Lecture 2- MATH 327
TODAY - review of sets revere of functions

Bettor we dive into $\mathbb{R}$ let's review souse concept you have learned in MATH 300
SETS: \check out 1.2 in bot!

- a set is a collection of objects; we call their elements.
- for us, sets will costly be sett of real numbers (ie. subsets of $\mathbb{R}$ )
- Notation: $A \subseteq B$ " $A$ is a subset of $B^{-}$

$$
\begin{aligned}
& x \in A \quad \text { "x belongs to } A \text { " } \\
& x \notin A \quad \text { "x does Not belong to } A \text { " }
\end{aligned}
$$

Remark: $A \subset B$ sometimes means properly (aka: strictly) coutaind (that is $A \subseteq B$ and $A \neq B$ ).
For us $A \subset B \equiv A \subseteq B$. Use $A \subseteq B$ if you need.

Thinking of proofs: how do we prove that $A=B$ ?

- we prove $A \subseteq B$ and $B \subseteq A$.
how da we prove $A \subseteq B$ ?
we prove that $\forall x \in A, x \in B$ too.
- UNION and INTERPECTION
$A \cup B$ is the set of elements the on $A \cup B=A$ either in $A$ OR $B$

$A \cap B$ is the set of eleventh that one both in $A$ and $B$

* other set operations

A,B (set difference): elements that are (in A but NOT in B.
usually $B \subseteq A$ in this cars, but if not reads as A, $(A \cap B)$
$A \triangle B$ (symmetric difference); ellevents that ane in $A$ or $B$ bet NOT in both

$$
A \Delta B=(A \cup B),(A \wedge B)
$$



* COMPIEMENT (Not compliment, although all sets on beautiful)

Only makes sees if we are in salve "audient" ret.
If $B \subseteq A$, the complement of $B$ in $A$ is

$$
B^{c}=A \cdot B
$$

Example. In $\mathbb{R},\left([0,1)^{c}=(-\infty, 0) \cup(1,+\infty)\right.$

* De Morgan's laws: $\quad(A \cup B)^{c}=A^{c} \cap B^{c}$
draw a picteme!!!. $\quad(A \cap B)^{c}=A^{c} \cup B^{c}$
* cartesian product

$$
A \times B=\{(a, b) \mid a \in A, b \in B\}
$$ order does not $l^{\text {order does not }}$ matter $\left.\begin{aligned} & \text { ordered pairs } \\ & (a, b) \neq(b, a)\end{aligned} \right\rvert\,\{1,2,3\}=\{2,3,1\}$

Example:

$$
\begin{aligned}
& A=\{1,2,3\} \\
& B=\{0,0\} \\
& A \times B=\{(1,0),(1,0),(2,0),(2,0),(3,0),(3,0)\}
\end{aligned}
$$

(this is to show that $A$ and $B$ need not be related)
Example $\mathbb{R}^{2}=\mathbb{R} \times \mathbb{R}$

FUNCTIONS:
Det. Given sets $A$ and $B$, a function from $A$ to $B$ is a ruk that takes each element $x \in A$ and assonates ts it a sugh $y \in B$. $A$ is the domain of $f$ the range is

$$
\{y \in B \mid \exists x \in A \text { s.t. } f(x)=y\}
$$

save plople un "one-to-one" but that's ambiguous so let's NoT.

* INJECTVE: $\quad f: A \rightarrow B$ is injective if

$$
\begin{aligned}
& \forall x_{1}, x_{2} \in A, \text { if } f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow x_{1}=x_{2} \\
& \forall x_{1}, x_{2} \in A, \quad x_{1} \neq x_{2} \Rightarrow f\left(x_{1}\right) \neq f\left(x_{2}\right)
\end{aligned}
$$

(this is the coutrapositive of the one $f$ above!)

* surdective: $f: A \rightarrow B$ is surjective if $f$ $\forall y \in B \quad \exists x \in A$ s.t. $f(x)=y$.
(i.e. if $B=$ rauge)
* bITHCTIVE = INTECTNE + NORJECTIVE

$$
\begin{aligned}
& \text { * compostion } f: A \rightarrow B, g: B \rightarrow C \\
& g \circ f: A \rightarrow C \\
& g \circ f(x)=g(f(x))
\end{aligned}
$$

LECTURE 3- MATH 327
Today: logic review equiv. relations review $\mathbb{N}, \mathbb{Z}$
Logic and proof
Syenbols: $\forall$-for all, $\exists$ exist, $\Rightarrow$ impher $\Leftrightarrow$ inf if and only if

* Contrapositive (soluetimes it may feel easier to pore this)
"If $A$ then $B$ " is the save an "if not $B$ then not $A$ "
(hen $A$ is sutfirwent for $B$, and $B$ is neessory for $A$ )
If = necessary and sufficient
* negation "If $A$ then $B$ " is the nation of "A aud not $B$ [one trues"
$\begin{array}{r}\text { Example: negation of " } \forall \varepsilon>0 \\ \exists \delta>0 \\ \text { is sit. } \\ \quad \exists<\varepsilon>0\end{array} \quad \forall \delta>0 \quad \delta \geqslant \varepsilon$. $\quad\left(\begin{array}{c}\text { Which } \\ \text { one is } \\ \text { true? }\end{array}\right)$
- Proof by cadiachction: assum the claim you want to prove is false aud show that this imphes something false

EQUIVAIENCE RELATIONS:
set $A$ relation $R$ from set $A$ to set $B$ is a subset $R=A \times B$.

Exauple

$$
\begin{gathered}
R=\left\{(x, y) \in \mathbb{R} \times \mathbb{R} \left\lvert\, \begin{array}{c}
\left.4 x^{2}+y^{2}=16\right\} \\
\frac{x^{2}}{4}+\frac{y^{2}}{16}=1
\end{array}\right.,=1 .\right.
\end{gathered}
$$


dawain $A=\{x \in \mathbb{R} \mid \exists y \in \mathbb{R}$ s.t $(x, y) \in R\}$
rauge $B=\{y \in \mathbb{R} \mid \exists x \in \mathbb{R}$ s.t. $(x, y) \in \mathbb{R}\}$

$$
\begin{aligned}
& A=[-2,2] \subseteq \mathbb{R} \\
& B=[-4,4] \subseteq \mathbb{R}
\end{aligned}
$$

Remark role of $\mathbb{R}$ and $\mathbb{R}$ is cetferent
Exauple

$$
\begin{aligned}
D= & \{(m, n) \in \mathbb{Z} \mid m \text { divides } n\} \\
& m \mid n \text { iff } m, n \in D .
\end{aligned}
$$

- dauain? \#2.\{or
- rauge? $\mathbb{Z}$
- reflexive? YES $\mathrm{m} / \mathrm{m}$
- Sylumelrc? No $m / n \Leftrightarrow n / m$ (ex. 214 but 4 125
-trauntive? Y元 $\mathrm{m} / \mathrm{n}, \mathrm{n} / \mathrm{p} \Rightarrow \mathrm{m} / \mathrm{p}$

$$
\left(\begin{array}{cc}
\text { Af, } n=m k \\
\text { for some } & p=l n \\
x & \text { for sole }
\end{array} \quad \begin{array}{cc}
p=l n=(l h) \cdot m \\
& l
\end{array}\right.
$$

Example (ordered sets)
An order on a set $S$ is a relation $<$ on $S$ st. (a) $x \in S y \in S$ then one and on $y$ one of the statements holds:

$$
x<y, \quad x=y, \quad y<x
$$

(b) if $x<y$ and $y<z$ then $x<z$

$$
\forall x, y, z \in S
$$

Remark this will com up later when talking about fields and $Q$ and $\mathbb{R}$

Definition (equivalence relation)
Binary relation $\sim$ on a set $A$ that is:
(i) reflexive $a \sim a \quad \forall a \in A$
(ii) symmetric $a \sim b \Leftrightarrow b \sim a \quad \forall a, b \in A$
(iii) trannstiv $a \sim b, b \sim c \Rightarrow a \cap c \quad \forall a, b, c \in A$

Example on $\mathbb{N}$, (ie. from $\mathbb{N}$ to $N$ )
$a R b$ if $a=b$.

$$
\begin{array}{ll}
\cdot & a=a \\
\cdot & a=b \Leftrightarrow b=a \\
\cdot & a=b, b, c \Rightarrow a=c
\end{array}
$$

NON- examples

- a relation which is not reflexive:
on $\mathbb{N} a R b$ iff $a<b$

$$
a<a \times
$$

- a relation which is rot syeunctive
- a relation which is not trausitive
on $\mathbb{N} a R b$ iff $b=a+1 \quad$ ( $b$ is the successor of $a$ )
if $b=a+1$ and $c=b+1 \Rightarrow c=6+1=a+2 x$ $\neq a+1$

Equivalence classes
Bet let 2 be an equivalence relation on $\bar{A} \neq \phi . \quad \forall a \in A$ the equivalence clan of $a$, denoted by $[a]$, is the subset of all elements in relation to A.:

$$
[a]=\{b \in A \mid b \sim a\}
$$

Thun $A \neq \phi$ and $\sim$ relation on $A$.
(a) $\forall a \in A \quad a \in[a]$
(b) $\forall a, b \in A, a \sim b \Leftrightarrow[a]=[b]$
(c) $\forall a, b \in A$ either $[a]=[b]$ or $[a] \cap[b]=\phi$.

The equiv. class $[a]$ form a partition
(b/c every $a \in[a]$ is they cover everything bent they doit overlay)

why do we can that they make a partition? Because it gives me a natural was to define alter set: the set of equivalence classes, denoted as $A / \sim$


Proof of thu
(a) let $a \in A$. By deft. of equivalence relation, $a \in[a]$ (reflexive)
(b) $\Rightarrow$ If $a \sim b \Rightarrow[a]=[b]$
wIS 1: $a \sim b \Rightarrow[a] \subseteq[b]$
Let $x \in[a]$. By def of equiv. class, $x \sim a$. By assumption $a \sim b$. Hence, by del of equiv. rel (transitive), $x \sim 6$. By def of equiv. class,

$$
x \in[b]
$$

But $x$ was arbitrary, so $[a] \subseteq[b]$

UTs 2: $a \sim b \Rightarrow[b] \subseteq[a]$
Let $x \in[b]$. By def. of equiv class, by $x \sim b$. By assumption $a \sim b$. ( $b \sim a$ Mymmin Hence, by del of equiv rel (transitive), $x \sim a$ By def of equiv. class,

$$
x \in[a]
$$

But $x$ was arbitrary, so $[b] \subseteq[a]$
$\Leftrightarrow$ if $[a]=[b] \Rightarrow a \sim b$.
$a \in[a]=[b] \Rightarrow$ (def of equiv. class)
$b_{y(I)}^{x} \quad a \cap b$
(c) If $[a] \cap[b]=\phi$, there's nothing to prove. if $[a] \cap[b] \neq \phi$, let $x \in[a] \cap[b]$.
Then by deft of equiv class, $x \sim a$ and $x \sim b$.
By transitivity (and symmetry) $a \sim b$ and so by (II) $\Rightarrow[a]=[b]$
bet Given a set $A \neq \varnothing$, a partition of $A$ is a collection of subsets $\left\{A_{i}\left\{_{i \in I J}\right.\right.$ st.
(i) $A_{i} \neq \phi \quad \forall i \in I$
(ii) (pairwin disjoint) $A_{i} \cap A_{j}=\phi \quad \forall i \neq j$
(iii) $\bigcup_{i \in I} A_{i}=A$.
index set.
usually we have $\mathbb{N}$ but could be anything (even uncountable)

Remark the set of equivalence class form a partition of the set. (ex: prove it)

MATH 327 - Lecture 5

Number systems

$$
\mathbb{N} \subseteq \mathbb{Z} \leq X \subseteq \mathbb{R}(\leq \phi)
$$

Natural numbers $N$ - positive integers
Beaus axioms

1. $1 \in \mathbb{N}$
2. if $n \in \mathbb{N}$ the $n+1 \in \mathbb{N}$ (successor)
3. 1 is not the successes of any $n \in \mathbb{N}$
4. If $n$ and $m$ have the same successor, then $n=m \longleftarrow$ this allow $m$ to cancel out

$$
n \neq 1=m+1
$$

5. if $S \subseteq \mathbb{N}, 1 \in S$ and $\forall n \in S \Rightarrow n+1 \in S$
$\Rightarrow S=\mathbb{N}<$ why induction works
Integers $\mathbb{Z}$
$(\mathbb{N},+)$ - is mising a neutral element and inverses of its elements
neutral element: 0
inverses
$n+(-n)=0$ and $(-n)+n=0$
$\sim \mathbb{Z}$
Rational numbers \$
multiplicative inverses of elements of $\mathbb{Z} v$ but if has a better structux: $\mathcal{Q}$ is a field

Field axioms
Let $F$ be a set and $t$,.., two operations or $F$ such that:
(A1) if $x \in F$ and $y \in F \Rightarrow x+y \in F$
(A2) addition is commutative, $x+y=y+x \quad \forall x, y \in F$
(A3) addition is associative $x+(y+z)=(x+y)+z$ $\forall x, y, t \in F$
(A4) then'' an element in $F$, ot $F$ s.l. $~ D+x=x \quad \forall x \in F$
(As) for every $x \in F$ then is an element

$$
(-x) \in F \text { s.t. } \quad x+(-x)=0
$$

(Mc) if $x \in F$ and $y \in F \Rightarrow x \cdot y \in F$
$\left(M_{2}\right)$ multephicationis commutative, $x \cdot y=y \cdot x \quad \forall x, y \in F$
$\left(M_{3}\right)$ multiph ${ }^{2}$ anion is associative $x \cdot(y \cdot z)=(x \cdot y)-z$
$\forall x, y, t \in F$
(M\&) then'i an element in $F$, , $F$ s.l. $1 \in x=x \forall x \in F$
(MI) for every $x \in F,\{0\}$ there is an element

$$
\frac{1}{x} \in F \text { s.t. } \quad x \cdot \frac{1}{x}=1
$$

(D) distributive law:

$$
x(y+z)=x y+x z \quad \forall x, y, z \in F .
$$

Examples. X is a freed (see HW 1)

- $\mathbb{R}, \Phi$
- $\mathbb{Z}_{p}, j$ pima
when you solve the problem remember that in spite of the notation, that set is $\phi$ !

NON-exauples. N (many reasons No 0, no $-x$ no $1 / x$ )


- $\mathbb{Z}_{m} m$ not prime (no $1 / x$ for everybody)

Set an ordered field is a field which is also an ordered set, s.t.
(a) if $y<z$ then $x+y<x+z \quad \forall x, y, z \in F$
(b) if $x>0, y>0$ then $x y>0 \quad \forall x y \in F$.

Next:

- upper and lower bounds
- least upper beerdd, greatest lone bend
- Archimedean property
- Completeness axsours

Axiom of Completeness
We wont construct real numbers (see \$6 in HW2) but let's agree of what $\mathbb{R}$ is for us.
$(\mathbb{R},+, \cdot)$ is an ordered field, $\Phi \subseteq \mathbb{R}$ What makes $\mathbb{R}$ "better' than $\mathbb{R}$ ? 'subfield It has no gaps. What does that mean? In order to make this more mathematically precise let's start with a feer definitions
Def. We say that a set $A \subseteq \mathbb{R}$ is bounded above if there exists $b \in \mathbb{R}$ such that $a \leqslant b \forall a \in A$.
the number $b$ is called an upper bound.
We say that a set is bounded below if $\exists l \in \mathbb{R}$ s.t. $a \geqslant l \quad \forall a \in A$. The number $l$ is called a lower bound.

