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Abstract

To understand the structure of an algebraic variety we often embed it in various projective spaces.
This develops the notion of projective geometry which has been an invaluable tool in algebraic geometry.
We develop a perfectoid analog of projective geometry, and explore how equipping a perfectoid space
with a map to a certain analog of projective space can be a powerful tool to understand its geometric
and arithmetic structure. In particular, we show that maps from a perfectoid space X to the perfectoid
analog of projective space correspond to line bundles on X together with some extra data, reflecting the
classical theory. Along the way we give a complete classification of vector bundles on the perfectoid unit
disk, and compute the Picard group of the perfectoid analog of projective space.
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1 Introduction

An important dichotomy in algebraic geometry is the distinction between characteristic 0 and prime character-
istic p > 0. Algebraic geometry provides a framework to do geometry in positive characteristic, transporting
our classical intuition to a more exotic algebraic world. But in positive characteristic we are also provided
with extra tools, such as the Frobenius map, making many geometric results more accessible. Therefore
transporting information from positive characteristic up to characteristic 0 proves very useful as well.

In [9], Fontaine and Wintenberger produced an isomorphism which hinted at a deep correspondence between
algebraic objects of each type.

Theorem 1.1 (Fontaine-Wintenberger)
There is a canonical isomorphism of topological groups between the absolute Galois groups of Qp

(
p1/p∞

)
and Fp

((
t1/p

∞))
.

An algebraic geometer would perhaps ask if there is some deeper geometric correspondence, of which this is a
manifestation on the level of points. Quite recently, in [27], Scholze introduced a class of geometric objects
called perfectoid spaces, which exhibit this very correspondence. In particular, to a perfectoid space X of any
characteristic, we can associate its tilt X[ which is a perfectoid space of characteristic p, and furthermore X
and X[ have isomorphic étale sites. These spaces have proved useful far beyond giving a geometric framework
in which to understand the Fontaine-Wintenberger isomorphism. Indeed, they have found applications in
extending instances of Deligne’s Weight-Monodromy Conjecture, classifying p-divisible groups, have been
used in work on the geometric Langlands program, and even aid in the understanding of singularities in
positive characteristic. For a survey, see [28].

This paper is inspired by the goal of understanding vector bundles on perfectoid spaces, and how they behave
under the so called tilting correspondence of Scholze. To do so, we develop a perfectoid analog of projective
geometry. We define a perfectoid analog of projective space, which we call projectivoid space and denote by
Pn,perf , and show that maps from a perfectoid space X to Pn,perf correspond to line bundles on X together
with some extra data, giving an analog to the classical theory of maps to projective space.

To get to this point we must first understand the theory of line bundles on projectivoid space itself, and
in particular, its Picard group. In his dissertation [7], Das worked toward computing Picard group of the
projectivoid line, P1,perf . His proof relied on having certain local trivializations of line bundles, requiring a
perfectoid analog of the Quillen-Suslin theorem. Therefore, in order to begin developing the theory of so
called projectivoid geometry, we must prove this first.

The Quillen-Suslin theorem says that finite dimensional vector bundles on affine n-space over a field are all
trivial. Equivalently, all finite projective modules on a polynomial ring K[T ] are free, where T is an n-tuple of
indeterminates. In rigid analytic geometry, we replace polynomial rings with rings of convergent power series
called Tate algebras, denoted K〈T 〉, and it can be shown that over such rings the Quillen-Suslin theorem still
holds, that is, all finite projective K〈T 〉-modules are free. The analog of these rings for perfectoid spaces is
the ring K〈T 1/p∞〉 of convergent power series where the indeterminates have all their pth power roots. The
difficulty in extending the theorem to this perfectoid Tate algebra is that the ring is no longer noetherian,
and so the result cannot be easily reduced to the polynomial case.

Sections 2 through 4 of this paper set up the theory of perfectoid spaces. In Section 2 we define our fundamental
algebraic objects, perfectoid fields and algebras, and explore some of their algebraic properties in relating
characteristic 0 and characteristic p. In Section 3 we review Huber’s theory of adic spaces, which provide the
geometric framework for globalizing perfectoid algebras into spaces (playing a role analogous to schemes in
algebraic geometry). In Section 4 we apply Huber’s theory of adic spaces to perfectoid rings and algebras,
and explore the geometric properties of perfectoid spaces and their tilts.

Sections 5 through 9 constitute the author’s work on the subject. In Section 5 we explore the commutative
ring theoretic properties of the perfectoid Tate algebra. We compute its unit group, and prove perfectoid

3



analogues of Weierstrass division and preparation. We also compute the Krull dimension of the perfectoid
Tate algebra in positive characteristic.

In Section 6 we have our first main theorem.

Theorem 1.2 (The Quillen-Suslin Theorem for the Perfectoid Tate Algebra)
Finite projective modules on the perfectoid Tate algebra K

〈
T

1/p∞

1 , · · · , T 1/p∞

n

〉
are all free. Equiva-

lently, finite dimensional vector bundles on the perfectoid unit disk are all isomorphic to the trivial
vector bundle.

This completes Das’ proof, and lays the groundwork to begin studying vector bundles on more general
perfectoid spaces.

In Section 7 we develop the theory of line bundles on projectivoid space, extending Das’ result for n = 1.

Theorem 1.3 (The Picard Group of Projectivoid Space)
PicPn,perf ∼= Z[1/p].

We also compute the cohomology of all line bundles on projectivoid space.

In Section 8 we compute the functor of points of projectivoid space, showing that (much like in the classical
theory) it is deeply connected to the theory of line bundles on perfectoid spaces.

Theorem 1.4 (The Functor of Points of Projectivoid Space)
Let X be a perfectoid space over a field K. Morphisms X → Pn,perf correspond to tuples

(
Li, s

(i)
j , ϕi

)
,

where Li ∈ PicX,
{
s

(i)
0 , · · · , s(i)

n

}
are n+1 global sections of Li which generate Li, and ϕi : L ⊗pi+1

∼−→

Li are isomorphisms under which
(
s

(i+1)
j

)⊗p
7→ s

(i)
j .

We also provide refinements of this theorem in characteristic p and see how it behaves under the tilting
equivalence of Scholze.

In Section 9 we test out this new theory, using it to compare the Picard groups of a perfectoid space X and
its tilt X[. In particular, since the tilting equivalence builds a correspondence between maps X → Pn,perf

K

and maps X[ → Pn,perf
K[ , we can chain this together with the correspondence of line bundles and maps to

projectivoid space to compare line bundles on X and X[. The main result follows.

