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Crossing Characteristics

The theory of perfectoid spaces provides a bridge between
characteristic p and characteristic 0.

Example

Elements in Qp and Fp((t)) can be both formally be expressed as
power series. ∑

aip
i ↔

∑
ait

i

How precise can we make this?
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The Fontaine-Wintenberger Isomorphism

Theorem (Fontaine-Winterberger)

There is a canonical isomorphism of absolute Galois groups

Gal
(
Qp

(
p1/p∞

))
∼= Gal

(
Fp
((
t1/p

∞
)))

.

Slogan: swap p for t.

Question

Is this a manifestation of a geometric correspondence on the level
of points?
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Perfectoid Spaces

YES!

In 2012 Scholze introduced a class of algebro-geometric objects
call perfectoid spaces exhibiting this very correspondence.

X • X[ •

Characteristic 0 Characteristic p

Tilt

This is an equivalence!
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The Tilting Equivalence

Theorem (Scholze)

Let S be a perfectoid space with tilt S[. The functor X 7→ X[ is
an equivalence of categories from perfectoid spaces over S to
perfectoid spaces over S[, inducing an equivalence of étale sites:

Sét
∼−→ S[ét.

Letting S be the perfectoid space associated to Qp

(
p1/p∞

)
, then

S[ is the perfectoid space associated to Fp((t1/p
∞

)), and so we
recover the Fontaine-Wintenberger isomorphism:
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Goal

Question

Can we develop a reasonable notion of projective geometry for
perfectoid spaces?
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Analogy to Algebraic Geometry

Algebraic Geometry Perfectoid Geometry

Rings k[x1, · · · , xn] K〈T 1/p∞

1 , · · · , T 1/p∞
n 〉

Affine Space Ank Dn,perfK

Projective Space Pnk Pn,perfK

Remark

Let ϕ : Pn → Pn be the pth power map on coordinates. Then:

Pn,perf ∼ lim
←−

(
· · · ϕ−→ Pn ϕ−→ Pn

)
.
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Compatibility

Lemma (Scholze)

Let K be a perfectoid field with tilt K[.(
Dn,perfK

)[ ∼= Dn,perf
K[(

Pn,perfK

)[ ∼= Pn,perf
K[ .



Line Bundles on The Disk

Theorem (D-H,Kedlaya)

Finite vector bundles on Dn,perf are all trivial.

The analogous statement for An is known as the Quillen-Suslin
theorem, and was proven in 1976.
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Line Bundles on Projectivoid Space

Theorem (D-H)
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Maps to Projectivoid Space

Like in classical geometry, maps to projectivoid space can be
expressed in terms of globally generated line bundles.

Theorem (D-H)

Let X be a perfectoid space over K. A map X → Pn,perf is
equivalent to a sequence of globally generated line bundles
(L0,L1,L2, · · · ) on X such that L⊗pi+1

∼= Li, together with global
sections si,0, · · · , si,n ∈ Γ(X,Li) for each i which generate Li,
such that s⊗pi+1,j = si,j .

If a map ϕ : X → Pn,perf is given by this data then:

ϕ∗O(1/pi) ∼= Li and ϕ∗(T
1/pi

j ) = si,j .
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Corollaries

If K has characteristic p, X is perfect, so the pth power map on
PicX is an isomorphism. Therefore we can refine the theorem.

Corollary

Let X be a perfectoid space over K of positive characteristic. A
map X → Pn,perf is equivalent to a line bundle on X together
n+ 1 generating global sections.

The tilting equivalence simplifies matters further. Since

Hom
(
X,Pn,perfK

)
= Hom

(
X[,Pn,perf

K[

)
, we have:

Corollary

Let X be a perfectoid space over K of any characteristic. A map
X → Pn,perfK is equivalent to a line bundle on X[ together with
n+ 1 generating global sections.
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Untilting Line Bundles

We can use this compare the Picard groups of a perfectoid space
and its tilt.

Setup

If X is a perfectoid space, X[ is homeomorphic, so we can view
their multiplicative group sheaves Gm and G[

m as sheaves on the
same topological space. In fact,

G[
m

∼=−→ lim
←−
x 7→xp

Gm

Taking cohomology we get a sequence of maps

PicX[ −→ lim
←−
L7→Lp

PicX −→ PicX.
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Untilting via Maps to Projectivoid Space

Let’s use our theorem to study PicX[ → lim
←−

PicX.

Suppose L ∈ PicX[ is globally generated.

Since X[ has characteristic p this corresponds to a map

X[ → Pn,perf
K[ .

The tilting equivalence implies that this corresponds to a unique
map

X → Pn,perfK .

The main theorem associates to this map a unique sequence

(L1,L2, · · · ) ∈ lim
←−

PicX.
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Untilting via Maps to Projectivoid Space

Thus projectivoid geometry gives us a hands on way to study what
was originally a cohomological map.

Theorem (D-H)

Suppose X is a perfectoid space over K. Suppose that X has an
ample line bundle and that H0(X,OX) = K. Then

PicX[ ↪→ lim
←−
L7→Lp

PicX.

In particular, if PicX has no p torsion, then

PicX[ ↪→ PicX.
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Idea of Proof

Let’s consider the case where L,M∈ PicX[ are globally
generated, and both have the same image. Then choosing sections
gives two maps φ[ and ψ[ from X[ to projectivoid space over K[.

Untilt these two maps to φ and ψ from X to projectivoid space
over K. Combining the sections giving φ and those giving ψ gives
us the following diagram, which we can then tilt.

Pn,perfK Pn,perf
K[

X Pn+r+1,perf
K

tilt−→ X[ Pn+r+1,perf

K[

Pr,perfK Pr,perf
K[ .

φ

γ

ψ

φ[

γ[

ψ[

Thus L = φ[∗O(1) = γ[∗O(1) = ψ[∗O(1) =M.



Thank You!
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