Def. $s \in \mathbb{R}$ is the least upper bound for $A \subseteq \mathbb{R}$ if
(i) $\delta$ is an upper bound,
(ii) If $b$ is any upper bound for $A, b \geqslant s$.
supremum = least upper bound.
We write $S=\operatorname{supA}$.

Def. $u \in \mathbb{R}$ is the greatest lower bound for $A \subseteq \mathbb{R}$ if
(i) $u$ is a lower bound)
(ki) If $l$ is any lower bound for $A, l \leq u$
infimum $=$ greater lower bound
We write $u=\inf A$.
Remark. sup and inf are unique. In fact, by (ii) if $S_{1}$, and $s_{1}$ are both least upper bounds for $A$ then $S_{1} \leqslant S_{2}\left(b / c \quad S_{1}=\right.$ sup $)$ and $S_{2} \leqslant S_{1}\left(S_{2}=\right.$ sup $)$

$$
\Rightarrow \delta_{1}=s_{2} .
$$

Examples $A=(-\infty, 3)$

- $A=[0,1]$
- $A=[0,1)$
- $A=[0,1) \cup[17,32)$


The examples show that the supremum and infirm of a set may or may not belong to the set itself.
Aet. We say that $M \in \mathbb{R}$ is a maximum of the set $A$ if $M \in A$ and $M \geqslant a \quad \forall a \in A$
We say that $m \in \mathbb{R}$ is a minimum if $m \in A$ and $m \leq a \quad \forall a \in A$.

Remark: Both $(0,1)$ and $[0,1]$ an bounded abas and below, $(0,1)$ doesn't have any min or max white $[0,1]$ does. The axiom of completeness states that $(0,1)$ is granauteed to have inf and sup.
Axiom of Completeness:
Every nonempty set of real numbers that is bonded above has a least upper bound
(and what about greatest lover bands?
see HW2.)
This is not trim in $\$$ (can you think of an example?)
A super important thing in mathematics is $t \frac{1}{}$ prove characterizations for concepts we define
By doing this we gain ohfterent perspectives, and we get to choose the mort coureniecet on dependuy or the situation we'r in.

Proposition
Assume $s \in \mathbb{R}$ is an upper bound for a set $A \subseteq \mathbb{R}$. Then $s=\sup A$ if aud only if $\forall \varepsilon>0 \exists a \in A$ such that $S-\varepsilon<a$
(an upper bound 11 the least upper bound iff any number smaller than it is not an lepper bound)
Af $\Rightarrow$ Assume that $s=\sup A$. Let $\varepsilon>0$.
By (ii) (or more precisely it contrapositive) if $a<s$, then $a$ is not au upper band. then $s-\varepsilon<s$ if not an upper band, which bey definition meas that $\exists a \in A$ sit. $s-\varepsilon<a$.
$\leqslant$ Now assume that $s \in \mathbb{R}$ is an upper bound, and that $\forall \varepsilon \gg \exists a \in A$ st. $s-\varepsilon<a$.
We need to check that such $s$ satisfies
observe that if $b<s$ then 6 is not au upper bound. To see this, since $s-b>0$ we can choose $\varepsilon=s-b$ and get that $\exists a \in A$ it $b<a$.
coutrapositive: If 6 is an upper bound, then $s \leq 6$. this is exactly (ii)

Thu (Nested intervals property)
For every $n \in \mathbb{N}$ let $I_{n}=\left[a_{n}, b_{n}\right]=\left\{x \in \mathbb{R} \mid a_{n} \leq x \leq b_{n}\right\}$ be a closed interval, and assume $I_{n+1} \subset I_{n}$.
Then $\quad \bigcap_{n=1}^{\infty} I_{n} \neq \phi$
PR


We want to use the Axiom of Completeness to show that $\exists x \in \bigcap_{n=1}^{\infty} I_{n}$. (that is, $\left.x \in I_{n} \forall n\right)$.
Let $A=\left\{a_{i} \mid n \in \mathbb{N}\{\right.$. (the left endpoints)
and let $x=\sup A$.
Because the intervals on nested, all $b_{n}$ 's om upper bounds for $A$. Then $b / C x=\sup A$ we have that $\forall_{n} x \geqslant a$ and $x \in b_{n} \Rightarrow x \in I_{n} \forall n_{n}$

$$
\Rightarrow \quad x \in \bigcap_{n=1}^{\infty} I_{n}
$$

Let's turn to the relationship between $\mathbb{N}$ and $\mathbb{R}$

Theorem (Archimedean Property)
$\mathbb{N}$ is Not bold
(i) given any $x \in \mathbb{R}, \exists n \in \mathbb{N}$ s.t. $n>x$
(ii) given any $y \in \mathbb{R}, y>0 \quad \exists$ ns.t. $0<1 / n<y$.

Remark: Also $\&$ (not couplets) has this property but (') a pain in the bent to prove wo Axon of Completeness.
Proof
(i) for the sale of coutrachction arum that $\mathbb{N}$ is bounded above then bey the Axiom of Completeness $\mathbb{N}$ has a least upper bound, $\alpha=\sup \mathbb{N}$. Then $\alpha-1$ is NOT an upper bond and so $\mathcal{G} \in \mathbb{N}$ s.t.

$$
\begin{gathered}
\alpha-1<n \\
\alpha<n+1
\end{gathered}
$$

But $n \in \mathbb{N}$, and so $n+1 \in \mathbb{N}$ and we have a cut achction, hence $\mathbb{N}$ has to be unbounded.
(ii) Let $x=1 / y$ and un (i)

Remark You may have seen this as: "If $a, b>0$ then $\exists n \in \mathbb{N}$ st. na>b". The proof is very similar cushing the set $S=\mathbb{N} a=\{n a \mid n \in \mathbb{N}\}$.

Thu (Archimedean Propaty)
If $a, b>0$ then $\exists n \in \mathbb{N}$ st. $n a>b$
Proof
Assume not, then $\exists a, b$ sit. $n a \leq b \quad \forall n \in \mathbb{N}$, that is $b$ is an upper bound for the ret $S=\{n a / n \in \mathbb{N}\}$. which means $s$ is bounded above and so by the axiom of completeness. $\exists S_{0}=\sup S$. So $-a<S_{0}$ and so it is not an upper band $\Rightarrow \exists n$ st $s_{0}-a<n a$

$$
\text { so }<n a+a
$$

$$
\delta_{0}<(n+1) a
$$

But $n \in \mathbb{N} \Rightarrow n+1 \in \mathbb{N} \Rightarrow(n+1) a \in \mathbb{N}$. Coutrachction $D$
Cor
(i) given $x \in \mathbb{R}, x>0, \exists n \in \mathbb{N}$ s.t. $u>x$
(ii) given any $y \in \mathbb{R}, y>0 \quad \exists$ ns.t. $0<1 / n<y$.

PR

$$
\begin{array}{ll}
a=1 & \text { then } \Rightarrow(i) \\
b=1 & \text { then } \Rightarrow(i)
\end{array}
$$

Theorem ( $\$$ is dense in $\mathbb{R}$ )
For every $a, b \in \mathbb{R}, a<b \quad \exists r \in \mathbb{Q}$ s.t. $a<r<b$.
Proof
If $a<0<b$ then $r=0$.
Assume now $0 \leq a<b$ (the other case follows from this one, why?)
We need to show that then exist $m, n \in \mathbb{Z}$, $n>0$ st. $a<\left(\frac{m}{n}\right)<b$

$$
n a<m<n b \quad \backslash m \text { steps of size } \frac{1}{n}
$$



By the Archirndeau property, ヨns.t.

$$
\frac{1}{n}<b-a \text {. (*) } \quad a<b-1 / n
$$

Now I need to chook $m$. I want $m$ to be bigger than na, but rot too much:
chook mst. $m-1 \leq n a<m$

$$
(*)+\left(k^{*}\right):
$$

(**) (**)

$$
\begin{aligned}
(*) \rightarrow & <n(b-1 / n)+1 \\
& =n b-x+r
\end{aligned}
$$

MATH 327 - Lectern 8
Theorem
For $c>0$ and $n \in \mathbb{N}, f!x \in \mathbb{R}$ st $x^{n}=c$
Pf. (buckle up!)
Consider the set $\bar{E}=\left\{t \in \mathbb{R} \mid t^{n}<c\right\}$.
$E \neq \phi: \quad t=\frac{c}{1+c} \Rightarrow 0<t<1 \Rightarrow t^{n}<t<c \Rightarrow t \in$ 立.
Eld above: if $t>1+c$ then $t^{n}>t>c$ so $t \neq E$
$\Rightarrow 1+c$ is an upper band
$\Rightarrow$ (Axiom of completeness) $\exists x=$ sup $E$.
UTS: $x^{n}=C$.
We will slow that both $x^{n}<C$ and $x^{n}>C$ ane impossible
First observe that:

$$
\begin{aligned}
& b^{n}-a^{n}=(b-a)\left(b^{n-1}+b^{n-2} a+-+a^{n-1}\right) \\
& \text { if } a<b \Rightarrow b^{n-1-j} a^{j}<b^{n-1} \quad \forall j=0, \ldots, n-1
\end{aligned}
$$

that's a way to wite all term

$$
\Rightarrow \quad b^{n}-a^{n}<(b-a)[\underbrace{b^{n-1}+b^{n-1}+\cdots b^{n-1}}_{n \text { times }}]
$$

$$
\begin{equation*}
\Rightarrow b^{n}-a<n(b-a) b^{n-1} \tag{*}
\end{equation*}
$$

- assume $x^{n}<c$.
we want to apply (*) to

$$
a=x
$$

$b=x+h$, when e $h \in(0,1)$ is such that

$$
\begin{aligned}
& h<\frac{c-x^{n}}{n(x+1)^{n-1}} c-x^{n}>0 \\
(x+h)^{n}-x^{n} & <n(x+h-x)(x+h)^{n-1} \\
& =n h(x+h)^{n-1} \\
h<1- & <h h(x+1)^{n-1} \\
& <n(x+1)^{n-1} \frac{.\left(c-x^{h}\right)}{n(x+1)^{n-1}} \\
= & c-x^{n}
\end{aligned}
$$

$\Rightarrow(x+h)^{n}<c \Rightarrow x+h \in E$, which is a coutradction to $x=\operatorname{seup} E$.

- asarum $X^{n}>C$

We now want to use (*) with

$$
a=y-h
$$

$b=y$, where $k=\frac{x^{n}-c}{n x^{n-1}}$.
Clearly $h>0$ and also

$$
k=\frac{x^{n}-c}{n x^{n-1}}<\frac{x^{n}}{n x^{n-1}}=\frac{x}{n}<x .
$$

If $t \geqslant x-k$, then

$$
\begin{aligned}
x^{n}-t^{n} & \leq x^{n}-(x-k)^{n} \\
& <k n x^{n-1} \\
& =\frac{x^{n}-c}{n x^{n-1}} \cdot n x^{n-1} \\
& =x^{n}-c
\end{aligned}
$$

$\Rightarrow t^{n}>x$, and $t \notin E$.
This meaur that $x-k$ is an upper bound for $E$, but that bs a coutrachction $b / c \quad x-k<x$ and $x=$ least upper band

Sour (OPTIONAL) stuff on countable aud uncountable sets is on Caesar in Ledem 9.
What you need to know is that

- $\mathbb{N}, \mathbb{Z}, \boldsymbol{q}$ are countable
- $\mathbb{R}, \mathbb{R}, \mathbb{R},(0,1)$, .. ar s un countable

Also, read 2.1 in Abbott

Sequences of real numbers
Def. A sequence is a function whose domain is $\mathbb{N}$.
We usually wite $a_{n}$ instead of $f(n)$.
Examples For $n \in \mathbb{N}$

- $a_{n}=\frac{1}{n}$
- $a_{n}=\frac{1}{n^{2}}$
- $a_{n}=\cos (2 \pi n)$
- $a_{n}=1$
- $a_{n}= \begin{cases}0 & n \text { even } \\ 1 & n \text { odd }\end{cases}$
- $a_{n}=\sqrt[n]{n}$
- $a_{n}=(1+1 / n)^{n}$
- $a_{n}=27 n$
- $a_{n}=1+\ldots+n$.
- $a_{n}=\frac{5 n+2}{3 n-4}$

We an interested in studying convergent sequences, that is sequences that approach a certain value as $n$ grow, large and larger.

Let. A sequence $\left\{a_{c} S_{n=1}^{\infty}\right.$ converges to $a \in \mathbb{R}$ if $\forall \varepsilon>0 \quad \exists N$ st. $\forall n \in \mathbb{N}$

$$
\left|S_{n}-s\right|<\varepsilon
$$

(eventually the sequence is very close to a)
Rh $N$ depends on $\varepsilon$.
we porte $a_{n} \rightarrow a$ or $\lim _{n \rightarrow \infty} a_{n}=a$
$a$ is called the limit of $a_{n}$
Examph

$$
a_{n}=\frac{5 n+2}{3 n-4}=\frac{n}{h} \frac{(5+2 / n)}{(3-4 / n)}=\frac{5+2 / n}{3-4 / n}
$$

$2 / n, 4 / n$ get sealer and smaller
so intuitively $a_{n} \rightarrow 5 / 3$.
We now need to learn how to use our intuition together with the definition to wore formal proofs. Before we do that, a little theorem
Then
Limits ane unique. That is if $a, b \in \mathbb{R}$ one both limits of a sequence Sass, then $a=b$

Proof
Assume that $a, b \in \mathbb{R}$ on limits of $S a, S$ By definition, given any $\varepsilon>0$, then exist
$N_{1}$ st. $n>N_{1} \quad\left|a_{n}-a\right|<\varepsilon / 2$
and

$$
N_{2} \text { st. } n>N_{2} \quad\left|a_{2}-b\right|<\varepsilon / 2
$$

Let $n>\max \left\{N_{1}, N_{2}\right\}$.
By triangle inequality

$$
\begin{aligned}
|a-b|=\left|\left(a-a_{n}\right)+\left(a_{n}-b\right)\right| & =\left|a-a_{n}\right|+\left|a_{n}-b\right| \\
& <\frac{\varepsilon}{2}+\frac{\varepsilon}{2} \\
& =\varepsilon .
\end{aligned}
$$

We carr now conclude $a=b$ "provided we prove the following hl' lemur
Lemma
Let $a, b \in \mathbb{R}, \quad a=b \Leftrightarrow \forall \varepsilon>0 \quad|a-b|<\varepsilon$
Pf

$$
\Rightarrow \text { if } a=b \quad|a-b|=0
$$

$\Leftrightarrow$ By coutradiction, arum $a \neq 6$. then let $\varepsilon=|a-b|>0$.
By assumption $|a-b|<\varepsilon$, hence we have a contradiction D

MATH 327 - Lectene 9
Countable and uncountable sets OPTIONAL
$\mathbb{Q} \subseteq \mathbb{R}$ douse (Lectim 7)
$\mathbb{R}, \mathbb{R} \subseteq \mathbb{R}$ deus (HW2)
it is tempting to say that $\mathbb{Q}$ and $\mathbb{R}, \mathbb{Q}$ have the 'same sse" but actually then's a lat more of R. $\mathbb{R}$ than $\mathbb{Q}$.
Recall: cardinality $=$ sis of a set.
if the set is finite $=$ \# elements
What if I have infinitely many elements?
Cantor caus up with an idea to put sets in 1-1 correspondence with each other.
De $A$ function $f: A-B$ is a 1.1 correspondence if it is both injective and sujjective
Def Two sets have the same cardinality, $|A|=|B|$ if $\exists f: A \rightarrow R$ 1-1 correspondence

Exauph

$$
E=\{2,4,6, \ldots\}=\{2 n \mid n \in \mathbb{N}\}=\text { even numbers }
$$

One may be tempted to say the $E$ is "smaller' than $N$ b/c it is (sfs.ctly) cont and in $U$. Bet actually the tho sets have the same carchuality:
the map

$$
\begin{gathered}
f: N \longrightarrow E \\
n \longmapsto 2 n
\end{gathered}
$$

is a 1-1 correspondence.