Theorem 1.5
Suppose X is a perfectoid space over K. Suppose that X has an ample line bundle and that

H0(XK ,OXK ) = K. Then there is a natural injection

θ : PicX[ ↪→ lim
←−

L 7→L p

PicX.

In particular, if PicX has no p torsion, then composing with projection onto the first coordinate gives
an injection

θ0 : PicX[ ↪→ PicX.
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2 Algebraic Preliminaries

Algebraic geometry is locally commutative algebra, that is, the spaces we study are locally a ‘model space,’
which is the prime spectrum of a commutative ring. Perfectoid spaces are similar, with local model spaces
corresponding to (pairs of) certain types of rings. In this section, we develop the basic algebraic objects from
which we can construct our perfectoid spaces. They will all be Banach algebras over nonarchimedean fields of
residue characteristic p > 0.

2.1 The Fontaine-Wintenberger Isomorphism

To get a better understanding of the algebraic properties that will allow us to transition between characteristic
0 and characteristic p, we begin by analyzing the correspondence on the the level of local fields. In characteristic
0, we have the field of p-adic numbers, Qp, which can be represented as the set

Qp =

{ ∑
n>>−∞

anp
n : an ∈ {0, 1, . . . , p− 1}

}
.

In other words, we can represent p-adic numbers uniquely as ‘Laurent series in the variable p’. On the other
hand, in positive characteristic, we have the field of Laurent series in the variable t,

Fp ((t)) :=

{ ∑
n>>−∞

ant
n : an ∈ {0, 1, . . . , p− 1} = Fp

}
.

Swapping out p and t shows that these fields can be regarded as having the same formal elements, but they
certainly do not have the same addition and multiplication operations (indeed, they do not have matching
characteristic!). Furthermore, Fp has a Frobenius morphism x 7→ xp, whereas Qp has no such thing.

Although an isomorphism of fields is out of the question, the ‘swap out p for t’ analogy actually makes sense
on the level of algebraic extensions. For example, for p 6= 2, we can compare the splitting field of x2 − p
over Qp to the splitting field of x2 − t over Fp ((t)). By restricting ramification, and passing to so called
‘deeply ramified’ extensions, we can eliminate wild ramification and this correspondence becomes a bijection.
Explicitly, we pass to the infinite extensions

K := Qp
(
p1/p∞

)
=

̂⋃
n≥0

Qp
(
p1/pn

)
,

and

K[ := Fp
((
t1/p

∞
))

=
̂⋃

n≥0

Fp ((t))
(
t1/pn

)
.

Galois extensions of K and K[ correspond precisely by swapping out t for p as above. Furthermore, this
correspondence preserves degree, so that GK ∼= GK[ . This gives us a powerful tool allowing us to transport
Galois theoretic data between K and K[. This equivalence may be less surprising considering the relationship
between the integral subrings of K and K[. In particular, we have the following isomorphism.

Zp
[
p1/p∞

]
/(p) ∼= Fp

[
p1/p∞

]
/(t).

2.2 Topological Rings and Fields

Establishing the isomorphism above relies on using the topologies of the fields K and K[, so we begin by
establishing the necessary background on algebraic objects equipped with topologies.
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Definition 2.1. A topological ring is a ring R endowed with a topology on which the maps (r, s) 7→ r + s,
(r, s) 7→ rs and r 7→ −r are all continuous. A topological field is a field K which is a topological ring
and furthermore the map x 7→ x−1 is continuous on K× with the subspace topology.

Remark 2.2
For a topological ring R, and any r ∈ R, the map x 7→ x+ r is a homeomorphism of R, and the map
x 7→ xr is continuous.

The most important cases for us will be adic topologies and topologies induced by a nonarchimedean absolute
value.

Definition 2.3. A topological ring R is called adic if there exists an ideal I of R such that {In;n ≥ 0} is a
neigborhood basis for 0. This implies that {r + In : r ∈ R,n ≥ 0} forms a basis for the topology of R.
I is called an ideal of definition for R.

Example 2.4
The ring of integers Z with the p-adic topology is an adic ring with ideal of definition (p). The ring of
formal power series k[[t]] with the t-adic topology is an adic ring with ideal of definition (t).

Definition 2.5. A nonarchimedean field is a field K endowed with an absolute value | · | : K → R≥0 satisfying
the following properties.

(a) For x ∈ K, |x| = 0 if and only if x = 0.

(b) |x+ y| ≤ max{|x|, |y|} for all x, y ∈ K.

(c) |1| = 1.

(d) |xy| = |x| · |y| for all x, y ∈ K.

A normed K-algebra is a K-algebra R together with a norm || · || : R→ R≥0 extending that of K and
satisfying (a) and (b) above, as well as the following properties.

(c’) ||1|| ≤ 1.

(d’) ||xy|| ≤ ||x|| · ||y|| for all x, y ∈ R..

(e’) ||λx|| = |λ| · ||x|| for all λ ∈ K, and x ∈ R.

If R satisfies (c) and (d) instead of (c’) and (d’), then R is called a multiplicative normed K-algebra.

We make K into a topological field by letting the sets {|x| ≤ γ} for γ ∈ R>0 form a neighborhood
basis for 0, and make R into a topological ring the same way. These topological rings and fields are
called nonarchimedean.

Example 2.6
The field Q with the topology induced by the p-adic absolute value is a nonarchimedean topological
field. It contains Z as an open subset whose topology coincides with the p-adic topology it caries as an
adic ring. Notice that Q with this topology is not adic, because p generates the unit ideal. We will
later define a ring which is not necessarily adic but whose topology can be generated by an open adic
subring as Huber.

Example 2.7
Let K be a nonarchimedean field and let K◦ = {x : |x| ≤ 1} be its valuation ring. Then K◦ is
a nonarchimedean open subring of K (although not a K-algebra). For any x ∈ K \ K◦, we have
K = K◦[x]. Indeed, fix any y ∈ K. Since |x| > 1 we have |x−1| < 1 and so some N we have |yx−N | ≤ 1.
Thus

y = yx−N · xN ∈ K◦[x].
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Example 2.8
Let K be a nonarchimedean field. We can form the polynomial ring K[T ] and endow it with the
Gauss norm ||anTn + · · ·+ +a1T + a0|| = max{|ai|}. This makes K[T ] into a multiplicatively normed
K-algebra.

Definition 2.9. A sequence of elements (x1, x2, · · · ) in a topological ring R is said to converge to x ∈ R if
for all neighborhoods U of 0, there is some N >> 0 such that for all n > N we have xn − x ∈ U . If
(xn) converges to x, we write limn→∞ xn = x.

