Projective Geometry for Perfectoid Spaces

Gabriel Dorfsman-Hopkins

University of Washington
June 21, 2018

Outline

(1) Introduction
(2) Examples
(3) Projective Geometry

4 Applications

Crossing Characteristics

The theory of perfectoid spaces provides a bridge between characteristic p and characteristic 0 .

Crossing Characteristics

The theory of perfectoid spaces provides a bridge between characteristic p and characteristic 0 .

Example

Elements in \mathbb{Q}_{p} and $\mathbb{F}_{p}((t))$ can be both formally be expressed as power series.

$$
\sum a_{i} p^{i} \leftrightarrow \sum a_{i} t^{i}
$$

Crossing Characteristics

The theory of perfectoid spaces provides a bridge between characteristic p and characteristic 0 .

Example

Elements in \mathbb{Q}_{p} and $\mathbb{F}_{p}((t))$ can be both formally be expressed as power series.

$$
\sum a_{i} p^{i} \leftrightarrow \sum a_{i} t^{i}
$$

How precise can we make this?

The Fontaine-Wintenberger Isomorphism

Theorem (Fontaine-Winterberger)

There is a canonical isomorphism of absolute Galois groups

$$
\operatorname{Gal}\left(\mathbb{Q}_{p}\left(p^{1 / p^{\infty}}\right)\right) \cong \operatorname{Gal}\left(\mathbb{F}_{p}\left(\left(t^{1 / p^{\infty}}\right)\right)\right)
$$

Theorem (Fontaine-Winterberger)

There is a canonical isomorphism of absolute Galois groups

$$
\operatorname{Gal}\left(\mathbb{Q}_{p}\left(p^{1 / p^{\infty}}\right)\right) \cong \operatorname{Gal}\left(\mathbb{F}_{p}\left(\left(t^{1 / p^{\infty}}\right)\right)\right)
$$

Slogan: swap p for t.

The Fontaine-Wintenberger Isomorphism

Theorem (Fontaine-Winterberger)

There is a canonical isomorphism of absolute Galois groups

$$
\operatorname{Gal}\left(\mathbb{Q}_{p}\left(p^{1 / p^{\infty}}\right)\right) \cong \operatorname{Gal}\left(\mathbb{F}_{p}\left(\left(t^{1 / p^{\infty}}\right)\right)\right)
$$

Slogan: swap p for t.

Question

Is this a manifestation of a geometric correspondence on the level of points?

Perfectoid Spaces

YES!

Perfectoid Spaces

YES!

In 2012 Scholze introduced a class of algebro-geometric objects call perfectoid spaces exhibiting this very correspondence.

Perfectoid Spaces

YES!

In 2012 Scholze introduced a class of algebro-geometric objects call perfectoid spaces exhibiting this very correspondence.

Characteristic 0

Characteristic p

Perfectoid Spaces

YES!

In 2012 Scholze introduced a class of algebro-geometric objects call perfectoid spaces exhibiting this very correspondence.

Characteristic 0

Characteristic p

This is an equivalence!

Theorem (Scholze)

Let S be a perfectoid space with tilt S^{b}. The functor $X \mapsto X^{b}$ is an equivalence of categories from perfectoid spaces over S to perfectoid spaces over S^{b}, inducing an equivalence of étale sites:

$$
S_{\text {ét }} \xrightarrow{\sim} S_{\text {ét }}^{b} .
$$

Theorem (Scholze)

Let S be a perfectoid space with tilt S^{b}. The functor $X \mapsto X^{b}$ is an equivalence of categories from perfectoid spaces over S to perfectoid spaces over S^{b}, inducing an equivalence of étale sites:

$$
S_{\text {ét }} \xrightarrow{\sim} S_{e ́ t}^{b} .
$$

Letting S be the perfectoid space associated to $\mathbb{Q}_{p}\left(p^{1 / p^{\infty}}\right)$, then S^{b} is the perfectoid space associated to $\mathbb{F}_{p}\left(\left(t^{1 / p^{\infty}}\right)\right)$, and so we recover the Fontaine-Wintenberger isomorphism:

$$
\operatorname{Gal}\left(\mathbb{Q}_{p}\left(p^{1 / p^{\infty}}\right)\right) \cong \operatorname{Gal}\left(\mathbb{F}_{p}\left(\left(t^{1 / p^{\infty}}\right)\right)\right)
$$

Question
Can we develop a reasonable notion of projective geometry for perfectoid spaces?