Example: $|\mathbb{Z}|=|\mathbb{N}|$.
let $f: \mathbb{N} \longrightarrow \mathbb{Z} \quad f(n)= \begin{cases}(n-1) / 2 & n \text { odd } \\ -n / 2 & n \text { even }\end{cases}$

$$
\begin{array}{ccccccc}
\mathbb{N} & 1 & 2 & 3 & 4 & 5 & \cdots \\
& \hat{1} & 1 & 1 & 1 & 1 & \\
\mathbb{Z} & 0 & -1 & 1 & -2 & 2 & \cdots
\end{array}
$$

Example $|\mathbb{R}|=|(-1,1)|$

$$
f:(-1,1) \longrightarrow \mathbb{R}
$$

7
use calculus to show that this is a 1-1 core spondence


Def $A$ set $A$ is countable if $|A|=|\mathbb{N}|$ An infinite set which is rot countable is called uncountable
Then
$Q$ is countable
Proof (isth)
$\forall n \in \mathbb{N}$ let $A_{n}=\{ \pm p / q \mid p, q$ lowest teems

$$
\begin{aligned}
& A_{1}=\{0 / 1\} \\
& A_{2}=\{1 / 1,-1 / 1\} \\
& A_{3}=\{1 / 2,-1 / 2,2 / 1,-2 / 1\}
\end{aligned}
$$

$$
\text { and } p+q=n \text { ? }
$$

$$
\begin{aligned}
& A_{0}=\{1 / 3,-1 / 3,3 / 1,-3 / 1\} \\
& A_{5}=\{1 / 4,-1 / 4,2 / 3,-2 / 3,3 / 2,-3 / 2,4 / 1,-4 / 2\}
\end{aligned}
$$

Each $A_{n}$ is finite and every $r \in \mathbb{Q}$ appears in ore and only one $A_{n}$.
(show this)
Take for exauph $23 / 10.23 / 10 \in A_{33}$.
$A_{1} \cup \_\cup A_{32}$ is finite so if 1 bund the correspondence as follow,

N

$$
\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
1 & 1 & \uparrow & 1 & 1 & 1 & 1 \\
\vdots & \underbrace{1}_{A_{1}} & \underbrace{\frac{1}{1}}_{A_{2}} \frac{-1}{T} & \underbrace{\frac{1}{2}}_{A_{3}} & -\frac{1}{2} & \frac{2}{1} & -\frac{2}{7}
\end{array}
$$

I aus bound to get to $23 / 10$ after finitely many numbers.
But the rave reasoning apples to any $p / q \in \mathbb{R} \quad\left(p / q \in A_{p+q}\right.$...etc)
Every rational number appears in only one As so l'uchone

The standard approach:
You may have seen I he following prose that the positive rationals on constable:
$\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \text {-denominator }\end{array}$
$\begin{array}{lllllllll}1 & 1 / 1 & 1 / 2 & \cdots & 1 / 3 & 1 / 4 & 1 / 5 & 1 / 7 & 1 / 8\end{array}$
$\begin{array}{llllllll}2 & 2 / 1 & 2 / 2 & 2 / 3 & 2 / 4 & 2 / 5 & 2 / 6 & 2 / 7 \\ 3 & 2 / 8 \\ 3 & 3 / 1 & 3 / 2 & 3 / 3 & 3 / 4 & 3 / 5 & 3 / 6 & 3 / 7\end{array}$
4 4/14/24/3
5 5/1, 5/2
7
numerator
so that the correspondence is
$\begin{array}{lllllllll}\mathbb{N} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ \mathbb{Q} & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ & 2 & 1 / 2 & 1 / 3 & 3 / 1 & 4 / 1 & 3 / 2 & \end{array}$

Thun
$\overline{\mathbb{R}}$ Is uncountable
Proof
By coutradiction, assume $\exists f: N \rightarrow \mathbb{R}$ bijective. this means I can enumerate the elements of $\mathbb{R}$
Let $x_{n}=f(n)$, so that $\mathbb{R}=\left\{x_{1}, x_{2}, \ldots\right\}$,
$B / L f$ is a 1.1 correspondence that list contains all real number:
let's use the nested interval property to produce. a ceal number not then, and obtain a coussadiction.
Let $I_{1}$ closed interval $x_{1} \notin I_{1}$
Let $I_{2} \subset I_{1}$ cloned interval $x_{2} \notin I_{2}$
(Why does $I_{2}$ exist?)

$$
I_{n+1} \subset I_{n}, \quad x_{n+1} \notin I_{I_{2}}
$$



If $x_{j}$ is any of the list in (*), then $x_{j} \notin I_{j}$ and so
$x_{i} \notin \bigcap_{n=1}^{\infty} I_{n}$
But by N.I.P $\exists x \in \bigcap_{n=1}^{\infty} I_{n}$ but $x \in \mathbb{R}$ as described above and so were done 0 Cautor's dhagonaluzation Method
Exercise: $(0,1)$ is uncountable of $\mathbb{R}$ is
Then
$(0,1) \subseteq \mathbb{R}$ is uncountable
Pf
By coutrachction arum $\exists f: \mathbb{N}-(0,1)$, 1-1 correspondence
$\forall m \in \mathbb{N}, f(m) \in(0,1)$ and we use its decimal representation (that we accept who formal set)

$$
f(m)=. a_{m 1} a_{m 2} a_{m 3} a_{m x}
$$

that is $a_{m n} \in\{0,-9\}$ is the $n$th digit of $f(m)$ we can look at $A$ in the following table

| $\mathbb{N}$ | $(0,1)$ |  | lIst digit | 2 nd |
| :--- | :--- | :--- | :--- | :--- |
| $1-f(1)=0$. | $a_{11}$ | $a_{12}$ | $a_{13}$ |  |
| $2-f(2)=0$. | $a_{21}$ | $a_{22}$ | $a_{21}$ |  |
| $3-f(3)=0$. | $a_{31}$ | $a_{32}$ | $a_{33}$ |  |
| $4-f(4)=0$. | $a_{41}$ | $a_{42}$ | $a_{43}$ |  |
| 5 | , | , |  |  |

Our ammempton is that every number is in this list.
Now, let $x=0 . b_{1} b_{2} b_{3}, \ldots$ when

$$
\begin{array}{r}
b_{n}= \begin{cases}2 & a_{n n} \neq 2 \\
3 & a_{n n}=2\end{cases} \\
\left(\text { (if } a_{11}=2 \Rightarrow b_{1}=3\right. \\
a_{n} \neq 2 \Rightarrow b_{1}=2, \text { etc) }
\end{array}
$$

Why does $x$ not appears in the table?

$$
\begin{array}{lll}
x \neq f(1) & b / c & b_{1} \neq a_{11} \\
x \neq f(2) & b / c & b_{2} \neq a_{22}
\end{array}
$$

(continue the orgement)
Contradiction!

In twa; you will prove that limits ane unique, so it makes sees to wite

$$
a=\lim _{n \rightarrow \infty} a_{n} \quad \text { or } \quad a_{n} \rightarrow a
$$

In the def of limit:
$\forall \varepsilon>0 \quad \exists N>0$ sc. $\forall n>N$ "eventually" $\underbrace{\left|a_{n}-a\right|<\varepsilon}_{\begin{array}{c}\text { this mean } \\ \text { dist }\left(a_{n}, a\right)<\varepsilon\end{array}}$ or

$N$ needs to be at least this big $N$ needs ts be at feat this

Example $\quad a_{n}= \begin{cases}400 & n \leqslant 1000 \\ \frac{1}{n} & n>1000\end{cases}$

$$
a_{n}=\left\{400,400, \ldots, 400, \frac{1}{1001}, \frac{1}{1002},-\{\right.
$$

$a_{n} \rightarrow 0$ ! the first finitely many terms doit affect convergence, this jut mate $N$ bugger
Reenark These are three possible be havix for a sequence:

- it converges
- it doesnt - it diverges
it osculates.
The latter two are often bundled together but that's a questionable choice.
Act Let $\left\{a_{n}\right\} \subseteq \mathbb{R}$. We say that $a_{n}$ diverges if $\forall M>0 \quad \exists N>0$ s.t. $\forall n>N$

$$
\left|a_{n}\right|>M
$$

We can even be a little more precise (like in Problem 5 in HW3- see corrected version) and say
Act Let $\left\{a_{n}\right\} \subseteq \mathbb{R}$. We say that $a_{n}$ diverges to $+\infty(\alpha$ converges to $+\infty)$ if $\forall M>0 \exists N>0$ s.t. $\forall n>N \quad a_{n}>M$

Aet. Let $\left\{a_{n}\right\} \subseteq \mathbb{R}$. We say that $a_{n}$ diverges to $-\infty(\alpha$ converges to $-\infty)$ if $\forall M>0 \exists N>0$ s.t. $\forall n>N \quad a_{n}<-M$

Before we start diving into examples one last remark that we made in class, beet I didn't wite it down:
Rh In nome of the definitions we astud that $N \in \mathbb{N}$. In fact it docent need to be. However by the archimedean property we know we can find a bigger natural number, and so we can assume that $N \in \mathbb{N}$, if we want

Example:

$$
a_{n}=\frac{1}{n}
$$

Scratch woks:
First, we need a guess we know $1 / 2$ gets mule as $n$ gets large, so we will pare that

$$
\lim _{n \rightarrow \infty} \frac{1}{n}=0
$$

given any $\varepsilon>0$ I need to find N s.L.

$$
\text { if } n>N \quad\left|\frac{1}{n}-0\right|<\varepsilon \text {. }
$$

$$
\frac{1}{n}<\varepsilon \Rightarrow n>\frac{1}{\varepsilon} .
$$

Then I need to choon $N=\frac{1}{\varepsilon}$ (or $\left.\frac{\Gamma}{\varepsilon}\right]$ if we wont $N \dot{N}$ )
and we get the result
Pred Let $\varepsilon>0$ and let $N=\frac{1}{\varepsilon}$.
then if $n>N$ we have $\left|\frac{1}{n}-0\right|<\varepsilon$
Example

$$
a_{n}=\frac{3 n+1}{7 n-4}
$$

Scratch wort.
As we learned in calculus, factor $n$ out to make a guess:

$$
\begin{aligned}
& \text { a guess: } \\
& \frac{n /}{n} \frac{(3+1 / n)}{(7-4 / n)}=\frac{3+(1 / 4)}{7-4 / n} \rightarrow 3 / 7
\end{aligned}
$$

we want to prove that

$$
\lim _{n \rightarrow \infty} a_{n}=3 / 7
$$

Given $\varepsilon>0$ we need to figure out how big
$n$ must be IN TERMS of $\varepsilon$ so that

$$
\begin{aligned}
& \left|\frac{3 n+1}{7 n-4}-\frac{3}{7}\right|<\varepsilon \\
& \frac{2 / n+7 \times-21 / n+12}{7(7 n-4)}=\frac{19}{7(7 n-4)} \\
\Leftrightarrow & \left\lvert\, \frac{19}{7(\underbrace{7 n-4)}_{>0} \mid<\varepsilon} \rightarrow \operatorname{drop} 1.1\right. \\
& \frac{19}{7(7 n-4)}<\varepsilon
\end{aligned}
$$

Now algebra

$$
\begin{aligned}
& 7 n-4>\frac{19}{7 \varepsilon} \\
& n>\left(\frac{19}{7 \varepsilon}+4\right) \frac{1}{7} \\
& n>\frac{19}{49 \varepsilon}+\frac{4}{7}=N .
\end{aligned}
$$

Formal prose
Let $\varepsilon>0$ and $N=\frac{19}{49 \varepsilon}+\frac{4}{7}$,

Now take $n>N$. This implies

$$
n>\frac{19}{49 \varepsilon}+\frac{4}{7}
$$

which, by the name algebra manipulation os above, is equivalent to

$$
\left|\frac{3 n+1}{7 n-4}-\frac{3}{7}\right|<\varepsilon
$$

and so we on dour

Tim (squeeze theorem) enough if It' everituall)
Show that if $x_{n} \leq y_{n} \leq z_{n} \quad \forall n \in \mathbb{N}$ and

$$
\lim _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} y_{n}=L
$$

then $\lim _{n \rightarrow \infty} y_{n}=L$.
Proof.

$$
\begin{array}{rll}
\forall \varepsilon>0 & \exists N_{1}>0 \text { sit } n>N_{1} \quad\left|X_{n}-L\right|<\varepsilon \\
& \exists N_{2}>0 \text { sit } n>N_{2} \quad\left|z_{n}-L\right|<\varepsilon
\end{array}
$$

Let $N=\max \left\langle N_{1}, N_{1}\right)$. Then if $n>N$ wIs: $\quad\left|y_{n}-L\right|<\varepsilon$, that is

$$
\begin{gathered}
-\varepsilon<y_{n}-L<\varepsilon \\
-\varepsilon \leqslant x_{n}-L \leqslant y_{n}-L \leqslant z_{n}-L<\varepsilon
\end{gathered}
$$

Examph

$$
a_{n}=(-1)^{n}
$$

Scratch work: $a_{n}$ forever oxalates b/w -1 and 1 so we guess it doent converge. then it means we must prove that for every $a \in \mathbb{R}$ of can't be that

$$
\lim (-1)^{n}=a
$$

The idea is thar given any $a$, esther 1 or -1 is at distance at least 1 form $a$. Proaf. By coutcachction, assumes $\lim (-1)^{n}=0$.
then choose $\varepsilon=1$. Then $\exists N$ st $\forall n$

$$
\begin{aligned}
& \left|(-1)^{n}-a\right|<1 \\
& n \text { even } \Rightarrow|1-a|<1 \\
& n \text { odd } \Rightarrow|(-1)-a|<1 .
\end{aligned}
$$

$$
\begin{aligned}
2=|1-(-1)| & =|1-a+a-(-1)| \\
& \leq|1-a|+|a-(-1)|
\end{aligned}
$$

strictly

$$
\begin{aligned}
& <1+1 \\
& =2 .
\end{aligned}
$$

But 2=2, here we have a coutsadiction
Example

$$
\lim _{n \rightarrow \infty} \frac{4 n^{3}+3 n}{n^{3}-6}=4
$$

Scratch work: For emo I want to understand how big $n$ should 6 so that

$$
\begin{aligned}
& \left|\frac{4 n^{3}+3 n}{n^{3}-6}-4\right|<\varepsilon \\
& \left|\frac{3 n+24}{n^{3}-6}\right|<\varepsilon \\
& \frac{3 n+24}{n^{3}-6}<\varepsilon \quad \text { If } n>1 \\
& \quad \text { | cam drop } 1.1, b / c \\
& \quad n^{3}-6>0
\end{aligned}
$$

Finding the best $N_{i}$ would require solving a cubic, but we doult need that!