A sequence of elements (x1, x2, · · · ) in a topological ring R is called Cauchy if for all neighborhoods U
of 0 there exists some N >> 0 such that for all n,m > N , xn − xm ∈ U .

A topological ring is complete if every Cauchy sequence coverges to a value x ∈ R.

Under modest assumptions, one can formally adjoin Cauchy sequences to a topological ring in order to make
it complete.

Definition/Theorem 2.10 (Completions of Topological Rings [5] III.6.5)
Let R be a topological ring with a neighborhood basis of 0 consisting of open subgroups. Then there is

a complete topological ring R̂ together with a continuous homomorphism i : R→ R̂ which is initial
among continuous homomorphisms from R to complete topological rings. R̂ is called the completion of
R. The formation of the completion is functorial among topological rings with this bases of 0 consisting
of open subgroups.

Corollary 2.11
Both adic rings and nonarchimedean rings satisfy the conditions of Theorem 2.10, and therefore have
completions which are unique up to unique isomorphism. The same is true for topological rings which
contain an adic ring as an open subring (these we will later define as Huber rings, see Definition 3.7
below).

Example 2.12
If R is adic with ideal of definition I, then R̂ ∼= lim

←−n
R/In. If R is noetherian then the natural map

R→ R̂ is flat.

Example 2.13
Let Z have the p-adic topology. Then Ẑ ∼= Zp is the ring of p-adic integers.

The completion of Q with respect to the p-adic norm is the field Qp of p-adic numbers. Notice that Zp
is naturally an open subring of Qp, and and is in fact the valuation ring of Qp, consisting of elements
x ∈ Qp with |x| ≤ 1 in the p-adic norm. Therefore Qp is the field of fractions of Zp.

Definition 2.14. Let R be a topological ring. An element x ∈ R is called topologically nilpotent if

lim
n→∞

xn = 0.

That is, if for all open neighborhoods U of 0, there is some N >> 0 such that for all n > N , xn ∈ U .

A subset B of R is bounded if for every neighborhood U of 0, there exists a neighborhood V of 0 such
that V ·B ⊆ U .

An element x ∈ R is called power-bounded if the set {xn : n ≥ 1} is bounded.

We denote the set of power-bounded elements by R◦, and the set of topologically nilpotent elements
by R◦◦.

The following example justifies our terminology.
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Example 2.15 ([37] Example 5.29)
Let R be a nonarchimedean ring. An element x is power-bounded if and only if |x| ≤ 1 and topologically
nilpotent if and only if |x| < 1. A subset B of R is bounded if and only if there is some λ ∈ R>0 such
that |b| ≤ λ for all b ∈ B.

Proposition 2.16 ([37] Proposition 5.30)
Let R be a nonarchimedean ring. The set R◦ of power-bounded elements is an integrally closed subring
of R, and the set R◦◦ of topologically nilpotent elements is a radical ideal of R◦.

Example 2.17
The p-adic integers Zp ⊆ Qp form the subring of power-bounded elements, and the ideal of topologically
nilpotent elements is precisely the maximal ideal pZp of Zp.

More generally if K is a nonarchimedean field, then K◦ is its valuation ring with maximal ideal K◦◦,
and the quotient K◦/K◦◦ is the residue field of K.

Definition 2.18. Let K be a complete nonarchimedean field. A complete normed K-algebra is called a
Banach K-algebra.

Example 2.19
Let K be a complete nonarchimedean field. The completion of K[T ] with the topology induced by
the Gauss norm is the ring K〈T 〉 of convergent power series over K. It consists of formal power series∑
anT

n where limn→∞ an = 0. The Gauss norm extends as ||
∑
anT

n|| = sup{|an|} making K〈T 〉
into a multiplicative Banach K-algebra.

More generally, given a complete nonarchimedean ring R, we can define the ring of convergent power
series R〈T1, · · · , Tn〉 by completing the polynomial ring R[T1, · · · , Tn] equipped with the topology
induced by the Gauss norm.

Banach algebras need not be commutative.

Example 2.20
Let K be a complete nonarchimedean field, and endow the matrix algebra Mn(K) with the Gauss
norm ||(aij)|| = max{||aij ||}. This makes Mn(K) into a Banach K-algebra.

More generally, given a Banach algebra R, the Gauss norm makes Mn(R) into a Banach algebra as
well.

There are a number of useful technical results that we record here for later reference. The first is that an
integer is always power-bounded.

Lemma 2.21
In any nonarchimedean group, any integer has absolute value less than or equal to one.

Proof. ||n|| = ||1 + · · ·+ 1|| ≤ max{||1||, · · · , ||1||} = 1.

Another important fact about nonarchimedean rings is that “all triangles are isosceles”.

Lemma 2.22
Let R be a nonarchimedean ring, and a, b ∈ R. If ||a|| 6= ||b|| then ||a+ b|| = max{||a||, ||b||}.

Proof. Without loss of generality we let ||a|| > ||b||. If ||a+ b|| < max{||a||, ||b||} = ||a||, then

||a|| = ||a+ b− b|| ≤ max{||a+ b||, ||b||} < ||a||,

a contradiction.
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The nonarchimedean property can make it much easier to check if a limit converges. In particular, we only
need to check sequential elements.

Lemma 2.23
A sequence (a1, a2, · · · ) of elements of a nonarchimedean ring R are Cauchy if and only if for all ε > 0,
there is some N such that for all m > N , we have ||am+1 − am|| < ε.

Proof. Fix n ≥ m > N . Then

||an − am|| = ||(an − an−1) + (an−1 − an−2) + · · ·+ (am+1 − am)||
≤ max{||an − an−1||, · · · , ||am+1 − am||}
< ε.

The nonarchimedean property also makes it easier for infinite sums to converge.

Lemma 2.24
Let R be a complete nonarchimedean ring, and an ∈ R. The infinite sum

∑∞
n=0 an converges if and

only if limn→∞ an = 0.

Proof. Suppose (an) converges to 0. We must show the partial sums sm =
∑m
n=0 an converge. For every

ε > 0 there is some N such that for any m > N we have |am| < ε. In particular, for m ≥ r > N

||sm − sr|| = ||am + am−1 + · · ·+ ar|| ≤ max{||am||, ||am−1||, · · · , ||ar||} < ε,

so that the partial sums are Cauchy. Since R is complete they converge. The other direction is
immediate.

Remark 2.25
Notice that this implies that the ring K〈T 〉 defined in Example 2.19 consists precisely of formal power
series which converge when evaluated on K◦, justifying the nomenclature.

We get the following immediate consequence.