Outline

(1) Introduction
(2) Examples
(3) Projective Geometry

4 Applications

Analogy to Algebraic Geometry

Algebraic Geometry Perfectoid Geometry

Analogy to Algebraic Geometry

Algebraic Geometry Perfectoid Geometry

Rings

Analogy to Algebraic Geometry

Algebraic Geometry Perfectoid Geometry

Rings
$k\left[x_{1}, \cdots, x_{n}\right]$

Analogy to Algebraic Geometry

Algebraic Geometry Perfectoid Geometry

Rings
$k\left[x_{1}, \cdots, x_{n}\right]$ $K\left\langle T_{1}^{1 / p^{\infty}}, \cdots, T_{n}^{1 / p^{\infty}}\right\rangle$

Analogy to Algebraic Geometry

Algebraic Geometry Perfectoid Geometry

Rings
$k\left[x_{1}, \cdots, x_{n}\right]$ $K\left\langle T_{1}^{1 / p^{\infty}}, \cdots, T_{n}^{1 / p^{\infty}}\right\rangle$
Affine Space

Analogy to Algebraic Geometry

Algebraic Geometry Perfectoid Geometry

Rings
Affine Space
$k\left[x_{1}, \cdots, x_{n}\right]$ $K\left\langle T_{1}^{1 / p^{\infty}}, \cdots, T_{n}^{1 / p^{\infty}}\right\rangle$

$$
\mathbb{A}_{k}^{n}
$$

Analogy to Algebraic Geometry

Algebraic Geometry Perfectoid Geometry

Rings
Affine Space
$k\left[x_{1}, \cdots, x_{n}\right]$ $K\left\langle T_{1}^{1 / p^{\infty}}, \cdots, T_{n}^{1 / p^{\infty}}\right\rangle$

$$
\mathbb{D}_{K}^{n, p e r f}
$$

Analogy to Algebraic Geometry

Algebraic Geometry Perfectoid Geometry

Rings
Affine Space
Projective Space
$k\left[x_{1}, \cdots, x_{n}\right]$

$$
\mathbb{A}_{k}^{n}
$$

$K\left\langle T_{1}^{1 / p^{\infty}}, \cdots, T_{n}^{1 / p^{\infty}}\right\rangle$

$$
\mathbb{D}_{K}^{n, p e r f}
$$

Analogy to Algebraic Geometry

Algebraic Geometry Perfectoid Geometry

Rings
Affine Space
Projective Space

$$
k\left[x_{1}, \cdots, x_{n}\right]
$$

$$
K\left\langle T_{1}^{1 / p^{\infty}}, \cdots, T_{n}^{1 / p^{\infty}}\right\rangle
$$

$$
\mathbb{A}_{k}^{n}
$$

$$
\mathbb{D}_{K}^{n, p e r f}
$$

Analogy to Algebraic Geometry

Algebraic Geometry Perfectoid Geometry

Rings
Affine Space
Projective Space

$$
k\left[x_{1}, \cdots, x_{n}\right]
$$

$$
\mathbb{A}_{k}^{n}
$$

\mathbb{P}_{k}^{n}
$K\left\langle T_{1}^{1 / p^{\infty}}, \cdots, T_{n}^{1 / p^{\infty}}\right\rangle$
$\mathbb{D}_{K}^{n, p e r f}$
$\mathbb{P}_{K}^{n, \text { perf }}$