We can splurge with our estimates and mate a over life eases
if I want to bound $A / B$ form above, I need ts band A from above and B foin below ( $b / c \quad B \geqslant M \Rightarrow \frac{1}{B} \leqslant M$ )
Idea: I want to end up with something like $\frac{\square n}{\square n^{3}}$ s 1 cam simplify the $n$

Numerator $3 n+24 \leq 3 n+24 n=27 n$
Denominator $n^{3}-6 \geqslant \square_{\text {court }}^{n^{3}}$
$n^{3}-6 \geqslant(1-a) n^{3}$
Can wite it as 1-a
$n^{2}-6 \geqslant n^{2}-a n^{3}$
wont to find a
$a n^{3} \geqslant 6$
many checker! if I choose
$n^{3} \geqslant 6 / a \quad a=\frac{1}{2}$ then 1 need
1 caus also have to impon $n>2$
$a=3 / 4$ and that il good $\forall n>1$

$$
a=3 / 4 \quad n^{3} \geqslant 8 \quad \checkmark \quad \forall n \geqslant 2
$$

then $\quad n^{3}-6 \geqslant(1-3 / 4) n^{3}=\frac{1}{4} n^{3}$.
Finally we have

$$
\begin{aligned}
& \frac{3 n+24}{n^{3}-6} \leqslant \frac{276}{\frac{1}{4} n^{3} 2}=\frac{108}{n^{2}}<\varepsilon \\
& n^{2}>\frac{108}{\varepsilon} \\
& n>\sqrt{\frac{108}{\varepsilon}}
\end{aligned}
$$

But I need to recall | asked $n>1$ so

$$
N_{\varepsilon}=\max \left\{\sqrt{\frac{108}{\varepsilon}}, 2\right\}
$$

Proof
Let $\varepsilon>0$ and choose $\left.N_{\varepsilon}=\max \int \sqrt{\frac{108}{\varepsilon}}, 1\right\}$. In particular, $N_{\varepsilon} \geqslant \sqrt{108 / \varepsilon}$ and so $\forall n>N_{\varepsilon}$

$$
\begin{aligned}
& n>\sqrt{108} / \varepsilon \\
& n^{2}>108 / \varepsilon \\
& \frac{108}{n^{2}}<\varepsilon
\end{aligned}
$$

$$
\begin{aligned}
& \frac{3 n+24}{n^{3}-6} \leqslant \frac{27 n}{\frac{1}{4} n^{3}}<\varepsilon \\
& \left|\frac{3 n+24}{n^{3}-6}\right|<\varepsilon \quad \begin{array}{l}
\text { of my chace of } N_{\varepsilon} \\
\quad \mid \text { know } n>1
\end{array} \\
& \left|\frac{4 n^{3}+3 n}{n^{3}-6}-4\right|<\varepsilon
\end{aligned}
$$

and hence convergenced is poved

MATH 327-Lectem 12
Def Let Sass be a sepleence. We say that $a_{n}$ is bounded if $\exists M>0$ st.

$$
\left|a_{n}\right| \leq M \quad \forall n \in \mathbb{N}
$$

Remark
banded sapience $\Rightarrow$ banded above AND below.
Prop
Let $a_{n}$ be $a$ convergent sequence. then $a_{n}$ is bounded.
Proof
By def, given any $\varepsilon>0 \exists N_{\varepsilon}>0$ st.

$$
\forall n>N_{\varepsilon} \quad\left|a_{n}-a\right|<\varepsilon .
$$

Mich (acbiteory chore!!!) $\quad \varepsilon=1$

$$
\forall n>N_{1} \quad\left|a_{n}-a\right|<1
$$

see practice poodems
(Revers) triangle inequality

$$
\begin{aligned}
& \left|\left|a_{n}\right|-|a|\right| \leq\left|a_{n}-a\right|<1 \\
& \Rightarrow \quad\left|a_{n}\right|-|a| \leq\left|\left|a_{n}\right|-\left|a_{1}\right|<1\right.
\end{aligned}
$$

$$
\left|a_{n}\right|<|a|+1 \quad \forall n>N_{c}
$$

Now, let $M=\max \left\{\left|a_{1}\right|,\left|a_{2}\right| \ldots,\left|a_{N_{2}}\right|,|a|+1\right\}$. then $\quad\left|\alpha_{n}\right| \leqslant M$
Example

$$
\lim _{n \rightarrow \infty} \frac{n^{2}+3}{n+1}=+\infty
$$

Scratch work
for any $M>0$ I want $t$ find out how big $n$ must be so that

$$
\frac{n^{2}+3}{n+1}>M
$$

$\frac{n^{2}+3}{n+1} \geqslant$ Need to bour from below
T need to band fran above

$$
\begin{aligned}
& n^{2}+3 \geqslant n^{2} \\
& n+1
\end{aligned} \quad 2 n \quad \Rightarrow \quad \frac{n^{2}+3}{n+1} \geqslant \frac{n^{2}}{2 n}=\frac{n}{2}>M
$$

$$
\text { Let } N_{M}=2 M \text {. }
$$

Proof let $M>0$ and choose $N_{M}=2 M$ then, $\forall n>N_{m}$

$$
\begin{gathered}
n>2 M \\
\frac{n^{2}+3}{n+1} \geqslant \frac{n^{2}}{2 n}>M \\
\text { passive } \Rightarrow\left|\frac{n^{2}+3}{n+1}\right|>M
\end{gathered}
$$

Examples / exercises for today:
1(a) $\lim _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)=a+b$ provided $\lim _{n \rightarrow \infty} a_{n}=a$ and $\lim _{n \rightarrow \infty} b_{n}=b$.

2(c) $\quad \lim _{n \rightarrow \infty} x^{n}=0$ if $|x|<1$.

Example

$$
a_{n}=\frac{3 n-7}{2 n+3}
$$

wT $\lim _{n \rightarrow \infty} a_{n}=3 / 2$.
I can use hit theorems (!)
Proof
Because $n>0 \quad a_{n}=\frac{\not \partial(3-7 / n)}{\not \partial(2+3 / n)}=\frac{3-7 / n}{2+3 / n}$.
By Practice Problem 3(a)
$1 / n$ converges to $O \quad(p=1)$
By Practue Problem 1(b),
both $-7 / \mathrm{h}$ and $3 / 4$ converge to 0
By Practia Problem 1 (a)
$3-7 / n$ and $2+3 / n$ waverge to 3 and 2, respectively and finally, By Pacha Problem 1(d),

$$
\lim _{n \rightarrow+\infty} a_{n}=3 / 2
$$

Problem 2
Assume $\quad \operatorname{lmi}_{n \rightarrow \infty} a_{n}=a>0$
and $\lim _{n \rightarrow \infty} b_{n}=+\infty$.
Prove that $\lim _{n \rightarrow+\infty} a_{n} b_{n}=+\infty$
Reasoning:
By assumption I know (*) $\forall \varepsilon>0 \quad \exists N_{\varepsilon}>0$ st. $\forall n>N_{\varepsilon}$

$$
\begin{gathered}
\left|a_{n}-a\right|<\varepsilon \\
\text { (**) } \forall M^{\prime}>0 \quad \exists N_{M^{\prime}}>0 \text { st } \quad \forall n>N_{M^{\prime}} \\
b_{n}>M^{\prime}
\end{gathered}
$$

WIS: $\forall M>0 \exists N_{M}>0$ st. $\forall n>N_{m}$

$$
a_{n} b_{n}>M
$$

I want to prove something for all $M>0$. So I CANOT CHOORE M. But I KNOW that (*) and (*x) hold for every $\varepsilon>0$ and $M^{\prime}>0$ So I can choose $\varepsilon$ and $M^{\prime}$ in a convenient way for my grad.

My opal is to prove $\exists N_{M>0}$ st.
$a_{n} b_{n}>M$.
If $n>N_{\varepsilon}$ and $n>N_{M^{\prime}}\left(\equiv n>\max \left\{N_{\varepsilon} N_{N_{1}} \mid\right.\right.$ ) $\left|a_{n}-a\right|<\varepsilon \Rightarrow-\varepsilon<a_{n}-a<\varepsilon$

$$
\Rightarrow a-\varepsilon<a_{n}<a+\varepsilon
$$

-that's the sid l Ineed!.
this is the definition of absolute value. If that's not clear to you, go review $1.1111!$

$$
\left(\begin{array}{l}
\left.\left|a_{n}-a\right|<\varepsilon \rightarrow \quad-\left(a_{n}-a\right)<\varepsilon \Rightarrow \quad a_{n}-a>-\varepsilon\right) \\
\left(a_{n}-a\right)<\varepsilon
\end{array}\right.
$$

and $\left.b_{n}\right) M^{\prime}$.
I will not move forward, if Itu afraid to wite things. let's play with what we got

$$
\begin{aligned}
& a_{n}>a-\varepsilon \Rightarrow a_{n} b_{n}>M^{\prime}(a-\varepsilon) \\
& b_{n}>M^{\prime} \uparrow \\
& \text { multiply } \\
& \text { them! }
\end{aligned}
$$

I want $a_{n} b_{n}>M$ so if I canchoose $\varepsilon$ and $M^{\prime}$ so that $M=M^{\prime}(a-\varepsilon)$ then I'm daw (because closing

$$
\left.N_{M}=\max \left(N_{\varepsilon}, N_{M}\right\rangle \text { hols }\right)
$$

Stare at this $\quad M^{?}=\underbrace{M^{\prime}(a-\varepsilon)}_{l}>0$ 1 need this to be >o
$\Rightarrow 1$ need $a-\varepsilon>0$.
But I can chooser! And a>0! \&o I need to choose a positive and suialler than a: om natural option is to choose

$$
\varepsilon=a / 2 .
$$

With this I have

$$
a_{n} b_{n}>M^{\prime}(a-a / 2)=\frac{M^{\prime} a}{2} .
$$

Now I can chook $M^{\prime}$ so that $M=\frac{M^{\prime} a}{2}$.
solving for $M^{\prime}$ we get

$$
M^{\prime}=2 M / a
$$

Formal prose
By assumption I know (k) $\forall \varepsilon>0 \quad \exists N_{c}>0$ st. $\forall n>N_{\varepsilon}$ $\left|a_{n}-a\right|<\varepsilon$
(k*) $\forall M^{\prime}>0 \quad \exists N_{M^{\prime}>0}$ sit $\quad \forall h>N_{M^{\prime}}$ $b_{n}>M^{\prime}$
WIS: $\forall M>0 \exists N_{M}>0$ st. $\quad \forall n>N_{m}$

$$
a_{n} b_{n}>M
$$

Let $M_{\text {oo }}$. Chook $\varepsilon=a / 2>0$ and $M^{\prime}=2 M / a>0$.
By (*) and (**) then exist $N_{\varepsilon}>0, N_{M^{\prime}}>0$ such that $\forall n>N_{\varepsilon} \quad\left|a_{n}-a\right|<\varepsilon$

$$
\forall n>N_{M^{\prime}} \quad b_{n}>M!
$$

Choose $N_{M}=\max \left\langle N_{z}, N_{M^{\prime}}\right\rangle$
then $\forall n>N_{M} \quad\left|a_{n}-a\right|<\varepsilon \Rightarrow a_{n}>a-\varepsilon$

$$
b_{n}>M^{\prime}
$$

Multiplying, $\quad a_{n} \cdot b_{n}>M^{\prime}(a-\varepsilon)=\frac{2 M}{a} \cdot(a-a / 2)$

$$
=\frac{2 M}{a} \cdot \frac{a}{z}=M
$$

audi we found $N_{M}>0$ sit.

$$
n>N_{n} \quad a_{n} b_{n}>M
$$

Since $M$ wars arbitrary, this concludes the proof is

We learned the deft of limit of a sequence, and we talked about bonded sequences.
Auster good property that sequences can have (exactly like functions) is being meonotave
Def $A$ sequence $a_{n}$ is increasing if $a_{n+1} \geqslant a_{n} \quad \forall n \in \mathbb{N}$; a sequence $a_{n}$ is decreasing of $a_{n 11} \leq a_{n} \quad \forall n \in \mathbb{N}$. A sequence is monotom if it's ether increasing or decreasing
Examples $a_{n} \equiv 2$

- $a_{n}=n$
- $a_{n}=1 / n \quad$ ل
- $a_{n} \geqslant 0 \quad \forall n$ and $S_{n}=a_{1}+a_{2}+\ldots+a_{n}$.

Then $S_{n+1} \geqslant S_{n}\left(b / c \quad a_{n+1} \geqslant 0\right)$ and so $S_{n}$ is increasing
$S_{n}=$ partial sums of a series
Bet. If $a$ is a sequence au infinite senes is a formal expression $\sum_{n=1}^{\infty} a_{n}=a_{1}+a_{2}+a_{3}+\ldots$

The corresponding sequence of partial sour is

$$
S_{n}=a_{1}+\frac{+\infty}{+\infty}+a_{n}
$$

and we say the $\sum_{n=1}^{+\infty} a_{n}$ converges to $A \in \mathbb{R}$ if

$$
\lim _{n-\infty} \delta_{n}=A
$$

Theorem (MONDTONE CONERGENCE THM)
if a sequence is monotom aced banded, then it converges
Pf.
Assure $a_{n}$ is increasing. We need to give a candidate for the lust.
By hypdesis the set $S a_{n} \mid n \in N S$ is bounded (above, in particular) and so $\exists \delta=\sup \left\{a_{n} \mid n \in \mathbb{N}\right\}$.
It maker reuse to guess

$$
\lim _{n \rightarrow+\infty} a_{n}=s
$$

let $\varepsilon>0$. Because $s$ is the supremum the exist sam element $a_{N}$ st.

$$
s-\varepsilon \leq a_{N}
$$

But $a_{N}$ is increasing, so $\forall n>N \quad a_{n} \geqslant a_{N}$.
then

$$
\begin{gathered}
s-\varepsilon \leq a_{N} \leq a_{n} \leq s \leq s+\varepsilon \\
-\varepsilon \leq a_{n}-s \leq \varepsilon \\
\left|a_{n}-s\right| \leq \varepsilon
\end{gathered}
$$

By choosing $N_{\varepsilon}=N$, the desired result io prover If $a_{n}$ is decreasing, repeat the sam pros with infimum.