Lemma 2.26
Let R be a complete nonarchimedean ring, and f ∈ R topologically nilpotent. Then 1− f is a unit in
R.

Proof. The geometric series 1
1−f =

∑∞
n=0 f

n converges to an inverse of 1− f by Lemma 2.24.

For homomorphisms between Banach algebras, continuity is readily checked.

Definition 2.27. Let f : R→ S be a homomorphism of Banach algebras. We say f is bounded if there is
some ρ ∈ R such that for all x ∈ R, ||f(x)|| ≤ ρ||x||.

Proposition 2.28 ([4] Corollary 2.1.8.3)
A homomorphism of Banach algebras is continuous if and only if it is bounded.

2.3 A Convergence Result

The following is a general convergence result for certain nonarchimedean Banach algebras. It will prove useful
several times throughout the paper.

Proposition 2.29
Let K be a complete nonarchimedean field, either of characteristic p or 0. Suppose that p is topologically

nilpotent and that we can choose a consistent sequence of pth power roots of p, that is (p, p1/p, · · · ).
Let R be a Banach K-algebra. Let (a0, a1, a2, · · · ) and (b0, b1, b2, · · · ) be sequences of elements in R

such that for all i, api+1 = ai, and bpi+1 = bi. Then limn→∞ (an + bn)
pn

converges in R.
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Remark 2.30
K having consistent sequences of pth power roots of p is actually quite close to K being perfectoid,
and any perfectoid field will have this property. See Definition 2.37.

The characteristic p case is immediate, as each term in the limit is a0 + b0. Therefore we assume that the
characteristic is 0. The proof will involve a series of reductions. Here is the first.

Claim 2.31
It suffices to show the result for sequences with a0, b0 ∈ R◦.

Proof. Let γ = pN for n large enough so that ||γa0||, ||γb0|| < 1. Using the sequence of pth power roots for p,
we can form a sequence of pth power roots for γ. For each m, define a′m = γ1/pmam and b′m = γ1/pmbm.
Then a′pm+1 = a′m and b′pm+1 = b′m. Since ||a′0||, ||b′0|| ≤ 1, they are in R◦, so we may assume that

limn→∞ (a′n + b′n)
pn

converges, and therefore so does

γ−1 lim
n→∞

(a′n + b′n)
pn

= lim
n→∞

(
γ−1/pna′n + γ−1/pnb′n

)pn
= lim

n→∞

(
γ−1/pnγ1/pnan + γ−1/pnγ−1/pnbn

)pn
= lim

n→∞
(an + bn)

pn
.

Here is the second reduction.

Claim 2.32
It suffices to show that if a, a′, b, b′ ∈ R◦, with a′p = a and b′p = b we have∣∣∣∣∣∣(a+ b)p

m

− (a′ + b′)p
m+1
∣∣∣∣∣∣ ≤ ||pm||.

Proof. Fix any real number ε > 0. Since p is topologically nilpotent there is some N >> 0 such that for all
m > N we have ||pm|| < ε. The difference between the mth and (m+ 1)st terms in the sequence is

(am + bm)p
m

− (am+1 + bm+1)p
m+1

.

Letting a = am, a′ = am+1, b = bm, and b′ = bm+1, we may assume that this difference has absolute
value < ε. Thus by Lemma 2.23 we are done.

A final reduction follows.

Claim 2.33
It suffices to show that for x, y ∈ R◦,∣∣∣∣∣∣(x+ py)p

m

− xp
m
∣∣∣∣∣∣ ≤ ||pm||.

Proof. Notice that (a0 + b0)p
m+1

= ((a0 + b0)p)p
m

= (a+ b+ p · y)p
m

for some y ∈ R◦. Letting x = a+ b
we have ∣∣∣∣∣∣(a+ b)p

m

− (a0 + b0)p
m+1
∣∣∣∣∣∣ =

∣∣∣∣∣∣xpm − (x+ py)p
m
∣∣∣∣∣∣ ≤ ||pm||.

Before completing the final step we need the following combinatorial result.

Lemma 2.34
For n ∈ Z, we denote by vp(n) := max{k : pk|n}. Then

vp

((
pk

i

))
= k − vp(i).
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Proof. We follow a proof of Bruno Joyal in [18].

Let q = pk. We hope to compute vp(q!)− vp(i!)− vp((q − i)!).

Notice first that for any n, we have

vp(n!) =

∞∑
j=1

⌊
n

pj

⌋
.

In particular, vp(q!) = pk−1
p−1 . Also for any x ∈ R we have

b−xc+ bxc =

{
0 : x ∈ Z
−1 : x /∈ Z

Therefore,

vp((q − i)!) + vp(i!) =

n∑
j=1

⌊
pn − i
pj

⌋
+

⌊
i

pj

⌋

=

n∑
j=1

(
pn−j +

⌊
−i
pj

⌋
+

⌊
i

pj

⌋)

=
pk − 1

p− 1
− (k − vp(i)).

Subtracting this from vp(q!) gives the result.

Now we can complete the proof of Proposition 2.29 with the following lemma.

Lemma 2.35
Let x, y ∈ R◦. Then ∣∣∣∣∣∣(x+ py)p

m

− xp
m
∣∣∣∣∣∣ ≤ ||pm||.

Proof. First notice that for a ∈ Z, if pm|a in Z, then ||a|| ≤ ||pm||. Indeed, if pm ·r = a, then ||pm||·||r|| = ||a||.
Since r is an integer, we know by Lemma 2.21 that ||r|| ≤ 1, so that ||a|| ≤ ||pm||. Now consider,

∣∣∣∣∣∣(x− py)p
m

− xp
m
∣∣∣∣∣∣ =

∣∣∣∣∣
∣∣∣∣∣
(
pm∑
i=0

(
pm

i

)
xp

m−ipiyi

)
− xp

m

∣∣∣∣∣
∣∣∣∣∣

=

∣∣∣∣∣
∣∣∣∣∣
pm∑
i=1

(
pm

i

)
xp

m−ipiyi

∣∣∣∣∣
∣∣∣∣∣

≤ max
i=1,··· ,pm

{∣∣∣∣∣∣∣∣(pmi
)
pi
∣∣∣∣∣∣∣∣} ,

using in the last step that ||x||, ||y|| ≤ 1. Therefore it suffices to show that pm
∣∣∣(pmi ) · pi But this

follows from Lemma 2.34. Indeed, for any r, if pr ≤ i < pr+1, then Lemma 2.34 shows that pm−r
∣∣∣(pmi )

Certainly pr|pi, so that pm divides their product.