Analogy to Algebraic Geometry

Algebraic Geometry

Perfectoid Geometry

Rings
Affine Space
Projective Space

$$
k\left[x_{1}, \cdots, x_{n}\right]
$$

$$
\mathbb{A}_{k}^{n}
$$

\mathbb{P}_{k}^{n}
$K\left\langle T_{1}^{1 / p^{\infty}}, \cdots, T_{n}^{1 / p^{\infty}}\right\rangle$

$$
\begin{aligned}
& \mathbb{D}_{K}^{n, p e r f} \\
& \mathbb{P}_{K}^{n, p e r f}
\end{aligned}
$$

Remark

Let $\varphi: \mathbb{P}^{n} \rightarrow \mathbb{P}^{n}$ be the p th power map on coordinates. Then:

$$
\mathbb{P}^{n, \text { perf }} \sim \lim _{\leftarrow}\left(\cdots \xrightarrow{\varphi} \mathbb{P}^{n} \xrightarrow{\varphi} \mathbb{P}^{n}\right) .
$$

Compatibility

Lemma (Scholze)
Let K be a perfectoid field with tilt K^{b}.

$$
\begin{aligned}
&\left(\mathbb{D}_{K}^{n, p e r f}\right)^{b} \cong \mathbb{D}_{K^{b}}^{n, p e r f} \\
&\left(\mathbb{P}_{K}^{n, p e r f}\right)^{b} \cong \mathbb{P}_{K^{b}}^{n, p e r f} .
\end{aligned}
$$

Line Bundles on The Disk

Theorem (D-H,Kedlaya)

Finite vector bundles on $\mathbb{D}^{n, p e r f}$ are all trivial.

Line Bundles on The Disk

Theorem (D-H,Kedlaya)

Finite vector bundles on $\mathbb{D}^{n, p e r f}$ are all trivial.

The analogous statement for \mathbb{A}^{n} is known as the Quillen-Suslin theorem, and was proven in 1976.

Line Bundles on Projectivoid Space

Theorem (D-H)
$\operatorname{Pic} \mathbb{P}^{n, p e r f} \cong \mathbb{Z}[1 / p]$.

Line Bundles on Projectivoid Space

Theorem (D-H)

$$
\operatorname{Pic} \mathbb{P}^{n, p e r f} \cong \mathbb{Z}[1 / p] .
$$

$\left|\mathbb{P}^{n}\right| \quad \mathbb{P} n, \operatorname{per} f$

Line Bundles on Projectivoid Space

Theorem (D-H)

$$
\operatorname{Pic} \mathbb{P}^{n, p e r f} \cong \mathbb{Z}[1 / p] .
$$

Line Bundles on Projectivoid Space

Theorem (D-H)

$$
\operatorname{Pic} \mathbb{P}^{n, p e r f} \cong \mathbb{Z}[1 / p] .
$$

	\mathbb{P}^{n}
Picard Group	\mathbb{Z}
$\mathcal{O}(d)$	Homogeneous polynomials of degree d in $k\left[x_{0}, \cdots, x_{n}\right]$

$$
\begin{aligned}
& \mathbb{P}^{n, p e r f} \\
& \mathbb{Z}[1 / p]
\end{aligned}
$$

Homogenous power series of degree d
in $K\left\langle T_{1}^{1 / p^{\infty}}, \cdots, T_{n}^{1 / p^{\infty}}\right\rangle$

Outline

(1) Introduction
(2) Examples
(3) Projective Geometry

4 Applications

Maps to Projectivoid Space

Like in classical geometry, maps to projectivoid space can be expressed in terms of globally generated line bundles.

Maps to Projectivoid Space

Like in classical geometry, maps to projectivoid space can be expressed in terms of globally generated line bundles.