Exauphs

$$
\begin{aligned}
& \left.a_{n}=\frac{1}{n} \quad \text { decreasing } \left.\quad \inf \int \frac{1}{n} \right\rvert\, n \in \mathbb{N}\right\}=0 \\
& \text { and } \lim _{n \rightarrow \infty} 1 / n=0 \\
& \sum_{n=1}^{\infty} \frac{1}{n^{2}} \\
& S_{n}=1+\frac{1}{2^{2}}+-+\frac{1}{n^{2}} \text { is increasing }\left(6 / c 1 / n^{2} \geq 0\right)
\end{aligned}
$$

if we can find an upper band then I know the series converge (to savathing)

$$
\begin{aligned}
S_{n} & =1+\frac{1}{2 \cdot 2}+\frac{1}{3 \cdot 3}+\cdots+\frac{1}{n \cdot n} \\
& \leqslant 1+\frac{1}{2 \cdot 1}+\frac{1}{3 \cdot 2}+\cdots+\frac{1}{(n-1) n}
\end{aligned}
$$

$$
\begin{aligned}
& =1+\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{\beta}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\cdots+\left(\frac{v}{n-1}-\frac{1}{n}\right) \\
& =1+1-\frac{1}{n} \\
& \leq 1+1 \\
& =2 .
\end{aligned}
$$

then $s_{n}$ is bounded and increasing, so it converges to reave limit $\leq 2$ (we will be back).
Remark (on MCT)
If $a_{n}$ is monotom and unbounded, we could prove that $a_{n}$ converges to $\pm \infty$ (How? HW 4)

Subsequences
Recall (lectures and practice poobleur):

$$
\begin{aligned}
& a_{n}=(-1)^{n} \\
& b_{n}=\sin (n \pi / 3) .
\end{aligned}
$$

In both cases, to prove that they and not converge, we produced two different "pecial" values of n (infinitely many) such that the sequence went different ways:

$$
\begin{array}{ll}
n_{n}=2 k & a_{n_{n}}=a_{2 n}=(-1)^{2 k}=1 \\
n-\text { that } & \\
\text { depends ont } & \\
n_{n}=2 k+1 & a_{n n}=a_{2 n+1}=(-1)^{2 n+1}=-1 .
\end{array}
$$

AND

$$
\begin{array}{ll}
n_{n}=6 k+1 & b_{n n}=\sin \left(\frac{(6 k+1)}{3} \cdot \pi\right)=\sin (\pi / 3)=\sqrt{3} / 2 \\
n_{n}=6 k+4 & b_{n n}=\sin \left(\frac{(6 k+4) \pi}{3}\right)=\sin (4 \pi / 3)=-\sqrt{3} / 2
\end{array}
$$

We thees concluded that the sequence
have a limit, because those two "selections' of $n$ 's uncovered infinitely many valuer of $n$ sit $a_{n}$ is very close to different values
tel, equal in this can
$a_{n n}$
$b_{n n} \rightarrow$ these an subsequences
$a_{1}\left(a_{2}\right) a_{3}\left(a_{2}\right) a_{5} \quad a_{6} \quad a_{7} \quad a_{8} a_{9} a_{10} \quad a_{n}\left(a_{12} \ldots\right.$


When "making" a subsequence
we pick some values $\left(a_{n_{n}}\right)$
or equivalently som inchices $\left(n_{n}\right)$ bert we have 3 rules:
(1) they have to be infinitely many
(2) I can't repeat the same $n$ ( ok if values an
(3) My chores have to lee sfructy the same!) increasing

$$
2 \leqslant n_{2}<n_{2}<\ldots<n_{n}<\ldots
$$

Another way to look at it is w/ a selection map $\sigma: \mathbb{N} \rightarrow \mathbb{N}$ sfoctly increasing

$$
\sigma(k)=n_{k} .
$$

Ex $(-1)^{n}$

$$
\begin{aligned}
& \sigma(h)=2 h \\
& \sigma(k)=2 h+1
\end{aligned}
$$

Def A subsequence of a sequence $a_{n}$ is a sequence $b_{n}$ such that for every $h \in \mathbb{N}$ then exit's $n_{n}$ sit.

$$
1 \leqslant n_{2}<n_{2}<-<n_{n}<\ldots
$$

and $b_{n}=a_{n n}$.
Why do we care? If you look bach at the first page, weave already used subspuenus to prove things about convergence (or lack then of). In fact.
Thu e
A sequence $a_{n}$ converges to $a^{e^{R}}$ if and only if every subsequence of $a_{n}$ converges to the same $a \in \mathbb{R}$
Pf
$\angle=$ HF
$\Rightarrow$ let $b_{n}=a_{n n}$ be a subseq. of $a_{n}$.
let $\varepsilon>0$. wTs: $\exists N_{\varepsilon}>0$ st. $\forall k>N$

$$
\begin{array}{ll} 
& \left|b_{n}-a\right|<\varepsilon \\
\text { i.e. }\left|a_{n n}-a\right|<\varepsilon .
\end{array}
$$

But I already know that

$$
\begin{array}{r}
\exists \widetilde{N}_{\tau}>0 \text { sit. } \forall n>N \\
\left|a_{n}-a\right|<\varepsilon .
\end{array}
$$

But $n_{n} \geqslant k \quad \forall h \in \mathbb{N}$ induction:
so I can choose

$$
N_{\varepsilon}=\tilde{N}_{\varepsilon}
$$

and if $k>N_{\varepsilon}$

$$
n_{1} \geqslant 1 \quad\left(b /<n_{1} \in \mathbb{N}\right)
$$

assume $n_{k} \geqslant k$

$$
\begin{aligned}
& \Rightarrow \quad n_{n}>N_{a} \\
& \Rightarrow \quad\left|a_{n n}-a\right|<\varepsilon
\end{aligned}
$$

ni's ane just some of the n's!


Then
Let $a_{n}$ be a sequence
(i) If $t \in \mathbb{R}$, the set $\left\{n \in \mathbb{N}\left|\left|a_{n} \cdot t\right|<\varepsilon\right\}\right.$ is infinite if and only if $\exists a_{n n} \rightarrow t$
(ii) $a_{n}$ unbounded below $\Rightarrow \exists a_{n n} \rightarrow-\infty$
(iii) $a_{n}$ unbounded above $\Rightarrow \exists a_{n n} \rightarrow+\infty$

Moreau, all these subsequences can be taken monotonic (thing about it: if they mort just throw away the n's you doit liter, then's only many)

These on useful, for a proof see theoseen 11.2 in Ross (not mandatory!).
But our favonte theorem about subsequences is Then (Bolzawo-Weerstrass)
Every/boundid sequence has a convergent subsiqueen
Bernard Bolzano Karl Weierstrass
(781-1848) 1815-1897 prove by him fins

MATH 327 - Lecture 16
Thin (Bolzano-Weiertrass)
Every bound id sequence has a convergent subsequence.
Pf 1
Let $a_{n}$ be banded, that is $\exists M>0$ s.t $\left|a_{n}\right|<M$. let $A=\left\{a_{n} \mid n \in \mathbb{N}\right\}$. Then $-M \ell b$ and $M u \cdot b$, so

$$
\begin{aligned}
& \text { Let } \begin{array}{l}
a=\inf A \\
b=\sup A
\end{array} \quad . \quad \text { inf } A \leq \operatorname{sep} A \leq M .
\end{aligned}
$$

Construct a sequence of nested intervals as follows. midpoint $m_{1}$

$$
I_{1}=\left\{\begin{array}{l}
\text { left half of }[a, b]\left(\left[a, \frac{a+b}{2}\right]\right) \text { if the set } \\
\left\{n \in \mathbb{N} \mid a_{n} \in\left[a, m_{1}\right]<\right.\text { is infinite } \\
\text { right halfo! }[a, b]\left(\left[m_{1}, b\right]\right) \text { if t. th set } \\
\left\{n \in \mathbb{N} \mid a_{n} \in\left[m_{1}, b\right]\right\} \text { is infinite }
\end{array}\right.
$$

$$
\left\{n \in \mathbb{N} \mid a_{n} \in\left[m_{1}, b\right]\right. \text { < is infinite }
$$

(At least om of their is - kind of a pigeonhole argument) but with a loosest thenar let $m_{2}$ be the midpoint of $I_{1}$ of pigeons and construct $I_{2}$ in the save manner. $I_{2}$


By induction, we get a reprence of houmenty intervals $I_{n}$ such that $I_{n+1} c I_{n}$.
By the nested interval property (NIP) then exists

$$
x \in \bigcap_{n=1}^{\infty} I_{n} .
$$

Setim a subsequence as follows:
for every $k$. choose $a_{n_{n}} \in I_{n}$
(I have $\infty$ many choices but any wats)
UTS: $\lim _{n \rightarrow \infty} a_{n n}=x$.
Let $\varepsilon>0$ and let $l=|b-a|(=b-a)$ (they were sup and inf!)

$$
\left|I_{k}\right|=l / 2^{k}
$$

natural number
Let $N$ be the firth such that $0<l / 2 N<\varepsilon$.
Then $\forall k>, n_{n}>$ and

$$
\begin{aligned}
& a_{n n} \in I_{n_{n}} \leqslant I_{N} \\
& x \in I_{N} \\
\Rightarrow \quad & \left|a_{n_{n}}-x\right| \leqslant \ell / 2^{k}<\varepsilon
\end{aligned}
$$

The second proof user:
Them
Every squenn has a monotone subsequence
pf
We say that $n$th term is dominant if its greater than all the terms after it

$$
a_{m}<a_{n} \quad \forall m>n .
$$

Case 2 sly mans dominant.
$a_{n n}=$ sebsog et dominant terms
$a_{n n+1}<a_{n c} \quad \forall h>$
Case 2 finitely many dominant terms
Chron $n_{1}$ st $a_{n}$ is the last.

$$
\forall \underbrace{N}_{F} \geqslant n_{1} \quad \underset{\sim}{m}>N \text { sit } a_{m} \geqslant a_{N}
$$

$N=n_{1} \rightarrow$ select $m=n_{2} \quad a_{n_{2}} \geqslant a_{n_{1}}$
suppose you selected $n_{k-1}$. Then choosing $N=n_{k-1}$ $\rightarrow$ select $n_{n}>n_{n-1}$ s.t. $a_{n_{n}} \geqslant a_{n n-1}$. then $a_{n n}$ is increasing.
$P$ PD.
Let $a_{n}$ lee bounded. Let $a_{n n}$ be a monotone subsequence Then $a_{n 2}$ is moustom and bended so by MCT am e converges

Deft.
Let $a_{n}$ be a sequence. $\forall N \in \mathbb{N}$, let

$$
\begin{aligned}
S_{N} & =\sup \left\{a_{n} \mid n>N\right\} \\
\delta_{N} & =\inf \left\{a_{n} \mid n>N\right\} .
\end{aligned}
$$

Detim

$$
\begin{aligned}
& \limsup a_{n}=\lim _{N++\infty} S_{N} \\
& \liminf a_{n}=\lim _{N \rightarrow+\infty} S_{N} .
\end{aligned}
$$

Remark 1
We doit require $a_{n}$ to be bounded. From now on we adopt the convection
$\sup A=+\infty$ if $A$ not bad above
inf $A=-\infty$ if $A$ not bod below
We also say that " $\lim _{n \rightarrow \infty} a_{n}$ is defined" \& $A^{\prime}{ }^{\prime}$ at $\mathbb{R} \pm \infty$.

Remarite
it is NOT trim that

$$
N_{N o} \frac{\ln \sup a_{n}=\sup \left\{a_{n} \mid n \in \mathbb{N}\right\}}{}
$$

(t) always trim that $\lim \operatorname{sip} a_{n} \leq \sup \left\{a_{n} \mid n \in \mathbb{N}\right)$
limsup $a_{n}$ is the biggest value © why? that $a_{n}$ gets clos to infinitely many times
EX

$$
\begin{aligned}
a_{n}= & \{1000,1,1,1,1,1, \ldots \mid \\
& \sup \left\{a_{2} \mid n \in \mathbb{N}\right\}=1000 \\
& \lim \sup a_{n}=1
\end{aligned}
$$

Then (*)
let $a_{n}$ be a sequence. Then
lima is defined if and only if

$$
\limsup a_{n}=\operatorname{Liminf} a_{n}
$$

Macover $\operatorname{him} a_{n}=\operatorname{hmsup} a_{n}=\liminf a_{n}$.
Pf
$\Rightarrow$ HOS

If $\limsup a_{n}=\liminf a_{n}=+\infty$, then
$\forall M>0 \exists \bar{N}$ s.t. $\forall N>(\bar{N}-1)$ - just so lator 1 doi't have to maku a difterent choine

$$
S_{N}=\operatorname{lnf}\left\{a_{n} \mid n>N\right\}>M .
$$ of $K$.

$\forall n>N$

$$
a_{n} \geqslant \inf \left\{a_{n} \mid n>N\right\}>M .
$$

and so $\quad \lim a_{n}=+\infty$.
if $\lim \sup a_{n}=\liminf a_{n}=-\infty$ a sumentar poof wohs.
Assum $\limsup a_{n}=\liminf a_{n}=a \in \mathbb{R}$.
let $\varepsilon>0$. then $\exists N_{1}$ s.t. $\quad N_{1}$

$$
|\underbrace{\sup \left\{a_{n} \mid n>N_{N^{\prime}}\right\}}_{S_{N_{1}}}-a|<\varepsilon
$$

then

$$
\forall n>N_{1}, \quad a_{n} \leq \sup \left\{a_{n} \mid n>N_{1}\right\}<a+\varepsilon
$$

Also, $\exists N_{2}$ s.t.

$$
\forall n>N_{2}-\underbrace{}_{S_{N_{2}}} \quad \frac{\inf \left\{a_{n} \mid n>N_{2}\right\}-a \mid<\varepsilon}{a-\varepsilon<\inf \left\{a_{n} \mid n>N_{2}\right\} \leqslant a_{n}}
$$

Putting it all together,

$$
\begin{aligned}
\forall n) & N=\max \left\langle N_{1}, N_{2}\right| \quad a-\varepsilon<a_{n}<a+\varepsilon . \\
\Rightarrow & \lim a_{2}=a
\end{aligned}
$$

Thun
let $a_{n}$ be a sequence. then $子$ moustonic rubseg'r sit.
$a_{n n} \rightarrow \limsup _{n \rightarrow+\infty} a_{n}$
$a_{n j} \xrightarrow[j-\infty]{ } \operatorname{lominf} a_{n}$

MATH 327. Lecteve 17
Thus (*)
let $a_{n}$ be a requence. Then $\exists$ moustonic subseg'r s.t.
$a_{n n} \rightarrow \limsup a_{n}$
$a_{n j} \underset{j \rightarrow \infty}{ } \liminf a_{2}$
Pf
tW5.

Det $A$ limit point for a requence $a_{n}$ is a $l \in \mathbb{R}$ s.t. $\exists n_{k}$ s.t $a_{n k} \rightarrow l$.

We also call $+\infty$ or $-\infty$ a limit point if $\exists$ nus.l $a_{n h} \rightarrow \pm \infty$.
Examples
(1) if an carverges to $a$, theen the only himent point is $a$.
(2) $a_{n}=(-1)^{n}$ limit pts: $\pm 1$
(3) $a_{n}=(-1)^{n} n^{2}$ lumit pts $\pm \infty$.

Thus
let $\delta$ be the set of all limit pints of a squeria $a$.
(i) $\delta \neq \varnothing$
(ii) $\sup S=\limsup a_{n}$ and inf $S=$ liming $n$ (vii) $\lim _{n \rightarrow+\infty} a_{n}=a$ iff $\delta=\{a\}$.

Pf.
(i) liming, limsup $\in S$. by
(ii) let $t \in \mathbb{R}$ be a limit pint. Then $a_{n k} \rightarrow t$. Then $t=\liminf a_{n n}=\limsup n n$.
But $n_{k} \geqslant k \Rightarrow\left\{a_{n k} \mid k>N\right\} \subseteq\{a \mid n>N\} . \forall N$.
Livininf $a_{n} \leq \liminf _{k} a_{n_{n}}=t=\operatorname{Limsup} n_{n} \leq \operatorname{limsupa}_{n} a_{n}$
True $\forall t \in S \Rightarrow \quad \liminf a_{n} \leq \inf S$

$$
\text { sups } \leq \operatorname{limsipapan}_{n}
$$

But they both belong to $S$ ss were dove
(iii) (thu in lector 16)
$\oint 12$ in Ror has a lot of stut on $h$ inf and limmp if that's confesing for you!