2.4 Perfectoid Fields

We now can define some of the central objects of our study.

Definition 2.36. LetK be a nonarchimedean valued field. The residue characteristic ofK is the characteristic
of the residue field K◦/K◦◦.

11



Definition 2.37. A perfectoid field is a nondiscretely valued complete nonarchimedean field K of residue
characteristic p on which the Frobenius morphism x 7→ xp on K◦/(p) is surjective.

Remark 2.38
The condition that the valuation is nondiscrete eliminates unramified extensions of Qp.

Definition 2.39. Every perfectoid field K has a (not necessarily unique) topologically nilpotent unit $,
that is, a nonzero element with |$| < 1 called a pseudouniformizer.

Example 2.40
1. The main examples in characteristic 0 are the p-adic completions of Qp

(
p1/p∞

)
and Qp (µp∞).

Also of interest is Cp, the completed algebraic closure of Qp. In each case, p serves as a pseu-
douniformizer.

2. A complete nonarchimedean field of characteristic p > 0 is perfectoid if and only if it is perfect.
A fundamental example is the completion of k

((
t1/p

∞))
. Indeed, if K is any perfectoid field of

characteristic p, and residue field k, then K contains k
((
t1/p

∞))
, where t is any element of K

with 0 < |t| < 1. Notice that t serves as a pseudouniformizer, and that K is endowed with the
t-adic topology.

Definition 2.41. Let K be a perfectoid field. The tilt of K is defined as follows. First, as a multiplicative
monoid we define

K[ := lim
←−
x 7→xp

K.

The addition law of K[ follows the rule (an) + (bn) = (cn), where

cn = lim
m→∞

(an+m + bn+m)
pm
.

The limit converges due to Proposition 2.29. Notice that the formal elements of the tilt correspond to
consistent sequences of pth power roots of elements of K.

Lemma 2.42 ([27] Proposition 3.8)
(i) The reduction map K◦ → K◦/p induces an isomorphism of topological multiplicative monoids

K◦[ := lim
←−
x7→xp

K◦ → lim
←−
x 7→xp

K◦/p,

whose inverse is (an mod p) 7→ (bn) where

bn = lim
m→∞

ap
n

m+n.

The limit does not depend on the lift of an. This gives K◦[ a canonical ring structure.

(ii) Give K◦[ the induced ring structure, K[ is the field of fractions.

(iii) Projection onto the first coordinate defines a map of topological monoids K[ → K, which we
call the Teichmüller map and denote by x 7→ x]. The absolute value |x|K[ := |x]|K induces a
topology on K[ making it into a perfectoid field of characteristic p, with integral subring K◦[,
i.e., K◦[ ∼= K[◦.

(iv) The Teichmüller map ] induces an isomorphism:

K[◦/K[◦◦ ∼= K◦/K◦◦.

Furthermore, for any nonzero $ ∈ K[◦, we have:

K[◦/$ ∼= K◦/$].

12



(v) If K is of characteristic p, then K[ ∼= K.

Remark 2.43
Lemma 2.42 allows nonisomorphic fields to have isomorphic tilts. Indeed, take any perfectoid field K

of characteristic 0. Then K and K[ both tilt to K[. In fact, nonisomorphic fields of characteristic 0
can tilt to the same field of characteristic p, see Example 2.44 below.

Example 2.44
1. Let K = ̂Qp

(
p1/p∞

)
. Then we have the element t = (p, p1/p, p1/p2 , . . .) ∈ K[, and |t| = |p| < 1.

Our discussion in Example 2.40 shows that Fp
((
t1/p

∞)) ⊆ K[. To see that they are the same,
notice that they have the same integral subrings. Indeed,

K◦/p ∼= Zp
[
p1/p∞

]
/(p) ∼= Fp

[
t1/p

∞
]
/(t).

Applying limx 7→xp to both sides, and applying part (iii) of Lemma 2.42 we see that

K[◦ ∼=
(
Fp
((
t1/p

∞
)))◦

.

Taking fields of fractions shows

K[ ∼= Fp
((
t1/p

∞
))

.

2. Let K = ̂Qp (µp∞), then a similar argument shows that K[ ∼= Fp
((
t1/p

∞))
. Indeed, viewing K[

as the fraction field of lim
←−

K◦/p, we can take t = (1 − ζp, 1 − ζp2 , . . .), where ζpi are primitive

pith roots of unity satisfying ζppi+1 = ζpi

Remark 2.45
One can construct a type of moduli space of fields tilting to a given perfectoid field. It is a projective
curve whose closed points correspond to untilts, and can be realized as a scheme or an adic space (see
Section 3). This curve is called the Fargues-Fontaine curve, or also the fundamental curve of p-adic
Hodge theory. For a more detailed discussion, see, for example [8].

The following theorem of Scholze generalizes the isomorphism of Fontaine and Wintenberger (Theorem 1.1).

Theorem 2.46 ([27] Theorem 3.7)
Let K be a perfectoid field.

(i) Let L be a finite extension of K. Then L with the natural topology as a finite K vector space is
a perfectoid field.

(ii) Let K[ be the tilt of K. Then the tilting functor L→ L[ induces an equivalence of categories
between the category of finite algebraic extensions of K and finite algebraic extensions of K[.
This equivalence preserves degrees, and therefore induces a topological isomorphism of absolute
Galois groups GK ∼= GK[ .

Remark 2.47
This result was independently obtained by Kedlaya-Liu, [21] Theorem 3.5.9.

Remark 2.48
It is useful to describe the quasi-inverse explicitly. Since we are moving from characteristic p to
characteristic 0, one should expect the ring of Witt vectors to arise. Let us briefly review the definition
of this ring.

Given a perfect ring R of characteristic p, we assign to it a ring of characteristic 0, W (R), which is
complete in the p-adic topology, along with a map of multiplicative monoids R → W (R), denoted
x 7→ [x], which is initial among maps of multiplicative monoids R→ S, where S is p-adically complete
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ring of characteristic 0 and R→ S → S/p is a ring homomorphism. W (R) is called the ring of Witt
vectors, and its formation is functorial in R. The elements of W (R) can be written uniquely as formal
power series [x0] + [x1]p+ [x2]p2 + · · · with xi ∈ R.

Notice that K[◦, is a perfect ring, so it has a ring of Witt vectors W (K[◦). Because x 7→ x] is a
map of multiplicative monoids from K[◦ → K◦ which becomes a ring map after reducing modulo
p, the universal property gives us a ring homomorphism θ : W (K[◦) → K◦. By, [38] Lemma 2.2.1,
after inverting p, θ induces a surjective homomorphism, θ : W (K[◦) [1/p] → K, making K into a
W (K[◦)-algebra.

