstrass fibration (Xη, Sη) → Cη, every fiber is either a smooth
elliptic curve or an integral nodal curve, and S is away from singularities of fibers. Thus
the double cover Yη → Xη is branched along Ση of ramification index 1, and Ση is disjoint
from Tη on Xη. Since both Σ and T are Q-Cartier by Lemma 5.2 and the fact that ϵ1 is
small enough, then

(Ση.Tη) = (Σ0.T0) = 0,

which implies that either T and Σ do not intersect, or they intersect along a curve Γ. By
inversion of adjunction, the pair

(
Y, (1

2
+ ϵ1)(T + Σ) + a⃗F + ϵ2F

′ + Y0
)

is log canonical,
and thus the latter case cannot occur: otherwise, it would not be log canonical along Γ.
Therefore, Σ and T are disjoint. □
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Remark 5.4. In what follows, the fibers a⃗F do not play any role. To simplify notation,
we will therefore omit them. More precisely, we will focus on the case a⃗F = 0; the case
where a⃗F ̸= 0 is entirely analogous.

5.3.2. Step 2: KSBA-stable extension (Y, (1
2
+ ϵ)Σ+ 1

2
T ) → SpecA. We now decrease the

coefficients in (
Y, (1

2
+ ϵ1)R + ϵ2F

)
=

(
Y, (1

2
+ ϵ1)Σ + (1

2
+ ϵ1)T + ϵ2F

)
to obtain (

Y, (1
2
+ ϵ1)Σ + 1

2
T
)
,

and take its log canonical model over SpecA. Throughout this process, we keep track
of the birational transformations in order to describe the geometry of the log canonical
model of

(
Y, (1

2
+ ϵ1)Σ + 1

2
T
)
.

We proceed in two steps: first, we decrease the coefficient of T to 1
2

and take the
canonical model over C; then, we decrease the coefficient ϵ2 of F to 0. We begin with
the following, which is a consequence of Lemma 5.2.

Corollary 5.5. The threefold pair (Y,Σ + ϵ2F
′) is log canonical.

Proof. We first show that the pair (Y, Σ + ϵ2F
′) is slc over the smooth points of C0, the

central fiber of C → SpecA. Since the fibers F intersect Σ transversely, it suffices to
prove that (Y,Σ) is log canonical.

Let G be an irreducible component of C0, and let x ∈ G be a point which is not a node
of C0. Denote by Fx the fiber over x. Then

(Fx · Σ) = 1,

since Fx is numerically equivalent to a fiber of the generic fiber. In particular, Σ → C

remains a section and is therefore smooth over such x. As Σ does not intersect T by
Lemma 5.3, and YG := Y |G → G is smooth over x in cases (1) and (2) of Theorem 2.4,
the desired local log canonicity follows. Hence, to show that (Y, Σ + a⃗F + ϵ2F

′) is slc
over the smooth points of C0, it remains only to analyze Σ in case (3) of Theorem 2.4.

For this remaining case, observe that Σ does not meet the horizontal double locus of
YG. Indeed,

(1) Σ is Q-Cartier, so the pair (Y, tΣ) is locally stable for every 0 < t ≤ 1
2
. In

particular, the reduced pair (
YG, tΣ|YG

)
is slc for all t ∈ [0, 1

2
];

(2) as Σ → C is a section, the intersection Σ ∩ Fx consists of a single reduced point.

If Σ met the double locus of YG, then étale locally near such a point, YG would have two
irreducible components, with Σ lying on exactly one of them. Consider Y n

G = (Γ1,∆1) ⊔
(Γ2,∆2) where Γi are the irreducible components of the normalization of YG, and ∆i the
preimages of the double locus. The proper transform Σ1 of Σ is contained in Γ1 but
not Γ2, and if Σ intersected the double locus, then there would be a point p ∈ ∆1 such
that the different Diff∆1((Γ1,∆1 + tΣ1) depends on t. On the other hand, as Σ1 is not
contained in Γ2, there is no point in Diff∆2((Γ2,∆2 + tΣ1) which depends on t. This
contradicts Kollár’s gluing theorem.
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⑳
一

E
Figure 2. Log canonical model morphism Y → Y (1). In blue, the curves

to which some irreducible components of Y0 are contracted to.