MATH 327 -Lecleme 18

Cauchy sepuences
Df let $a_{n}$ be a sepuence We ray that $a_{n}$ is Cauchy $\forall \varepsilon>0 \quad \exists N_{r}>$ s.t $\forall n, m>N_{r}$

$$
\left|a_{n}-a_{n}\right|<c .
$$

lemma
Cauchy sepleences ane banded
Pf
HW5
Thus
A sequenn conserges iff it's Canchy.
Pf
$\Rightarrow$ if $a_{n} \rightarrow a$ then $\forall \varepsilon \infty \quad \exists N$ s.t $\forall n>N$

$$
\left|a_{n}-a\right|<\varepsilon / 2
$$

then if $m, n>N$

$$
\left|a_{m}-a_{n}\right| \leq\left|a_{m}-a\right|+\left|a-a_{1}\right|<\varepsilon
$$

and so $a_{n}$ is Canchey

Assume $a_{n}$ is Cauchy. By the lemma, the sequence is bounded, so by Botraus-Weierstrass, then exists a convergent subsequence let $x=\lim _{n} a_{n n}$.
(Idea: for $n_{n}$ big evengh $A^{\prime} l l$ be close to $x$, aud also all the terms an con to each other so trough inequality will work again)
let so. $\exists \mathrm{N}$ st. $\forall m, n>N$

$$
\left|a_{n}-a_{m}\right|<\varepsilon / 2 .
$$

Also choose $\overline{n_{k}}>N$ such that

$$
\begin{aligned}
&\left|a_{\bar{n} n}-x\right|<\varepsilon / 2 \\
&\left|a_{n}-x\right|=\left|a_{n}-a_{\overline{n n}}+a_{\overline{n n}}-x\right| \\
& \leqslant\left|a_{n}-a_{\bar{n}}\right|+\left|a_{n n}-x\right| \\
&<\varepsilon / 2+\varepsilon / 2 \\
&=\varepsilon
\end{aligned}
$$

$\forall n \geqslant \overline{n_{n}}$.

Series


Thu (algebraw limit theorems for series) Assume $\sum_{n=1}^{\infty} a_{n}=A, \quad \sum_{n=1}^{\infty} b_{n}=B$. Then
(i) $\sum_{k=1}^{\infty} c a_{n}=c A \quad \forall c \in \mathbb{R}$
(w) $\sum_{k=1}^{\infty}\left(a_{k}+b_{k}\right)=A+B$

Pf
(i) We know $s_{n}=a_{1}+\cdots+a_{n}$ converges is $A$. then $\quad t_{n}=c a_{1}+\cdots+c a_{n}=c S_{n}$ converges to $C A$ by Alg. Limit the for requencu).
(ii) same
then (Cauchy conterion for sees)
$\sum_{n=1}^{\infty} a_{n}$ converges iff $\forall \varepsilon>0 \quad \exists N_{\varepsilon}>0$ st. if $n>m>N_{\varepsilon}$,

$$
\left|a_{m+1}+-+a_{n}\right|<\varepsilon
$$

Pl
Observe:

$$
\begin{aligned}
& \text { re: } \\
&\left|s_{n}-\delta_{m}\right|=\left|\sum_{n=1}^{n} a_{n}-\sum_{k=1}^{m} a_{n}\right| \\
&=\left|\sum_{k=m+1}^{n} a_{k}\right| \\
&=\left|a_{m+1}+\cdots+a_{n}\right|
\end{aligned}
$$

and apply Cauchy critenon for sequences
Thus
If a series $\sum_{n=1}^{\infty} a_{n}$ converges then $a_{n} \rightarrow 0$.
Pf
Consider $n=m+1$ in thu above.
then $\forall \varepsilon \infty \quad \exists N$ set. $n>N \quad\left|a_{n}\right|<\varepsilon$

$$
\Rightarrow \quad a_{L} \rightarrow 0 .
$$

.

MATH 327. Lecture 19
Example (geometric sones)

$$
\sum_{k=0}^{\infty} r^{k}
$$

Partial sums $S_{n}=\sum_{k=0}^{n} r^{k}=\frac{1-r^{n+1}}{1-r}$ for $r \neq 1$
Why? Because

$$
\begin{aligned}
& (1-r)\left(1+r+r^{2}+-+r^{n}\right)= \\
& =1+\not++-+y^{n}-\left(\not f+y^{2}+\cdots+r^{n+1}\right) \\
& =1-r^{n+1}
\end{aligned}
$$

$\Rightarrow$ if $r \neq 1$ I can divide by 1-r and obtain the dissed result.
Now observe that if $|r| \geqslant 1$, then $r^{k} \ngtr_{0}$ and we proved that it is a necessary condition for a series to converge.
For $|r|<1$ we know that $r^{n} \rightarrow 0$ when $n \rightarrow+\infty$ to we can guess the limit of $S_{n}$ !,

$$
S_{n}=\frac{1-r^{n+1}}{1-r} \longrightarrow \frac{1}{1-r} \text { if }|r|<\mid
$$

Then $\quad \sum_{k=0}^{\infty} r^{k}=\frac{1}{1-r}$ if $|r|<1$.
and $\sum_{k=0}^{\infty} r^{n}$ diverges if $|r| \geqslant 1$.
Examples HW6
$\sum \frac{1}{k^{p}} \quad p>1$

- $\sum_{k=1}^{\infty} \frac{1}{k}=+\infty$
- $\sum_{k=1}^{\infty} \frac{1}{k^{2}}=\frac{\pi^{2}}{6}$
- $\sum_{k=1}^{\infty} \frac{1}{k^{2}}=L$ ? ?

7 we wait to prove that it converges $\forall p>1$

but its hard to $\uparrow$ well pave it later
For now, let's pase that $\sum \frac{1}{h}$ rhormonic series diverges.
We will pare that it is unbounded "comes from music!

$$
1+\frac{1}{2}+\left(\frac{1}{3}+\frac{1}{4}\right)>1+\frac{1}{2}+\left(\frac{1}{4}+\frac{1}{4}\right)=1+\frac{1}{2}+\frac{1}{2}=2
$$

In general,

$$
\begin{aligned}
S_{2^{k}} & =1+\frac{1}{2}+\left(\frac{1}{3}+\frac{1}{4}\right)+\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\right)+\left(\frac{1}{2^{n-1}+1}+-\frac{1}{2^{k}}\right) \\
& >1+\frac{1}{2}+\left(\frac{1}{4}+\frac{1}{4}\right)+\left(\frac{1}{8}+-\frac{1}{8}\right)+\cdots+\left(\frac{1}{2^{k}}+-+\frac{1}{2^{k}}\right) \\
& =1+\frac{1}{2}+2 \cdot \frac{1}{4}+4 \cdot \frac{1}{8}+-+2^{k-1} \cdot \frac{1}{2^{n}} \\
& =1+\frac{1}{2}+\frac{1}{2}+-+\frac{1}{2} \\
& 1+\frac{1}{2} k .
\end{aligned}
$$

But $1+\frac{1}{2} k$ is unbounoled and so is $S_{2 k}$ (and so $s_{n}$ )
One reason for which ifs useful to have a bunch of known examples is that, for series of nonnegative numbers we have southing similar to squeeze the that helps us coupon series

Prop (Comparison Test)
Assume $0 \leqslant a_{k} \leqslant b_{k} \quad \forall k \in \mathbb{N}$
(i) if $\sum b_{n}$ converges then $\sum a_{n}$ converges
(ii) if $\sum a_{2}$ diverges then $\sum b_{n}$ diverges

Pf.
Observe that

$$
\begin{equation*}
\left|a_{m+1}+\ldots+a_{n}\right| \leq\left|b_{m+1}+\ldots+b_{n}\right| \tag{*}
\end{equation*}
$$

then by the Cauchy catering
(i) $\sum b_{k}$ converges $\Rightarrow$ it is Cauchy

$$
\begin{aligned}
(*)- & \Rightarrow \sum a_{n} \text { Cauchy } \\
& \Rightarrow \sum a_{n} \text { converges }
\end{aligned}
$$

(ii) $\sum a_{n}$ diverges $\Rightarrow \sum a_{n}$ not Cauchy
$(k)-\sum_{1} 6_{n}$ bot Cauchy
$\Rightarrow \sum b_{n}$ diverges

Next, we need to collect a few more tools to test whether a series converges or nods
Theocen (Cauchy Condensation Test)
Assume $a_{k}$ is decreasing, and $a_{k} \geqslant 0$.
then the series $\sum_{k=1}^{\infty} a_{k}$ converges if and only if

$$
\begin{aligned}
& \sum_{k=0}^{\infty} 2^{k}{\underset{\sim}{2}}_{a_{2}^{k}} \text { converges } \\
& \text { this is a mibsequence } \\
& \text { of } a_{k} \quad\left(n_{k}=2^{k}\right) \\
& =a_{1}+2 a_{2}+4 a_{4}+8 a_{6}+\cdots
\end{aligned}
$$

Pf
$\sum$ Assume $\sum 2^{k} a_{2^{n}}$ converges.
then the partial sums $t_{n}=a_{1}+2 a_{2+}+2^{n} a_{2 n}$. one bounded ( $b / \mathrm{c}$ we know it converge)
then $\exists M>0$ st. $t_{n} \leq M \quad \forall n \in \mathbb{N}$.
UTS: $\sum a_{k}$ converges because $a_{n} \geqslant 0$, we know that

$$
\begin{aligned}
S_{n+1} & =a_{1}+\ldots+a_{n}+a_{n+1} \\
& =S_{n}+a_{n+1} \\
& \geqslant s_{n}
\end{aligned}
$$

and hence $\delta_{n}$ is inseasing, so its enough to prove that $s_{n}$ is bounded
Fix $m \in \mathbb{N}$, let $n$ be large enough so that

$$
\begin{aligned}
& m \leqslant 2^{n+1}-1 \\
\Rightarrow & S_{m} \leqslant S_{2^{n+1}-1} \\
S_{2^{n+1}-1}= & a_{1}+\left(a_{2}+a_{3}\right)+\left(a_{4}+a_{5}+a_{6}+a_{7}\right)+\ldots \\
& +\left(a_{2^{n}}+\ldots+a_{2^{k+1}-1}\right) \\
\leqslant & a_{1}+\left(a_{2}+a_{2}\right)+\left(a_{4}+a_{4}+-1\right)+ \\
= & a_{1}+2 a_{2}+4 a_{4}+\ldots+2^{n} a_{2^{n}} \\
= & t_{n} .
\end{aligned}
$$

Then $S_{m} \leqslant S_{2^{n+1}-1} \leqslant t_{n} \leqslant M$. By MCT, $S_{n}$ converge
$\Rightarrow$ Assume $\sum 2^{k} a_{2^{k}}$ diverges Herne $t_{n}=a_{1}+2 a_{2}+2^{n} a_{2}$ is unbounded (above, $b / c$ we know $a_{n} \geqslant 0$ ). Then $\forall M \exists n_{0}$ st. $t_{n_{0}}>M$

We want to show that $S_{n}$ is also unbounded Because $a_{n}$ is deceasing by hypothesis

$$
0 \leq \quad \cdots \leq a_{n+1} \leq a_{n} \leq \ldots
$$

Fix $m \in \mathbb{N}$ and choose $n$ s.l. $m>2^{n}$

$$
\begin{aligned}
2 . \delta m>2 S_{2^{n}} & =2\left(a_{1}+a_{2}+\left(a_{3}+a_{4}\right)+\left(a_{5}+-+a_{8}\right)+-\right) \\
& \geqslant 2\left(a_{1}+a_{2}+\left(a_{4}+a_{4}\right)+\left(a_{8}+-+a_{8}\right)+-\right) \\
& =2\left(a_{1}+a_{2}+2 a_{4}+4 a_{8}+-+2^{n-1} a_{2^{n}}\right) \\
& =2 a_{1}+2 a_{2}+4 a_{4}+8 a_{8}+-+2^{n} a_{2^{n}} \\
& \geqslant a_{1}+2 a_{2}+4 a_{4}+8 a_{8}+-+2^{n} a_{2^{n}}
\end{aligned}
$$

$\Rightarrow S_{m} \geqslant t_{2^{n}} / 2$ and to it is also unbounded So for wise locked at nonnegative $a_{n}$.
We cal use $\sum\left|a_{n}\right|$ to infer info on $\sum a_{n}$
thu (Absolute convergence test)
If $\sum_{n=1}^{\infty}\left|a_{n}\right|$ converges, then $\sum_{n=1}^{\infty} a_{n}$ converges
Proof
Because $\sum\left|a_{n}\right|$ converges by the Cauchy Coterion

$$
\begin{aligned}
& \forall \varepsilon>0 \quad \exists \text { s.l. } \quad \forall n>m>N \\
& \left|\left|a_{m+1}\right|+\left|a_{m+2}\right|+\right. \\
& =\left|a_{m+1}\right|\left|+\left|a_{m+2}\right|+-+\left|a_{n}\right|<\varepsilon\right.
\end{aligned}
$$

By triaugle inguality

$$
\left|a_{m+1+}-+a_{n}\right| \leq\left|a_{m+1}\right|+-+\left|a_{n}\right|<\varepsilon \text {. }
$$

then $\sum a_{n}$ is cauchy, and so it coverges D
Atternaturg senes tert
(i) $a_{1} \geqslant a_{2} \geqslant \geq$ ( $a_{n}$ decreasing)
(ii) $a_{n} \rightarrow 0$
then $\sum(-1)^{n+1} a_{n}$ coivergls
Pf HW6
Exauph: alternating harronc series

$$
\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{n}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots
$$

NATH 327. Lecture 20
Summarizing: "converges"

- if $\sum a_{n} \overbrace{2+\infty} \Rightarrow a_{n} \rightarrow 0$
- Cauchy criterion
- absolute convegena test
- comparison test (for $\geqslant 0$ series)
- Cauchy Condensation test
- Atternaturg series test

Def We say $\sum a_{n}$ "converges absolutely" if $\sum\left|a_{n}\right|$ converges
Rh. says that if a sees converges absolutely.
Prop. (Root test) then it converges.
let $\sum a-b e$ a serves and let $\alpha=\lim s u p\left|a_{n}\right|^{1 / n}$
The series $\sum a_{n}$ :
(i) converges absolutely if $\alpha<1$
(vi) d verges if $\alpha>1$
(iii) if $\alpha=1$ I get $n$ information

粏
(i). Assum $\alpha<1$. let $\varepsilon>0$ s.t $\alpha+\varepsilon<1$.