We use this to describe the inverse to the functor L→ L[. Let M/K[ be a finite extension. Then M◦

is perfect and W (M◦) is a finite W (K◦[)-algebra. We define

M ] := W (M◦)⊗W (K[◦) K.

Then M ] is a perfectoid field, and the map M → M ] sending x 7→ x] := [x] ⊗ 1 is a multiplicative
map. The map M →M ][ given by x 7→

(
x], (x1/p)], . . .

)
is an isomorphism.

Remark 2.49
Lemma 2.2.1 in [38] shows that every characteristic 0 field whose tilt is K[ must be a quotient of

W (K[◦) [1/p] by some maximal ideal.

2.5 Perfectoid Algebras

If perfectoid fields are going to correspond to ‘points’ of our spaces, then our affine patches (in this case
the term will be affinoid) should correspond to certain classes of rings. To start, we fix a perfectoid field K
and pseudouniformizer $ ∈ K. We will also need a pseudouniformizer $[ ∈ K[, and we may assume that
($[)] = $. It will turn out that none of the following depends on the choices of $ and $[, but it is useful to
have one fixed at the outset. See, for example, [27] Section 3.

Definition 2.50. A Banach K-algebra R is called a perfectoid K-algebra if the subset R◦ ⊂ R of power-
bounded elements is open and bounded, and the Frobenius morphism Φ : R◦/$ → R◦/$ given
by x 7→ xp is surjective. Morphisms between perfectoid algebras are continuous homomorphisms of
K-algebras.

Remark 2.51
Scholze in [27] initially only defined perfectoid algebras over perfectoid fields, but the same definition
makes sense for general rings, defining a perfectoid ring. In fact, there are examples of perfectoid rings
which do not arise as algebras over a perfectoid field. See, for example, [19] Exercise 2.4.10. We will
focus on perfectoid K-algebras in this paper.

Remark 2.52 ([19] Section 2)
If R is a perfectoid K-algebra, then R = R◦[1/$].

Remark 2.53 ([19] Corollary 2.9.3)
A perfectoid K-algebra is noetherian if and only if it is a finite direct sum of perfectoid fields.

Lemma 2.54
If R is a perfectoid K-algebra, then R is reduced.

Proof. If x ∈ R is nilpotent, λx is nilpotent for all λ ∈ K, and therefore topologically nilpotent and thus
power-bounded. In particular, ||λx|| ≤ 1 for all λ ∈ K. This can only happen if x = 0.

As with fields, in positive characteristic, being perfectoid is the same as being perfect.
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Proposition 2.55 ([27] Proposition 5.9)
If K has characteristic p, and R a Banach K-algebra such that the set of power-bounded elements is
open and bounded, then R is perfectoid if and only if it is perfect.

We can tilt perfectoid algebras the same way we tilt perfectoid fields.

Definition 2.56. Given R perfectoid over K, we form R[ := lim
←−x 7→xp

R as a multiplicative monoid, with

addition defined by the rule, (an) + (bn) = (cn) where

(cn) = lim
m→∞

(an+m + bn+m)p
m

.

The limit converges due to Proposition 2.29. As with fields, there is a continuous map of multiplicative
monoids ] : R[ → R called the Teichmüller map, given by projection onto the first coordinate, which
we denote by x 7→ x]. Defining an absolute value on R[ by |x|R[ = |x]|R makes R[ into a perfectoid
K[-algebra. The map x 7→ x] descends to an isomorphism of rings

R[◦/($[)
∼−→ R◦/($).

The following extends Theorem 2.46.

Theorem 2.57 ([27] Theorem 5.2)
The functor R 7→ R[ is an equivalence from the category of perfectoid K-algebras to the category of

perfectoid K[-algebras. A quasi-inverse is given by

S 7→W (S◦)⊗W (K[◦) K.

Example 2.58
In classical algebraic geometry, the polynomial ring serves as the ring of regular functions for affine
space. Analogously, in rigid analytic geometry, there is the Tate algebra K〈T1, . . . , Tn〉 of power series
over a complete nonarchimedean field K which converge on the unit polydisk. This serves as the ring
of regular functions for the unit polydisk over K. If K is a perfectoid space, we see that the Tate
algebra is not a perfectoid K algebra, because the indeterminates don’t have pth power roots. The
natural extension is called the perfectoid Tate algebra, denoted,

T perf
n,K := K

〈
T

1/p∞

1 , · · · , T 1/p∞

n

〉
.

It is constructed as follows. We first consider,

K◦
[
T

1/p∞

1 , · · · , T 1/p∞

n

]
=
⋃
m≥0

K◦
[
T

1/pm

1 , · · · , T 1/pm

n

]
,

and then take the completion with respect to the $-adic topology to form
(
T perf
n,K

)◦
. Finally we invert

$. The Gauss norm makes T perf
n,K into a multiplicatively normed Banach K-algebra. We study this ring

extensively be in Sections 5 through 7.

It is worth noting that the same construction allows us to build R
〈
T

1/p∞

1 · · · , T 1/p∞

n

〉
for any perfectoid

algebra R.

The construction of the perfectoid Tate algebra is compatible with the tilting operation.

Proposition 2.59 ([27] Proposition 5.20)
T perf
n,K is a perfectoid K algebra whose subring of power-bounded elements is

(
T perf
n,K

)◦
. Its tilt is,

T perf
n,K[ = K[

〈
T

1/p∞

1 , · · · , T 1/p∞

n

〉
,

where by abuse of notation T ]i = Ti.
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Remark 2.60
This generalizes as well. If R is a perfectoid K-algebra, then so is R

〈
T

1/p∞

1 , ·, T 1/p∞

n

〉
and its tilt is

R[
〈
T

1/p∞

1 , · · · , T 1/p∞

n

〉
.

If R is a perfectoid K-algebra, there is a tilting equivalence for certain classes of algebras over R and R[.
Indeed, the natural generalization of algebraic field extensions over K and K[ are finite étale algebras over R
and R[. It turns out we get a direct generalization of Theorem 2.46 and Theorem 2.57.

Theorem 2.61 ([27] Theorem 7.12)
Let R be a perfectoid K-algebra with tilt R[,

(i) The functor S 7→ S[ defines an equivalence of categories between perfectoid R-algebras and
perfectoid R[-algebras.

(ii) A finite étale R-algebra S is perfectoid. The functor S 7→ S[ defines an equivalence of categories
Rfét → R[fét.