We now analyze the pair over the nodes of C. By the construction of the ruled model,
after possibly restricting C to a neighborhood of its nodal locus, the family

(Y, 1
2
Σ + 1

2
D) → C

is obtained by pulling back the universal family from a twisted curve C → P1 and then
passing to coarse spaces. Since Σ is a section and is disjoint from T , every fiber has the
form (

R, 1
2
pΣ + 1

2
(p1 + p2 + p3)

)
,

with pΣ ̸= pi for all i. Such fibers satisfy that (R, pΣ+
1
2
(p1+p2+p3)) is slc, and therefore

the original pair is slc over the nodal locus as well. □

Due to the presence of the section Σ, if G ⊆ C0 is an irreducible component such that
YG falls into case (3) of Theorem 2.4, then YG necessarily has two irreducible components:
one meeting Σ and one disjoint from Σ. Moreover, we have the following.

Corollary 5.6. The pair (
Y, (1

2
+ ϵ1)Σ + 1

2
T + ϵ2F

)
is relatively minimal over C.

Proof. This is because 0 < ϵ1 ≪ ϵ2 and (Y, 1
2
(Σ + T )) is relatively minimal over C. □

Thus, taking the log canonical model over C(
Y, (1

2
+ ϵ1)Σ + 1

2
T + ϵ2F

)
−→

(
Y (1), (1

2
+ ϵ1)Σ

(1) + 1
2
T (1) + ϵ2F

(1)
)

contracts precisely those irreducible components of the surface pairs appearing in case (3)
of Theorem 2.4 that do not meet Σ; see Figure 2. For a detailed description of the
geometry of these components, see [ISZ25, Proposition 4.6 and Figure 10]. Furthermore,
the fibers of π(1) : Y (1) → C over the codimension-one points of C are isomorphic to P1.

Corollary 5.7. Each irreducible component of Y (1)
0 → C0 is the coarse space of a

P1–bundle over an orbifold curve.
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Proof. Let C → C be the smooth canonical covering stack. Since C is a family of nodal
curves, its singularities are analytically of the form

Spec
(
k[[x, y, t]]/(xy − tn)

)
.

The canonical smooth covering stack replaces such a singularity with[
Spec(k[[u, v]])/µn

]
,

where µn acts via ζ · u = ζu and ζ · v = ζ−1v, and the coarse space map sends

x 7→ un, y 7→ vn, t 7→ uv.

Away from finitely many points of C0, the morphism Y (1) → C is a P1–fibration. Since
C and C agree away from the nodes of C0, there exists a big open subscheme U ⊆ C
together with a P1–fibration over U . This produces a morphism

U −→ BPGL2,

and by [DLI24, Lemma 2.1] this extends uniquely to a morphism

C −→ BPGL2 .

Consequently, we obtain a P1–fibration Y → C , and denote its coarse space by Y ′ → C.
Now, Y (1) carries a divisor–namely Σ(1)–which is relatively ample over C. Its proper
transform in Y ′ gives a divisor Σ′ that is also relatively ample over C. As both Y ′ and
Y (1) are S2, then by Lemma 3.9, Y ′ is isomorphic to Y (1). In particular, each component
of Y (1)

0 is the coarse space of a P1–bundle over an orbifold curve. □

We now run an MMP to decrease ϵ2 to 0 in the pair(
Y (1), (1

2
+ ϵ1)Σ

(1) + 1
2
T (1) + ϵ2F

)
.

The canonical bundle formula for the lc-trivial fibration(
Y (1), 1

2

(
Σ(1) + T (1)

))
−→ C

yields
KY (1) + 1

2

(
Σ(1) + T (1)

)
∼Q π(1)∗(KC +M),

where the discriminant divisor is trivial and M is the moduli divisor. Since(
Y, 1

2
(Σ + T )

)
→

(
Y (1), 1

2
(Σ(1) + T (1))

)
is crepant, then these two pairs have the same moduli part; hence KC + M is nef. To
take the log canonical model of(

Y (1), (1
2
+ ϵ1)Σ

(1) + 1
2
T (1)

)
,

one considers the log canonical model

(C,M) −→ (Cst,Mst),

which contracts precisely:

(1) rational bridges B ⊆ C0 along which degB(M) = 0, and
(2) rational tails G of C0 along which degG(M) = 1.