By det of himsup
$\exists \mathrm{N}$ s.t.

$$
\alpha-\varepsilon<\sup \left\{\left|a_{n}\right|^{1 / n} \mid n>N\right\}<\alpha+\varepsilon
$$

In particullor, $\forall n>N \quad\left|a_{n}\right|^{1 / n}<\alpha+\varepsilon$

$$
\left|a_{n}\right|<(\alpha+\varepsilon)^{n}
$$

But $\alpha+\varepsilon<1 \Rightarrow \sum_{n=N+1}^{\infty}(\alpha+\varepsilon)^{n}$ converges
(geometric series)
and By companson test

$$
\sum_{n=N+1}^{\infty}\left|a_{n}\right| \text { coneger. }
$$

(ii) Asferm $\alpha>1$. Thene exists a subseguenes of $\left|a_{n}\right|^{1 / n}$ canverging to $\alpha$.
Then $\left|a_{n}\right|^{1 / n}>1$ ooly many times $\left|a_{n}\right|>1$ soly many trmes.
then $\left|a_{n}\right| \neq 0$
(iii)

$$
\begin{aligned}
& \sum \frac{1}{n} \\
& \sum \frac{1}{n^{2}}
\end{aligned} \quad \alpha=1
$$

Prop (Ratio lest)
$\sum a_{n}$,
(i) converges if $\limsup \left|a_{n+1} / a_{n}\right|<1$
(ii) diverge if liming $\left|a_{n+1} / a_{3}\right|>1$
(iii) if $\liminf \left|a_{n+1} / a_{3}\right| \leq 1 \leq \limsup \left|a_{n+1} / a_{n}\right|$

No information
If practue problems from tho week
Double summation and rearrangeuent
If $\left\{a_{i j} \mid i, j \in \mathbb{N}\right\}$ is a double indexed set of real number, we want to understand what $\sum_{i j} a_{i j}$ mans.
let' look at an example

$$
a_{i j}=\left\{\begin{array}{l}
\frac{1}{2 i-1} \\
-1 \\
0
\end{array} \quad i=j, j \begin{array}{ccccc}
-1 & \frac{1}{2} & \frac{1}{4} & \frac{1}{8} & \frac{1}{16} \\
0 & -1 & \frac{1}{2} & \frac{1}{4} & \frac{1}{8} \\
0 & 0 & -1 & \frac{1}{4} & 1 / 4 \\
0 & 0 & 0 &
\end{array}\right.
$$

How do we add thus all upI could add each row first:

$$
\begin{aligned}
\sum_{j=1}^{\infty} a_{2 j} & =0+-1+\frac{1}{2}+\frac{1}{4} \\
& =0
\end{aligned}
$$

and I's the rave for all :
Fix j
and add up

$$
\begin{aligned}
p \quad \sum_{j=1}^{\infty}\left(\sum_{i=i}^{\infty} a_{i j}\right) & =\sum_{j=1}^{\infty}-\frac{1}{2^{j-1}} \\
& =-\sum_{k=0}^{\infty} \frac{1}{2^{-1}}=-2 .
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{i=1}^{\infty} a_{i 1}=-1 \\
& \sum_{i=1}^{\infty} a_{i 2}=-1+\frac{1}{2}=-\frac{1}{2} \\
& \sum_{i=1}^{\infty} a_{i 3}=-1+\frac{1}{2}+\frac{1}{4}=-\frac{1}{4} \\
& \sum_{i=1}^{\infty} a_{i j}=-\frac{1}{2^{j-1}}
\end{aligned}
$$

So tho different interpretation of $\sum_{i, j} a_{i j}$ give two duftereent answers. What's the is night one

Is then even a detention for "the night one")
Ore could argue that norther of the approaches above is the night on because they both send $V$ and $j$ at $\infty$ at different times, but that's not enough of a justification (i and j an independent vavables) Now doseve that for every $n, m \in \mathbb{N}$

$$
S_{m n}=\sum_{i=1}^{m} \sum_{i=1}^{n} a_{i j} \quad \text { is a finite sem }
$$

and here + is commutative so I can rearrange as 1 please.
A more fair way to serum the doubh indexed sepneene in our example above is by looking at

$$
S_{n n}=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j}
$$

Going bach up to the 'mate $x$ ' and adding increasing squares:

$$
\begin{aligned}
& S_{11}=-1 \\
& S_{22}=-2+\frac{1}{2} \\
& S_{33}=-3+2 \cdot \frac{1}{2}+\frac{1}{4}=-2+\frac{1}{4} \\
& S_{44}=-2+\frac{1}{8} \\
& \vdots \\
& S_{n n}=-2+\frac{1}{2^{n-1}} \\
& \lim _{n \rightarrow+\infty} S_{n n}=\lim _{n \rightarrow+\infty}\left(-2+\frac{1}{2^{n-1}}\right)=-2 .
\end{aligned}
$$

Is this the night answer?

We were discussing double indexed sums How is that related to products)

$$
\begin{array}{r}
\sum a_{i} \cdot \sum b_{j}=\sum_{\mu_{j}} a_{i} \cdot b_{j} \\
\text { we would be say } \\
\text { touted to say }
\end{array}
$$

bent we learned this is not a well dined sum
These an all matter of rearrangements.
let's start with that.
Rearrangements
Example. $\sum \frac{(-1)^{n+1}}{n}$-can't rearrange, practice ${ }^{\text {dive }}$

$$
\sum(-1 / 2)^{4}-\text { can rearrange }
$$

(PRACTCE PROBLEMS)
what's the difference?
Let let $\sum a_{n}$ be a sevres. A senses $\sum b_{n}$ is called a rearrangement of $\sum a_{n}$ if $\mathcal{F}: \mathbb{N} \rightarrow \mathbb{N}$ bijective function st. $b_{f(k)}=a_{n} \quad \forall h \in N$.

At. We say that a sexes converges conditionally if $\sum a_{n}$ converges but $\sum\left|a_{n}\right|$ does not example $\left.\sum \frac{(-1)^{n+1}}{n}\right)$ this was the issue!!
thus If $\sum a_{n}$ converges absolutely then any rearrangement converges to the sam limit
If.
Assume $\sum a_{n}=A$. let $\sum b_{n}$ be a prearrangement.
$s_{n}$-partial sums of $\sum a_{n}$
$t_{m}$-partial sums of $\sum b_{n}$
wIs: $t_{m} \underset{m \rightarrow+\infty}{\longrightarrow} A$
Let $\varepsilon>0$. Because $\delta_{n} \rightarrow A \quad \exists N_{1}$ s.l.

$$
\left|S_{n}-A\right|<\varepsilon / 2 \quad \forall n>N_{1}
$$

Bc the convergence is absolute, $\sum\left|a_{n}\right|$ caverges and so A's Cauchy $\Rightarrow \exists N_{2}$ si) $\forall n>m>N_{2}$

$$
\begin{equation*}
\sum_{n=m+1}^{n}\left|a_{n}\right|<\varepsilon / 2 \tag{*}
\end{equation*}
$$

let $N=\max \left\{N_{1}, N_{2}\right\}$. the finite set $\left\{a_{1},-a_{N}\right\}$ must appear in $\sum b_{n}$ eventually. I want to go for ahead enough
let $M=\max \{f(k) \mid 1 \leq k \leq N\}$
-the last on that appear.
(among $a_{11}, a_{N}$ )
Now, let $m \geqslant M$.
$t_{m}-S_{N}=$ finitely many term and 1 can us (allafter $a_{N}$ )

$$
\begin{aligned}
\Rightarrow\left|t_{m}-A\right| & =\left|t_{m}-\delta_{N}+\delta_{N}-A\right| \\
& \leq\left|t_{m}-\delta_{N}\right|+\left|\delta_{N} \cdot A\right| \\
& <\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon .
\end{aligned}
$$

if $n>M<$ this is the $N_{2}$ that says
$t_{m} \rightarrow A$.
We observed that in geneal

$$
\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} a_{i j} \neq \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} a_{i j}
$$

Theorem
If $\sum_{i=1}^{\infty} \sum_{j=1}^{\infty}\left|a_{i j}\right|$ converges
(that is, for every $i \in N \quad \sum_{j=1}^{\infty}\left|a_{i j}\right|=b_{i}$ and $\sum_{i=1}^{\infty} b_{i} i$
converges $t_{\infty}$ ) converges too)
then

$$
\lim _{n \rightarrow \infty} \delta_{n n}=\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} a_{i j}=\sum_{j=1}^{\infty} \sum_{i=1}^{\infty} a_{i j}
$$

f.
see geerdrd exercise proof in Abbott, or Rudin.
Remark
Another reasonable way to sum is to sum along diagonals when it is constant.

$$
d_{2}=a_{n} \quad d_{3}=a_{12}+a_{21} \quad d_{4}=a_{13}+a_{21}+a_{31}
$$

It can be shown (similarly as the above) that

$$
\sum_{k=2}^{\infty} d_{n}=\lim _{n \rightarrow \infty} \delta_{n n} t_{\infty} \text {. }
$$

Weill see in a moment when this came from,

Product of series
We mentioned beton that when wasters to multiply sees we can again into this rearrangement issue.

$$
\left(\sum_{i} a_{i}\right) \cdot\left(\sum b_{j}\right)=\sum_{i, j} a_{i} \cdot b_{j} \quad ? ?_{l} ?
$$

$\zeta$ Not define
Cauchy-poduct of series:

$$
\sum_{i=1}^{\infty} a_{i} \cdot \sum_{j=1}^{\infty} b_{j}:=\sum_{k=1}^{\infty} c_{n}
$$

when $c_{k}=\sum_{i+j=k} a_{i} b_{j}$.
Motivation:
something super important that you have actually euccontered in call classes:
power sene « Taylor senses!'

$$
\begin{aligned}
& \sum_{i=0}^{\infty} a_{i} x^{i} \\
& \sum_{j=0}^{\infty} b_{j} x i
\end{aligned}
$$

come to 424 for more!!!

$$
\begin{aligned}
& \left(a_{0}+a_{1} x+a_{2} x^{2}+\cdots\right)\left(b_{0}+b_{1} x+b_{2} x^{2}+\cdots\right) \\
& =\left(a_{0} b_{0}+a_{0} b_{1} x+a_{0} b_{2} x^{2}+b_{0} a_{1} x+a_{1} b_{1} x^{2}+\cdots\right)
\end{aligned}
$$

it makes sees to group then by power of $x$ and this is exactly

$$
\sum_{k=0}^{\infty} \sum_{i+j=k} a_{i} \cdot b_{j}=\sum_{k=0}^{\infty} c_{k}
$$

Thus
Assume - $\sum a_{n}$ converges absolutely

$$
\begin{aligned}
& \text { - } \sum a_{n}=A \\
& \cdot \sum b_{n}=B
\end{aligned}
$$

and let $c_{k}=\sum_{i=0}^{k} a_{i} b_{k-i}$.
Then $\quad \sum C_{k}=A \cdot B$
Proof (see Rudin the 3.50).
In fact if I know a prior that $\sum c_{n}$
converges then it must converge to the
right thing! Bet to prove that we will need power series
there

$$
\text { if } \begin{aligned}
c_{k}= & \sum a_{i} b_{k-i} \quad \text { and } \\
& \sum a_{n}=A, \sum b_{n}=B \text { and } \sum c_{n}=C \\
\Rightarrow & A \cdot B=C
\end{aligned}
$$

Re No need for absolute convergence hen!

MATH 327-Lecture 22
e (Rudin pages 63.65)
Def

$$
\begin{aligned}
& \text { et } l:=\sum_{k=0}^{\infty} \frac{1}{k!} \quad(0!=1) \\
& S_{n}=1+1+\frac{1}{2 \cdot 1}+\frac{1}{3 \cdot 2 \cdot 1}+\frac{1}{4 \cdot 2 \cdot 3 \cdot 1}+\cdots \\
& \\
& \leq 1+1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots \leq 3 \\
& b / c
\end{aligned}
$$

then the series converges (by MCT)
them

$$
\lim _{n \rightarrow+\infty}\left(1+\frac{1}{n}\right)^{n}=e
$$

Pf
let $s_{n}=\sum_{k=0} \frac{1}{k!} \quad t_{n}=\left(1+\frac{1}{n}\right)^{n}$
Binomial theorem:

$$
\begin{aligned}
& t_{n}=1+1+\frac{1}{2!} \frac{\left(1-\frac{1}{n}\right)}{\frac{(1}{\leq 1}}+\frac{1}{3!}\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right)+ \\
& +\cdots+\frac{1}{n!}(\underbrace{\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right) \cdots\left(1-\frac{n-1}{n}\right.}_{1}) \\
& \Rightarrow t_{n} \leq S_{n} \\
& \Rightarrow \text { Unsupt }
\end{aligned}
$$

if $n \geqslant m$

$$
t_{n} \geqslant 1+1+\frac{1}{2^{\prime}}\left(1-\frac{1}{n}\right)+-+\frac{1}{m!}\left(1-\frac{1}{n}\right) \cdots\left(1-\frac{m-1}{n}\right)
$$

I stop beta and each term is 20 .
Now, let $n \rightarrow+\infty$

$$
\begin{aligned}
\liminf t_{n} & \geqslant \lim _{n \rightarrow+\infty}( \\
& =1+1+\frac{1}{2!}+-+\frac{1}{m!}=s_{m}
\end{aligned}
$$

Now let $m \rightarrow+\infty$ $e \leq$ liming $t_{n}$.

Remark

$$
\forall n \in \mathbb{N}, \quad 0<e-s_{n}<\frac{1}{n!\cdot n}
$$

Pf

$$
\begin{aligned}
l-S_{n}=\sum_{k=n+1}^{\infty} \frac{1}{k!} & =\frac{1}{(n+1)!}+\frac{1}{(n+2)!} \\
& <\frac{1}{(n+1)!}\left(1+\frac{1}{n+1}+\frac{1}{(n+1)^{2}}+\right) \\
& =\frac{1}{(n+1)!} \sum_{k=0}^{\infty}\left(\frac{1}{n+1}\right)^{k} \\
& =\frac{1}{(n+1)!} \frac{1}{1-\frac{1}{n+1}} \\
& =\frac{1}{(n+1)!} \cdot \frac{n+1}{n} \\
& =\frac{1}{n!n}
\end{aligned}
$$

Ex. $5_{6}$ approx $e$ with an error $<10^{-7}$.
The $e$ is irrational
Assume $e$ is rational. Then $e=p / q, p, q \in \mathbb{N}$.

$$
\begin{gathered}
0<q!\left(e-s_{q}\right)<\frac{1}{q} \\
q^{\prime} \cdot e=(q-1)!\cdot q \cdot p / q=(q-1)!p \in \mathbb{N} .
\end{gathered}
$$

$$
\begin{aligned}
& q!\cdot s q=q!\left(1+1+\frac{1}{2!}+-+\frac{1}{q!}\right) \\
& \quad=q!+q!+q \cdot(q-1)-3+\cdots+1 \in \mathbb{N} \\
& \Rightarrow q!(e-s q) \in \mathbb{N} . \\
& \text { But } q \geqslant 1 \Rightarrow \quad 0<q!(e-s q)<\frac{1}{q} \leqslant 1
\end{aligned}
$$

$q!\left(e-s_{q}\right)$ is an integer between 0 and 1 . Coutradiction

MATH 327-Lectum 23-24
Cantor set

$$
\begin{array}{lll}
0 & C_{0}=[0,1] \\
\mapsto & C_{1}=[0,1 / 3] \cup[2 / 3,1] \\
\mapsto & -\sim & C_{2}=[0,1 / 9] \cup \ldots
\end{array}
$$

$C_{n}=$ union of $2^{n}$ disjoint intervals of length 1/3n
$C_{n+1} \subset C_{n}$ and $C: \bigcap_{n=0}^{\infty} C_{n}$
Facts: $C \neq \phi$. Note all endpoints of the interval l are in $C(b / c$ they ane in every $C_{n}$ - numbers like $m / 3^{k} \in \mathbb{Q}$ )

- length $(C)=0$

$$
\begin{aligned}
& \text { length }(C)=l([0,1])-\sum \underset{c}{\text { lengths of }} \begin{array}{c}
\text { removed middle } \\
\text { intervals }
\end{array}
\end{aligned}
$$

$\sum$ lengths of
$\underset{\substack{\text { removed middle } \\ \text { intervals }}}{\text { r en }}+2 \cdot \frac{1}{9}+4 \cdot \frac{1}{27}+\cdots+\frac{2^{n-1}}{3^{n}}$

$$
\begin{aligned}
& =\frac{1}{3}\left(1+\frac{2}{3}+\frac{4}{9}+\cdots\right) \\
& =\frac{1}{3} \sum_{k=0}^{\infty}(2 / 3)^{k} \\
& =\frac{1}{3} \cdot \frac{1}{1-2} / 3 \\
=\operatorname{length}(C)=1-1 & =0
\end{aligned}
$$

- $C$ is uncountable For every $x \in C, x \in C_{n} \quad \forall n$.
Define $a_{1}=0$ if $x \in[0,1 / 3] \subseteq C_{1}$

$$
a_{1}=1 \text { if } x \in[2 / 3,1] \subseteq C_{1}
$$

Now define $a_{2}=0 \propto 1$ according to whether $x$ falls on the left and right component Then this is a 1-1 correspondeun with $\infty$ sequences $\omega /$ values in 30,11 which is uncountable.
That's weird! Ut has tern length (senall) but uncountable (large)
What is happening?