Since this occurs as rings, if we can ‘glue’ the tilting equivalences together in some reasonable way, we should
get a geometric theory allowing us to tilt a space of characteristic 0 to characteristic p. Theorem 2.61 seems
to imply that this would produce a new space with an isomorphic étale site. Unfortunately, as the following
example illustrates, this procedure seems analytic in nature and would probably require a notion of limits
which schemes do not allow.

Example 2.62
Suppose K is algebraically closed. The affine line over K should parametrize elements of K. Suppose
we want to tilt the affine line A1

K . The result should be the affine line A1
K[ . By the tilting procedure,

this should be ‘equal to’ the inverse limit lim
←−T 7→Tp

A1
K where T is the coordinate on A1. Nevertheless,

the explicit map between A1
K[ and lim

←−T 7→Tp
A1
K would require taking a p-adic limit. Therefore to

actually formalize this isomorphism we need an analytic framework which respects the p-adic topology.
Rigid spaces are not the right framework for nonnoetherian rings, and so Scholze settled on Huber’s
generalization of these, called adic spaces.
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3 Adic Spaces

To build the prime spectrum of a ring R we consider the prime ideals of R as the underlying topological
space and R as the ring of regular functions. Unfortunately the coarse Zariski topology makes it impossible
to make analytic arguments go through without passing to some other category. If we are working over C
then the we can use Serre’s analytification functor and GAGA [31] in order to study our variety with its
(much finer) complex analytic topology. If we are working over nonarchimedean fields over then we can view
the variety as a rigid analytic space, where the topological space is locally Spm(R), the set of maximal ideals,
and then we ‘fill in’ all the missing points by constructing a Grothendieck topology of admissible coverings
(see [10]). Rigid spaces admit the following pathology, one can construct open immersions which are bijective
but not isomorphisms, or even admissible coverings in the Grothendieck topology.

Example 3.1
Let X = SpmK〈T 〉 be the rigid-analytic closed unit disk. Let Y be the disjoint union of the open unit
disk U and the circle S = SpmK〈T, T−1〉. Then Y → X is an open immersion which is bijective on
the level of points, but it is not even a covering of X. See [10].

This problem is fixed by Huber in [15], where he builds the underlying topological space by suitably topologizing
a set of valuations on the ring R. This fixes our pathological example because we get extra points on X which
are ‘between’ S and U , so that Y → X is no longer surjective, see Section 3.4 below for the details.

A more pressing issue for us is that rigid analytic geometry can only speak about certain classes of rings,
all of which are noetherian. Perfectoid algebras are rarely noetherian (see Remark 2.53), so if we want to
use rigid analytic methods to study perfectoid algebras we need a different framework. The advantage of
Huber’s approach is it allows us to study a far larger class of rings which are not affinoid in the sense of rigid
geometry. Among these are all perfectoid rings and algebras.

3.1 Valuation Spectra

If X is an ‘analytic’ space of some sort, we should be able to take limits of points on X. An important
tool in doing this is to be able to define subsets of X by inequalities. That is, for any f ∈ Γ(X,OX), the
subset {x : |f(x)| ≤ 1} should make sense. In particular, any point x ∈ X should give rise to a valuation on
Γ(X,OX). First let us recall what a valuation is.

Definition 3.2. Let R be a commutative ring. A valuation on R is given by a map | · | : R→ Γ ∪ {0} where
Γ is some totally ordered group, satisfying the following properties.

(i) |a+ b| ≤ max{|a|, |b|} for all a, b ∈ R.

(ii) |ab| = |a| · |b| for all a, b ∈ R.

(iii) |0| = 0 and |1| = 1.

The support of | · | is supp(| · |) := | · |−1(0). The value group of | · |, denoted Γ|·|, is the group closure of
the monoid |R×| in Γ.

Notice that supp(| · |) is a prime ideal so that the quotient R/ supp(| · |) is a domain. Let L be the fraction field.
Then the valuation | · | factors as R→ L→ Γ∪{0} for a unique valuation on L. Let A(| · |) = {x ∈ L : |x| ≤ 1},
be the associated valuation ring.

Definition 3.3 ([37] Proposition/Definition 1.27). Two valuations | · | and | · |′ are called equivalent if
the following equivalent conditions are satisfied.
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(i) There is an isomorphism of totally ordered groups α : Γ|·| → Γ|·|′ and | · |′ = α ◦ | · |.

(ii) supp(| · |) = supp(| · |′), and A(| · |) = A(| · |′).

(iii) For all a, b ∈ R, we have |a| ≤ |b| if and only if |a|′ ≤ |b|′.

Remark 3.4
For the rest of this paper we will conflate the notions of valuations and equivalence classes of valuations.
For example, in the next definition we define the valuation spectrum simply as the set of valuations on
a ring, when what we really mean is the set of equivalence classes of valuations. This is a standard
abuse of notation to avoid overly cumbersome wording.

Definition 3.5. Let R be a ring. The valuation spectrum of R, denoted SpvR, is the set of all valuations on
R. The topology on X = SpvR is generated by the open sets

X

(
T

g

)
:= {| · | ∈ X : |t| ≤ |g| 6= 0 for all t ∈ T},

for all finite subsets T ⊆ R and all g ∈ R.

If φ : R → S is a homomorphism of rings, pulling back valuations induces a continuous map
Spv(φ) : SpvS → SpvR which maps | · | 7→ | · | ◦ φ. This makes Spv into a contravariant functor from
rings to topological spaces.

The support map supp : SpvR→ SpecR is continuous. Indeed, if f ∈ R, then the preimage of the associated

distinguished open D(f) is X
(
f
f

)
. Futhermore, this map is surjective. Indeed, for p ∈ SpecR let | · |p, be the

valuation which evaluates to 0 on p, and 1 everywhere else. Then supp(| · |p) = p. Thus we can view SpvR as
fibered over SpecR. Even better, this fibration localizes.

Proposition 3.6 ([37] Remark 4.4)
Let R be a ring.

(i) Let S ⊂ R be a multiplicative subset, and φ : R→ S−1R the canonical localization map. Then
Spv(φ) is a homeomorphism of Spv(S−1R) onto the open subspace

{v ∈ SpvR : supp(v) ∩ S = ∅}.

(ii) Let a ⊂ R be an ideal, and π : R→ R/a the quotient map. Then Spv(π) is a homeomorphism of
Spv(R/a) onto the closed subspace {v ∈ SpvR : supp(v) ⊇ a}.

In particular, if R′ is a localization or quotient of R, then

SpvR′ SpvR

SpecR′ SpecR

is Cartesian.