Theorem (D-H)

Let X be a perfectoid space over K. A map $X \rightarrow \mathbb{P}^{n, p e r f}$ is equivalent to a sequence of globally generated line bundles $\left(\mathcal{L}_{0}, \mathcal{L}_{1}, \mathcal{L}_{2}, \cdots\right)$ on X such that $\mathcal{L}_{i+1}^{\otimes p} \cong \mathcal{L}_{i}$, together with global sections $s_{i, 0}, \cdots, s_{i, n} \in \Gamma\left(X, \mathcal{L}_{i}\right)$ for each i which generate \mathcal{L}_{i}, such that $s_{i+1, j}^{\otimes p}=s_{i, j}$.

Maps to Projectivoid Space

Like in classical geometry, maps to projectivoid space can be expressed in terms of globally generated line bundles.

Theorem (D-H)

Let X be a perfectoid space over K. A map $X \rightarrow \mathbb{P}^{n, p e r f}$ is equivalent to a sequence of globally generated line bundles $\left(\mathcal{L}_{0}, \mathcal{L}_{1}, \mathcal{L}_{2}, \cdots\right)$ on X such that $\mathcal{L}_{i+1}^{\otimes p} \cong \mathcal{L}_{i}$, together with global sections $s_{i, 0}, \cdots, s_{i, n} \in \Gamma\left(X, \mathcal{L}_{i}\right)$ for each i which generate \mathcal{L}_{i}, such that $s_{i+1, j}^{\otimes p}=s_{i, j}$.

If a map $\varphi: X \rightarrow \mathbb{P}^{n, p e r f}$ is given by this data then:
$\varphi^{*} \mathcal{O}\left(1 / p^{i}\right) \cong \mathcal{L}_{i}$ and $\varphi^{*}\left(T_{j}^{1 / p^{i}}\right)=s_{i, j}$.

If K has characteristic p, X is perfect, so the p th power map on $\operatorname{Pic} X$ is an isomorphism. Therefore we can refine the theorem.

Corollary

Let X be a perfectoid space over K of positive characteristic. A map $X \rightarrow \mathbb{P}^{n, p e r f}$ is equivalent to a line bundle on X together $n+1$ generating global sections.

If K has characteristic p, X is perfect, so the p th power map on $\operatorname{Pic} X$ is an isomorphism. Therefore we can refine the theorem.

Corollary

Let X be a perfectoid space over K of positive characteristic. A map $X \rightarrow \mathbb{P}^{n, p e r f}$ is equivalent to a line bundle on X together $n+1$ generating global sections.

The tilting equivalence simplifies matters further. Since $\operatorname{Hom}\left(X, \mathbb{P}_{K}^{n, p e r f}\right)=\operatorname{Hom}\left(X^{b}, \mathbb{P}_{K^{b}}^{n, p e r f}\right)$, we have:

Corollary

Let X be a perfectoid space over K of any characteristic. A map $X \rightarrow \mathbb{P}_{K}^{n, p e r f}$ is equivalent to a line bundle on X^{b} together with $n+1$ generating global sections.

Outline

(1) Introduction

(2) Examples
(3) Projective Geometry

4 Applications

Untilting Line Bundles

We can use this compare the Picard groups of a perfectoid space and its tilt.

Untilting Line Bundles

We can use this compare the Picard groups of a perfectoid space and its tilt.

Setup

If X is a perfectoid space, X^{b} is homeomorphic, so we can view their multiplicative group sheaves \mathbb{G}_{m} and \mathbb{G}_{m}^{b} as sheaves on the same topological space. In fact,

$$
\mathbb{G}_{m}^{b} \xrightarrow{\cong} \lim _{x \mapsto x^{p}}^{\leftrightarrows} \mathbb{G}_{m}
$$

Taking cohomology we get a sequence of maps

$$
\operatorname{Pic} X^{b} \longrightarrow \underset{\mathcal{L} \mapsto \mathcal{L}^{p}}{\leftrightarrows} \lim \operatorname{Pic} X \longrightarrow \operatorname{Pic} X
$$

Untilting via Maps to Projectivoid Space

Let's use our theorem to study $\operatorname{Pic} X^{b} \rightarrow \underset{\longleftarrow}{\lim } \operatorname{Pic} X$.