Rational bridges with degB(M) = 0. Let B be such a rational bridge. By Corollary 5.7,
the restriction (see the component S in Figure 2)(

Y (1), (1
2
+ ϵ1)Σ

(1) + 1
2
T (1)

) ∣∣
B
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is birational to (see Figure 3)(
PB, (

1
2
+ ϵ1)ΣPB

+ 1
2
Σ2 +∆+ F

)
,

where:
• B → B ≃ P1 is a (possibly trivial) root stack;
• PB is the coarse space of a P1–bundle PB(E) → B;
• ∆ is the image in Y (1) of the horizontal double locus of Y0|B, i.e. where the two

components of Y |B intersect;
• ΣPB

is a section of PB → B, and Σ2 is determined by the relation
1
2
T |

Y
(1)
0

−∆− 1
2
ΣPB

= 1
2
Σ2;

• F = F1 + F2 is the coarse space of the two fibers of PB → B.

Figure 3. The pair (PB, ΣPB
+ Σ2 +∆+ F )

Observe that ΣPB
, Σ2, and ∆ must be pairwise disjoint in order for degM|B = 0. Indeed,

ΣPB
and Σ2 a re disjoint from Lemma 5.3, and Σ and ∆ are disjoint as before the

contraction Y → Y (1) the section does not intersect the horizontal double locus of the
central fiber. We just need to argue that ∆ and Σ2 are disjoint. But if they met over a
point x, the boundary part over that point would not be 0, as ∆ has coefficient 1 and
Σ2 has coefficient 1

2
. The degree of the moduli part degM|B agrees with the sum of

the degree of the moduli part and the boundary part for (Y (1)|B, 12ΣPB
+ 1

2
Σ2 + ∆), so

degM|B > 0 which is a contradiction.
Consequently, when taking the canonical model of(

Y (1),
(
1
2
+ ϵ1

)
Σ(1) + 1

2
T (1)

)
,

the surface Y (1)|B is contracted to the two fibers to which it is attached in neighboring
components of Y (1)

0

Rational tails where M has degree 1. We now consider components of Y (1)
0 lying over a

rational tail G of C0 such that degM|G = 1.

Lemma 5.8. The component Y (1)
G := Y

(1)
0 |G is contracted by taking the log canonical

model of (
Y (1), (1

2
+ ϵ1)Σ

(1) + 1
2
T (1)

)
.

Proof. By the classification of the components of Y (1)
0 , the pair

(
Y (1), (1

2
+ ϵ1)Σ

(1) + 1
2
T (1)

) ∣∣
G

is of the form (
PG, (

1
2
+ ϵ1)Σ

(1)|PG
+ 1

2
T (1)|PG

+ F
)
,

where PG is the coarse space of a P1-bundle PG over a stacky curve G, and F is the coarse
space of one fiber over the unique point of G lying above the node of C0. By assumption,

(5.1) KPG
+ 1

2
Σ(1)|PG

+ 1
2
T (1)|PG

+ F ∼Q 0.
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Thus the desired log canonical model of PG is also the ample model of Σ(1)|PG
. Since

Σ(1)|PG
is irreducible, it suffices to show that (Σ(1)|PG

)2 ≤ 0.
By Corollary 5.5, and since Σ and T don’t intersect from Lemma 5.3, the pair(

PG,Σ|PG
+ 1

2
T |PG

+ F
)

is lc, and hence the pair (
PG,ΣPG + 1

2
TPG + F

)
is also lc, where we use curly letters to denote the reduced preimages under the coarse
space map ϕ : PG → PG. The morphism ϕ is étale in codimension 1 away from the unique
point over which the tail attaches, and otherwise ramified exactly along F , which appears
with coefficient 1 in the boundary. Thus one has

ϕ∗(KPG
+ F ) ∼Q KPG + F , ϕ∗(Σ|PG

) ∼Q ΣPG , ϕ∗(T |PG
) ∼Q TPG ,

and consequently(
KPG

+ Σ|PG
+ F. Σ|PG

)
=

(
ϕ∗(KPG

+ Σ|PG
+ F ). ϕ∗Σ|PG

)
(5.2)

=
(
KPG + ΣPG + F . ΣPG

)
(5.3)

= deg ωΣPG
(p),(5.4)

where p = F ∩ΣPG is a single (stacky) point with reduced structure. If ΣPG is an orbifold
P1 with a single stacky point, and ψ : ΣPG → P1 is the coarse map, then

ωΣPG
(p) = ψ∗(ωP1(p)).