Dimension
What is dimension?
We all have the intuition:


Let's thing about rescaling by a factor of 3 .


What about the Cautor net?
if I wort to rescale it by a fads of 3 , then I obtain


So I basically obtain two copies. then, intuitively, dimension shards bo

$$
\begin{aligned}
& 3^{x}=2 \\
& x=\log _{3} 2=\frac{l \log 2}{\log 3} \in(0,1)
\end{aligned}
$$

That is correct!
A esther way, b/c $c$ has a rself-similar striction is $\frac{\log (\# \text { copies })}{\log (1 / \text { scale })}$.
other examples
$\qquad$


4 corner Cauls set
Non Koch snowflake

$$
\operatorname{dim}=\frac{\log (4)}{\log (3)}
$$

Open and cord set
Def if $a \in \mathbb{R}$ we call the $\varepsilon$-neighborhood of a ( $\varepsilon$-hood)
the set

$$
\begin{aligned}
V_{\varepsilon}(a) & =\{x \in \mathbb{R}| | x-a \mid<\varepsilon\} . \\
& =B(a, \varepsilon) \\
& =(a-\varepsilon, a+\varepsilon)
\end{aligned}
$$

Dot $A$ set $0 \subseteq \mathbb{R}$ is open if for all $a \in O$子 q>o st. $V_{\varepsilon}(a) \leq 0$
Example

- $\mathbb{R}$ is open - $\forall x \in \mathbb{R}$ and $\forall \varepsilon>0$

$$
V_{\varepsilon}(x)=(x-\varepsilon, x+\varepsilon) \subseteq \mathbb{R}
$$

- $\phi$ gotta be empty too
(b/c of the logical striction of the deft.)
- $(a, b), a, b \in \mathbb{R}$ is open.
let $x \in(a, b)$ and let $\varepsilon=\min \{x-a, b-x \mid>0$ then $V_{z}(x) \leq(a b)$.
－$[0,1]$ Not open Take $x=0$ Then＇s no $\varepsilon>0$ st $(-\varepsilon, \varepsilon) \subset[0,1]$ ．

Thus
－if $A_{\lambda}, \lambda \in \Lambda$ is an arbitrary collection of open set，then $A=\bigcup_{x \in \Lambda} A_{t}$ is open
－If $A_{1}, \ldots, A_{N}$ an finitely many open sets， then $\bigcap_{i=1}^{N} A_{1}$ is also open
Pf
－let $\left\{A_{\lambda} \mid \lambda \in \Lambda\right\}$ ．let $A=\bigcup_{\lambda} A_{\lambda}$ ．
Take $x \in A$ 伩 st．$x \in A_{i} . A_{i}$ open $\Rightarrow$ $\exists \varepsilon 10$ sit．$V_{\varepsilon}(x) \subseteq A_{-\tau} \subseteq A$ ．

Let $A=A_{1} \cap \_\cap A_{N}$ ．If $x \in A \Rightarrow x \in A_{i} \quad \forall v=1,1 N$
Then $\exists \varepsilon_{1,1}, \varepsilon_{k}$ st

$$
V \varepsilon_{i}(x) \subseteq A_{i} \quad i=1,-N .
$$

let $\varepsilon=\min _{1 \leq i \leq k} \varepsilon_{i}$ ．Then $V_{\varepsilon}(x) \leq V_{\varepsilon_{i}}(x) \subseteq A, \forall i$

$$
\Rightarrow V_{\varepsilon}(x) \subseteq A
$$

MATH 327A\&B - Lectern 25-26
Closed sets
bet A point $x$ is a limit point for $A$ if $\forall$ ع-nbhd $V_{\varepsilon}(x)$ interests $A$ in same other pt other than $x$

$$
E=[0,1) \cup\{2]
$$



0,1 and all
in between haw hods that always?
Proof that 0 limit pt of $(0,1)$ : $\forall \varepsilon$ so $\exists \quad 0 \neq x \in(-\varepsilon, \varepsilon) \cap(0,1)$. In fact, choon $0<x<\varepsilon$.

Ae f A paint $x \in E$ is isolated if its rot a limit point

$$
\begin{aligned}
x \in E & \rightarrow \text { Limit point (e.g. } 0 \in[0,1]) \\
x \notin E & \rightarrow \text { Limited point (eng. } 2 \in[0,1] \cup\{21) \\
& \text { no relation }(\text { leg. } 0 \notin(0,1]) \\
& 2 \notin(0,1])
\end{aligned}
$$

Rh A limit point for a set cloersit necessary belong to the set itself.

We want to find an eaves way than using the definition to find limit pants. Luckily, limit pts frown sex's veren't that for off
Thus
A point $x$ is a loment point for a set $E$ if and only $\exists$ sequence $\left\{a_{n} \mid n \in \mathbb{N}\right\} \subseteq E$, st
$a_{n} \rightarrow x$ and $a_{n} \neq x \quad \forall n$
Af
$\Longrightarrow$ Assume $x$ lip. for $E$ then $\forall \varepsilon \exists y_{\varepsilon} \in E_{\cap} V_{\varepsilon}(x)$,
$y_{\varepsilon} \neq x$. Let $\varepsilon=1 \Rightarrow$ chook $a_{1} \in E_{n} V_{1}(x)$

$$
\varepsilon=\frac{1}{2} \Rightarrow \text { chook } a_{2} \in E \cap V_{1 / 2}(x)
$$

any sequent
$\begin{aligned} & \text { that goes } \\ & \text { to } 0 \text { works }\end{aligned} \varepsilon=\frac{1}{n} \Rightarrow$ chook $a_{n} \in E_{\cap} V / r_{n}(x)$.

$$
\begin{array}{ll}
\Rightarrow & a_{n} \in(x-1 / n, x+1 / n) \\
\Rightarrow & 0 \leq\left|a_{n}-x\right|<1 / n
\end{array}
$$

$\Rightarrow$ squeen then $\left|a_{n}-x\right| \rightarrow 0 \Rightarrow a_{n} \rightarrow x$

Assume $\exists\left\{a_{1}\right\} \leqslant E \quad a_{n} \neq x a_{n} \rightarrow x$.
let $\varepsilon$ so. By dit $\exists N$ sit $\forall n>N$

$$
\left|a_{n}-x\right|<\varepsilon
$$

ie. $a_{n} \in V_{\varepsilon}(x)$, and $a_{n} \neq x$.
and becues $S_{1}\left(c E \quad a_{n} \in E_{\cap} V_{\varepsilon}(x)\right.$.
which proves $x$ is a lp for $E$
limit pto on important, bl they an all a set caus "reach. Sets that contain all their limit points an special
Bet $A$ set is closed if it contains all its limit points.
Examples
(1) $E=(0,1)$. Let's prove it's open
$\forall x \in(0,1)$ let $\varepsilon=\min \{\operatorname{dit}(0, x), \operatorname{diot}(1, x)\}$

$$
=\min \left\{x_{1}|-x|\right.
$$

Then $(x-\varepsilon, x+\varepsilon) \leq(0,1)$ and to $(0,1)$ is open
(2) $E=[0,1)$ let' prove it' not open.

For $x=0$ of matter how surall I chook eco $(-\varepsilon, \varepsilon) \notin[0,1)$, beсаин $(-\varepsilon, \varepsilon)$ contamy form $-\varepsilon<-\delta<0$ and $-\delta \notin(0,1)$
let's prove it not closed
For $x=1$, I can us the theorem.

$$
\begin{array}{ll}
a_{n}=1-1 / n, \quad & \forall n \in \mathbb{N} \quad 0 \leq a_{n}<1 \\
& \left(b /<a_{1}=0 \text { and } a_{n} \times\right) \\
& \text { i.e. } a_{n} \in[0,1), a_{n} \neq 1 \\
& \text { and } a_{n} \rightarrow 1
\end{array}
$$

then 1 is a limit pt but $1 \in[0,1)$.
(3) $E=[0,1]$ is closed.

Every pt in $[0,1]$ is a limit paint beccuen I can construct a sequences that converges to it

$$
\begin{array}{lll}
(x \in[0,1] . & \text { if } x \leq 1 / 2 & a_{n}=x+1 / 3 n \\
& x>1 / 2 & a_{n}=x-\frac{1}{2 n} .
\end{array}
$$

No other point can be a limit point be cause for every $\quad a_{n} \mid \subseteq[0,1]$
le $\quad 0 \leq a_{n} \leq 1$
By the order limit theorem of an courviges to $x \in \mathbb{R}$ then $0 \leqslant x \leqslant 1$.
Then $F=$ its limit pts, in particular it's closed.
Remerch In examples (1)-(3) all point of E were limit pants! But this is not always the can:
(4) $E=[0,1] \cup\{2\}$.
$E$ is closed (its limit pts an $[0,1]$ ) and 2 is isolated.
(5) $E=\{x\}$.

What on the lime paints of $E$ ? $x$ cult be a limit pt b/c $(x-\varepsilon, x+\varepsilon) \cap \int x \mid=\{x\}$ and no $y \neq x$ can be a limit pt $b / c$ then's no sequence I can build that converges to $y \neq x$ then $E$ has No limit pts and in particular it ir closed.

Rh Same is true for $E=\{x, y\}$.

then $x, y$ can't be limit pts $b / c$ if $0<\varepsilon \leq \delta$

$$
V_{\varepsilon}(x) \cap E=\left\langle x \zeta, V_{\varepsilon}(y) \cap E=\{y\}\right.
$$

and the same ceasoning about not being able to build a sepween apphes.
Similacly one can prove
Prop
If $|E|<+\infty$ (ie $E$ has finitely many elements) then $E$ is clone and all its elements isolated points.
One could ask. What about countable?
Ex (5)

$$
E=\left\{\left.\frac{1}{n} \right\rvert\, n \in \mathbb{N}\right\} .
$$



Every $x=\frac{1}{n} \in E$ is isolated: chook $\varepsilon=\frac{1}{n}-\frac{1}{n+1}>0$ then $\left(\frac{1}{n}-\varepsilon \frac{1}{n}+\varepsilon\right) \cap E=\{1 / n)$
so all pto on iodatid, leet $O$ is a limit pt bl $\quad a_{n}=\frac{1}{n} \quad \int a_{n}\left(\subseteq E \quad\left(\ln\right.\right.$ fact $\left.\quad\left\{a_{n}\right\}=E\right)$ $a_{n} \neq 0$ and $a_{n} \rightarrow 0$.
But o\& $E$ and so $E$ is not closed.
Then
$F \subseteq \mathbb{R}$ closed $\Leftrightarrow \forall$ Cauchy sequence $\left\{a_{n}\right\} \subset F$, $\lim a_{n} \in F$.
Af
set, Given a set $E$, let $L_{E}=\left\{x \in \mathbb{R} \mid \times l_{p}\right.$. for ES.
Then the closure of $E$ is detirued as

$$
\bar{E}=E \cup L_{E}
$$

(l ain "forcing" my set to be closed)

$$
\begin{aligned}
& \text { • } E=(0,1) \Rightarrow \bar{E}=[0,1] \\
& \cdot E=(0,1] \Rightarrow \bar{E}=[0,1] \\
& \cdot E=[0,1] \Rightarrow \bar{E}=[0,1]
\end{aligned}
$$

(in general, if $F$ close) $\quad \bar{F}=F$
needs to be proven
(blu the limit points of Fula could la more than LF - but they'e not, om lat need to prase it)
Exercise the limit panto of EULE ane the sauk as $E$

$$
\text { - } E=[0,1) \cup\{21 \Rightarrow \bar{E}=[0,1] \cup\{2\} .
$$

Recall that given $A \subseteq \mathbb{R} \quad A^{c}:=\mathbb{R}, A$ the $\frac{\text { complement }}{T}$. Also recall $\left(A^{c}\right)^{c}=A$.
$\tau_{e}$
Thun
(i) $A$ is open If $A^{c}$ is closed
(ii) $F$ is closed Af $F^{c}$ is open

Pf.
First obreve that (ii) follow, from (i) by letting $F=A^{c} \Rightarrow F^{c}=\left(A^{c}\right)^{c}=A$. Now to prove (i):
$\Rightarrow$ Assur A open. WTS Ac cord, that is, that it contains all its limit pts.
If $\times l$.p. of $A^{c}$, then all its $\varepsilon$-nhbods intersect $A^{c}$. But $\forall y \in A$ then is at least one nbhod fully contained in $A$, and hear it does not internat $A^{c}$. Then $x \notin A \Rightarrow x \in A^{c} \Rightarrow A^{C}$ closed. $\Leftrightarrow$ Now assume $A^{C}$ done. WTS: A open. let $x \in A$. then, $6 / c A^{C}$ chord, $x$ is NOT a lp $f \circ A^{\prime}$. then $\exists \varepsilon>0$ st. $V_{\varepsilon}(x) \cap A^{c}$ doessit contain anything other than $x$, bent $x \notin A^{c} \Rightarrow V_{\varepsilon}(x) \cap A^{C}=\varnothing$

$$
\Rightarrow V_{\varepsilon}(x) \subseteq A
$$

and so $A$ is open
Remark closed sets ane usually defined as the complements of the open sets (and declaring which subsets an open means to give a topology). But becaun we on in $\mathbb{R}$ we have a beautiful
metric Aructem (that is, a dislana)-actually mare. so we have all then properties.

Thanks to De Morgaii laws:

$$
\left(\bigcap_{\lambda \in \Lambda} E_{\lambda}\right)^{c}=\bigcup_{l<\Lambda} E_{\lambda}^{c} \quad,\left(\bigcup_{t \in \Lambda} E_{\lambda}\right)^{c}=\bigcap_{t \in \Lambda} E_{t}^{c}
$$

the next the follows immediatils from the prevos one thun
(i) If $F_{i}$ lond, $\lambda \in \lambda$ then

$$
F=\bigcap_{\lambda \in \Lambda} F_{t} \text { is closed }
$$

(ii) if $F_{1,-}, F_{N} N<+\infty$ closed, then

$$
F=F_{1} v-v F_{N} \text { dosed }
$$

P
(i) $F^{c}=\left(\cap F_{x}\right)^{c}=U\left(F_{i}^{-}\right)^{- \text {open }}$ open $\Rightarrow F$ chord
(i) $F^{c}=\left(F_{1 v}-\cup F_{N}\right)^{c}=\frac{F_{1}^{c} n}{\text { open }^{c}}-\cap F_{N}^{c}$ open open $\Rightarrow F$ cloud

