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How precise can we make this?
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The Fontaine-Wintenberger Isomorphism

Theorem (Fontaine-Winterberger)

There is a canonical isomorphism of absolute Galois groups

(@ (7)) a5 ((+))).

Slogan: swap p for t.

Is this a manifestation of a geometric correspondence on the level
of points?
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This is an equivalence!



The Tilting Equivalence

Theorem (Scholze)

Let S be a perfectoid space with tilt S°. The functor X + X’ is
an equivalence of categories from perfectoid spaces over S to
perfectoid spaces over S°, inducing an equivalence of étale sites:
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The Tilting Equivalence

Theorem (Scholze)

Let S be a perfectoid space with tilt S°. The functor X + X’ is
an equivalence of categories from perfectoid spaces over S to
perfectoid spaces over S°, inducing an equivalence of étale sites:

~ b
Sét — Sét'

Letting S be the perfectoid space associated to Q, (pl/poo), then

S” is the perfectoid space associated to F,,((t!/7™)), and so we
recover the Fontaine-Wintenberger isomorphism:

(0 (7)) = (e, ().



Can we develop a reasonable notion of projective geometry for
perfectoid spaces?
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Analogy to Algebraic Geometry

Algebraic Geometry Perfectoid Geometry

Rings k[mla ,xn] K(Tf-/poo7 ?Té-/poo>
i J. f
Affine Space A} DPer
Projective Space Py P%Pﬂ“f

Let ¢ : P" — P” be the pth power map on coordinates. Then:

Prrerf | Jim ( L Py pn 2, IP") .
—




Compatibility

Lemma (Scholze)

Let K be a perfectoid field with tilt K°.

b
<D7I?perf> o D}z{,ferf

b
(P?(ipﬂf> o ]P,n,perf )
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Theorem (D-H,Kedlaya)

Finite vector bundles on D™P"f are all trivial.

The analogous statement for A™ is known as the Quillen-Suslin
theorem, and was proven in 1976.
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Line Bundles on Projectivoid Space

Theorem (D-H)

PicPvrerf =~ 7[1/p].

P Pn,perf
Picard Group Z Z[1/p]

Homogeneous polynomials | Homogenous power series
O(d) of degree d of degree d

in ]{5[330,‘ o axn] in K<T11/p007 e ,TT}/POO>
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Like in classical geometry, maps to projectivoid space can be
expressed in terms of globally generated line bundles.
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Maps to Projectivoid Space

Like in classical geometry, maps to projectivoid space can be
expressed in terms of globally generated line bundles.

Theorem (D-H)

Let X be a perfectoid space over K. A map X — Pvrerf s
equivalent to a sequence of globally generated line bundles

(Lo, L1, Lo, -+ ) on X such that £l®f1 > [;, together with global
sections s;, 0, -, 8in € I'(X, L;) for each i which generate L;,

such that s%

H—l ,J = Si,j-

If a map ¢ : X — Pperf s given by this data then:
©*O(1/p?) = L; and ¢*(T /p)—sm-.



Corollaries

If K has characteristic p, X is perfect, so the pth power map on
Pic X is an isomorphism. Therefore we can refine the theorem.

Let X be a perfectoid space over K of positive characteristic. A
map X — PPt s equivalent to a line bundle on X together
n + 1 generating global sections.




Corollaries

If K has characteristic p, X is perfect, so the pth power map on
Pic X is an isomorphism. Therefore we can refine the theorem.

Let X be a perfectoid space over K of positive characteristic. A
map X — PPt s equivalent to a line bundle on X together
n + 1 generating global sections.

The tilting equivalence simplifies matters further. Since
Hom (X, ]P’?(’perf) = Hom (X",IP’%{CTJ(), we have:

Let X be a perfectoid space over K of any characteristic. A map
X — PRP °rf is equivalent to a line bundle on X" together with
n + 1 generating global sections.
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Untilting Line Bundles

We can use this compare the Picard groups of a perfectoid space
and its tilt.

Setup

If X is a perfectoid space, X” is homeomorphic, so we can view
their multiplicative group sheaves G,, and G, as sheaves on the
same topological space. In fact,

G’ = lim Gy,
%
TP
Taking cohomology we get a sequence of maps
Pic X — lim Pic X — Pic X.
<‘
L—LP
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Untilting via Maps to Projectivoid Space

Let’s use our theorem to study Pic X” — lim Pic X.
pans

Suppose £ € Pic X? is globally generated.
Since X” has characteristic p this corresponds to a map
X' — et
The tilting equivalence implies that this corresponds to a unique

map
2. f
X — Py,

The main theorem associates to this map a unique sequence

<£1,£2,- . ) € lim Pic X.
<“—
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Untilting via Maps to Projectivoid Space

Thus projectivoid geometry gives us a hands on way to study what
was originally a cohomological map.

Theorem (D-H)

Suppose X is a perfectoid space over K. Suppose that X has an
ample line bundle and that H°(X,Ox) = K. Then

Pic X” <5 lim Pic X.
(_
L—LP

In particular, if Pic X has no p torsion, then

Pic X? < Pic X




Idea of Proof

Let's consider the case where £, M & Pic X” are globally
generated, and both have the same image. Then choosing sections
gives two maps ¢’ and ¢° from X” to projectivoid space over K”.

Untilt these two maps to ¢ and @ from X to projectivoid space
over K. Combining the sections giving ¢ and those giving 1) gives
us the following diagram, which we can then tilt.

n,per f n,per f
P P2
A b A
¢ | ¢ |
i i
. b
¥ n+r+1,perf tilt b Y n+r—+1,perf
X 2 P LS x> Pt

N I

2. f 9. rf
IP’/I‘( per PT pe .

Thus £ = ¢**O(1) = 4 O(1) = Y"*O(1) = M.



Thank You!
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