On the other hand, from (5.1),

KPG
+ 1

2
Σ|PG

+ 1
2
T |PG

+ F ∼Q π∗(ωP1(p) +M|G) ∼Q 0,

where p ∈ G is the attaching point. Since degM|G ≥ 0, we obtain(
KPG

+ 1
2
Σ|PG

+ 1
2
T |PG

+ F
)
· Σ|PG

= 0,(
KPG

+ Σ|PG
+ 1

2
T |PG

+ F
)
· Σ|PG

= − deg(M|G) ≤ 0.

Thus (Σ|PG
)2 ≤ 0, completing the proof. □

As a consequence, denoting by(
Y (1), (1

2
+ ϵ1)Σ

(1) + 1
2
T (1)

)
−→

(
Y st, (1

2
+ ϵ1)Σ

st + 1
2
T st

)
the log canonical model morphism, we see that πst : Y st → Cst has 1-dimensional fibers
and is a P1-fibration in codimension 1. Proceeding as in Corollary 5.7, and using [DLI24,
Lemma 2.1], we obtain that Cst is the coarse moduli space of a family of twisted curves
Cst admitting a P1-fibration Yst → Cst whose coarse space is Y st → Cst:

Yst //

��

Y st

��
Cst // Cst.

Taking the double cover of Y st as in Corollary 3.7, branched along Dst = Σst+T st, yields
a family of elliptic surfaces

(Xst, 2ϵ1S
st) −→ Cst,

where Sst is the reduced preimage of Σst. Finally, the fibers of Y → Cst over the smooth
locus of Cst → SpecA are of the Weierstrass form y2z = x3+Axz2+Bz3. It follows that
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all geometric fibers are of this form, again using [DLI24, Lemma 2.1] and the fact that
the good moduli space of [A2/Gm], the moduli of planar Weierstrass models, is a point;
see [BFH+24, Remark 7.10] for a similar argument.

This completes the proof of Theorem 5.1.

5.4. Applications of Theorem 5.1. The first application of Theorem 5.1 is that it
allows us to prove the following statement without running any explicit MMP. Indeed,
the result is a direct consequence of Theorem 5.1.

Let ϵ > 0 be a rational number, and WKSBA
(ϵ) denote the irreducible component of

the KSBA moduli stack whose general point parametrizes a pair (X, ϵS) admitting a
Weierstrass fibration (X,S) −→ C over a smooth curve C.

Theorem 5.9 (cf. [Inc20, Theorem 1.2]). Let 0 < ϵ ≪ 1 be a (rational) number. Then
any pair (X, ϵS) parametrized by WKSBA

(ϵ) admits a (not necessarily flat) fibration

f : (X, ϵS) −→ C

to a nodal curve C with purely 1-dimensional fibers such that

X|Csm −→ Csm

is flat with integral fibers. Moreover, for any irreducible component G of C with normal-
ization Gν, the surface X|Gν is one of the following:

(1) a normal elliptic surface X|Gν → Gν, or
(2) a non-normal fibered surface X|Gν → Gν, whose general fiber is an integral nodal

curve or arithmetic genus 1.

In particular, the surface pairs appearing on the boundary of the KSBA moduli space
parametrizing pairs (

Yη,
(
1
2
+ ϵ1

)
Ση +

1
2
Tη +

(
1
12

+ ϵ2
)
Fη

)
,

which arise as degenerations of the 2:1 quotients of elliptic surfaces with j-map of de-
gree 12, have KSBA-stable limits fibered over a family of nodal curves. The base family
is a stable generalized pair (C,M+ 1

12
p), where p is a divisor of degree 12 and degM = 1.