Untilting via Maps to Projectivoid Space

Let's use our theorem to study $\operatorname{Pic} X^{b} \rightarrow \underset{\longleftarrow}{\lim } \operatorname{Pic} X$.
Suppose $\mathcal{L} \in \operatorname{Pic} X^{b}$ is globally generated.

Untilting via Maps to Projectivoid Space

Let's use our theorem to study $\operatorname{Pic} X^{b} \rightarrow \underset{\longleftarrow}{\lim \operatorname{Pic} X}$.
Suppose $\mathcal{L} \in \operatorname{Pic} X^{b}$ is globally generated.
Since X^{b} has characteristic p this corresponds to a map

$$
X^{b} \rightarrow \mathbb{P}_{K^{b}}^{n, p e r f}
$$

Untilting via Maps to Projectivoid Space

Let's use our theorem to study $\operatorname{Pic} X^{b} \rightarrow \underset{\leftarrow}{\lim } \operatorname{Pic} X$.
Suppose $\mathcal{L} \in \operatorname{Pic} X^{b}$ is globally generated.
Since X^{b} has characteristic p this corresponds to a map

$$
X^{b} \rightarrow \mathbb{P}_{K^{b}}^{n, p e r f}
$$

The tilting equivalence implies that this corresponds to a unique map

$$
X \rightarrow \mathbb{P}_{K}^{n, p e r f}
$$

Untilting via Maps to Projectivoid Space

Let's use our theorem to study $\operatorname{Pic} X^{b} \rightarrow \underset{\leftarrow}{\lim } \operatorname{Pic} X$.
Suppose $\mathcal{L} \in \operatorname{Pic} X^{b}$ is globally generated.
Since X^{b} has characteristic p this corresponds to a map

$$
X^{b} \rightarrow \mathbb{P}_{K^{b}}^{n, p e r f}
$$

The tilting equivalence implies that this corresponds to a unique map

$$
X \rightarrow \mathbb{P}_{K}^{n, p e r f}
$$

The main theorem associates to this map a unique sequence

$$
\left(\mathcal{L}_{1}, \mathcal{L}_{2}, \cdots\right) \in \lim _{\leftarrow} \operatorname{Pic} X
$$

Untilting via Maps to Projectivoid Space

Thus projectivoid geometry gives us a hands on way to study what was originally a cohomological map.

Untilting via Maps to Projectivoid Space

Thus projectivoid geometry gives us a hands on way to study what was originally a cohomological map.

Theorem (D-H)

Suppose X is a perfectoid space over K. Suppose that X has an ample line bundle and that $H^{0}\left(X, \mathcal{O}_{X}\right)=K$. Then

$$
\operatorname{Pic} X^{b} \hookrightarrow \underset{\mathcal{L} \mapsto \mathcal{L}^{p}}{\leftrightarrows} \lim _{\leftrightarrows}^{\leftrightarrows} \operatorname{Pic} X
$$

In particular, if Pic X has no p torsion, then

$$
\operatorname{Pic} X^{b} \hookrightarrow \operatorname{Pic} X .
$$

Idea of Proof

Let's consider the case where $\mathcal{L}, \mathcal{M} \in \operatorname{Pic} X^{b}$ are globally generated, and both have the same image. Then choosing sections gives two maps ϕ^{b} and ψ^{b} from X^{b} to projectivoid space over K^{b}.

Untilt these two maps to ϕ and ψ from X to projectivoid space over K. Combining the sections giving ϕ and those giving ψ gives us the following diagram, which we can then tilt.

Thus $\mathcal{L}=\phi^{b *} \mathcal{O}(1)=\gamma^{b *} \mathcal{O}(1)=\psi^{b *} \mathcal{O}(1)=\mathcal{M}$.

Thank You!