The special fiber consists of a nodal curve

C0 = C0,1 ∪ C0,2

with marked points p1, . . . , p12 and a non–negative Q-divisor M0 such that

KC0 +
1
12
(p1 + · · ·+ p12) +M0

is ample. A direct combinatorial check shows that C0 has at most two irreducible com-
ponents; if it has two, then each component carries a j-map of degree 6 and exactly six
of the marked points.

Now increase the coefficient of the section from 1
2
+ ϵ1 to 1

2
+ 12ϵ2. For a general fiber,

the pair (
Yη,

(
1
2
+ ϵ1

)
Ση +

1
2
Tη +

(
1
12

+ ϵ2
)
Fη

)
is no longer KSBA-stable. Nevertheless, for any KSBA-stable limit(

Y,
(
1
2
+ ϵ1

)
Σ + 1

2
T +

(
1
12

+ ϵ2
)
F
)

the log canonical divisor is nef. Indeed, it suffices to check that for every irreducible
component Γ of the special fiber of the section Σ,(

KY +
(
1
2
+ ϵ1

)
Σ + 1

2
T +

(
1
12

+ ϵ2
)
F
)
·Γ = 0.
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This follows from the equalities(
KY + 1

2
Σ + 1

2
T + 1

12
F
)
·Γ = 0, T ·Γ = 0, (KY + Σ)·Γ = −1,

where the first equality comes from the canonical bundle formula, and the latter two
follow from the fact that (Y,Σ) is slc and smooth along Σ away from the nodes of the
central fiber of Y → SpecA.

Thus, taking the canonical model under the specialization ϵ1 = 12ϵ2 contracts the
section, and yields the following. In particular, the wall-crossing morphism of [ABIP23,
MZ23] give a map WKSBA

rat

(
ϵ1,

1
12

+ ϵ2
)
→ MKSBA to the KSBA moduli space with coeffi-

cient 1
12

+ ϵ2 and given volume, which contracts the divisor with coefficient ϵ1.

Theorem 5.10 (rational elliptic surfaces, cf. [AB22, Theorem 1.1 (a), (b)]). Let 0 <

ϵ1 ≪ ϵ2 ≪ 1 be two (rational) numbers. Then any pair
(
X, ϵ1S+( 1

12
+ϵ2)F

)
parametrized

by WKSBA

rat

(
ϵ1,

1
12

+ ϵ2
)

admits a (not necessarily flat) fibration

f :
(
X, ϵ1S + ( 1

12
+ ϵ2)F

)
−→ C

to a nodal curve C with purely 1-dimensional fibers satisfying that
• S is a section of X → C;
• F consists of some f -fibers over Csm; and
• X|Csm → Csm is flat with integral fibers.

Any irreducible component G of C is isomorphic to P1. If C is irreducible, then X|G is
(1) either a normal elliptic surface X|G → G with ADE singularities; or
(2) a non-normal fibered surface X|G → G, whose general fiber is an integral nodal

curve or arithmetic genus 1.
If C is reducible, then C has two components G1, G2, and X|Gi

→ Gi is a normal elliptic
surface for i = 1, 2. Taking the canonical model for ϵ1 = 12ϵ2 contracts the section, and
gives the KSBA-stable limits of smooth degree 9 Del Pezzo surfaces with marking being
the images of the 12 singular fibers.

Similarly, the following follows from Theorem 5.1.

Theorem 5.11 (elliptic K3 surfaces, cf. [Bru15, Theorem 9.1.4]). Let 0 < ϵ1 ≪ ϵ2 ≪ 1

be two (rational) numbers. Then any pair
(
X, ϵ1S + ϵ2F

)
parametrized by WKSBA

K3

(
ϵ1, ϵ2

)
admits a (not necessarily flat) fibration

f : (X, ϵ1S + ϵ2F ) −→ C

to a nodal curve C with purely 1-dimensional fibers satisfying that
• S is a section of X → C;
• F consists of some f -fibers over Csm; and
• X|Csm → Csm is flat with integral fibers.

Any irreducible component C is isomorphic to P1, and for any irreducible component G
of C, the surface X|Gν is one of the following:

(1) a normal elliptic surface X|G → G ≃ P1, or
(2) a non-normal fibered surface X|G → G ≃ P1, whose general fiber is an integral

nodal curve or arithmetic genus 1.
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