The space of all valuations on a ring is much too large for our purposes, and it does not detect the topology
of a ring. An (affinoid) adic space will be a subspace of the space of all valuations, constructed on certain
topological rings.
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3.2 Huber Rings

Recall from Example 2.13 that although Qp is not adic, it is quite close. In particular, it is the field of
fractions of an adic ring that it contains as an open subring, namely Zp. Perfectoid rings arise similarly, with
the topology on R induced by an adic topology on the subring of power-bounded elements R◦. This motivates
the following definition.

Definition 3.7. A Huber ring is a topological ring R containing an adic open subring R0, whose topology is
induced by a finitely generated ideal of definition I. R0 is called a ring of definition, (R0, I) is called a
pair of definition. We remark that the data of R0 and I are not packaged with the definition, instead
only their existence is asserted.

A Huber ring is Tate if it contains a topologically nilpotent unit, called a pseudouniformizer.

More generally, a Huber ring is analytic if the unit ideal can be generated by topologically nilpotent
elements.

If the subset R◦ of power-bounded elements is bounded, then R is called uniform.

Example 3.8
1. Any ring R with the discrete topology is a Huber ring with R0 = R and I = 0.

2. Any nonarchimedean field K with nontrivial metric is Huber. K◦ = {x : |x| ≤ 1} serves as a ring
of definition and ($) the ideal of definition for any pseudouniformizer $ ∈ K×. In particular,
perfectoid fields are Huber, and even Tate. It is clear from the definition that perfectoid fields
are uniform.

3. For a complete nonarchimedean field K, the Tate algebra K〈X1, · · · , Xn〉 is a Huber ring, with
ring of definition K◦〈X1, · · · , Xn〉 and ideal of definition ($). The existence of $ implies that
the Tate algebra is Tate.

4. Suppose K is perfectoid. Then any perfectoid K-algebra R is Huber with ring of definition R◦

and ideal of definition ($). Therefore all perfectoid K-algebras are Tate. It is clear from the
definition of a perfectoid algebra that R is uniform. In general, not all perfectoid rings are Tate,
although they are Huber, and even analytic (see [19] Section 2).

A subtlety in the definition of an adic space is its reliance on fixing an open integrally closed subring.

Definition 3.9. A pair of rings (R,R+) is called a Huber pair if R is a Huber ring and R+ ⊂ R◦ is an open,
integrally closed subring of R, consisting of power-bounded elements. A morphism of Huber pairs,
φ : (R,R+)→ (S, S+), is a ring map φ : R→ S such that φ(R+) ⊆ S+.

Remark 3.10
Notice here that attached to a Huber ring R we now have 3 open subrings, R◦, the ring of power-
bounded elements, R0 a ring of definition, and now R+. These rings will often coincide. Indeed, for
a uniform Huber ring, R+ will always be a ring of definition (see, for example, [19] 2.1.1). Certainly
R◦ is the largest open integrally closed subring of contained in R◦, and in fact it is is the union of all
possible R+.

Definition 3.11. A Huber pair (R,R+) is called perfectoid (resp. Tate, analytic, uniform, complete, etc.) if
R is perfectoid (resp. Tate, analytic, uniform, complete, etc.)

A morphism of Huber pairs φ : (R,R+)→ (S, S+) is continuous (resp. finite étale) if φ : R→ S is.
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3.3 The Adic Spectrum of a Huber Pair

Notation 3.12
Since we are working with Banach rings R endowed with an absolute value, we will henceforth use
the notation | · | for the absolute value on R, and the notation x for the other valuations on R when
regarded as points on SpvR. Notice that | · | will have value group R>0 and we will denote by Γx the
value group of a valuation x. For any f ∈ R, we will denote the image of f under x by |f(x)| ∈ Γx.

Definition 3.13. A valuation on a topological ring R is called continuous if the sets {f : |f(x)| < λ} are
open in R for every λ ∈ Γx, or equivalently if the topology defined by x is coarser than that of R. We
denote by Cont(R) the subspace of Spv(R) constisting of continuous valuations.

Definition 3.14. Let (R,R+) be Huber pair. We define the adic spectrum of (R,R+) to be the subspace

Spa(R,R+) :=
{
x ∈ Cont(R) : |f(x)| ≤ 1 for all f ∈ R+

}
endowed with the subspace topology. Let X = Spa(R,R+). A rational subset of X is one of the form:

X

(
T

g

)
= {x ∈ X : |t(x)| ≤ |g(x)| 6= 0 for all t ∈ T} ,

where T ⊆ R is a finite set generating the unit ideal, and g ∈ R. Since Spa(R,R+) is a subspace of
SpvR, these sets are open in X and in fact form a basis for the topology of X.

Let φ : (R,R+)→ (S, S+) be a continuous homomorphism of Huber pairs. This induces a continuous
map Spa(φ) : Spa(S, S+)→ Spa(R,R+) given by pulling back valuations along φ. This makes Spa into
a contravariant functor from Huber pairs with continuous homomorphisms to topological spaces.

X = Spa(R,R+) is Tate (resp. analytic) if the pair (R,R+) is.

Example 3.15
Let K be a nonarchimedean field, with valuation ring K◦. Then the space Spa(K,K◦) contains only
one point, corresponding to the absolute value on K. Indeed, if x were some other point, we would
have |f(x)| ≤ 1 for all f ∈ K◦. Let Ox = {f ∈ K : |f(x)| ≤ 1} be the valuation ring. Then K◦ ⊆ Ox.
By Example 2.7 we have Ox = K◦ or Ox = K. In the first case we have x equivalent to | · |. In the
second, x is the trivial valuation sending each unit in K to 1, which is not continuous.

Remark 3.16
1. Since |g(x)| ≤ |g(x)| for any x, we see that X

(
f1,··· ,fn

g

)
= X

(
f1,··· ,fn,g

g

)
, so that we can always

assume that fn is equal to g.

2. If g is a unit, then X
(
f1,··· ,fn

g

)
is always rational, as (including g), the fi generate the unit ideal.

Therefore sets of the form

X

(
f

1

)
= {x ∈ X : |f(x)| ≤ 1}

are always rational.

Lemma 3.17
The intersection of two rational subsets is again rational.

Proof. Let T1 = {f1, · · · , fn} and T2 = {g1, · · · , gm} be two finite sets generating the unit ideal. Let
U = X

(
T1

s

)
and V = X

(
T2

t

)
be the corresponding rational subsets of Spa(R,R+). By our remark, we

may assume fn = s and gm = t. Let

W = X

(
T1 · T2

st

)
.

Then we claim that U ∩ V = W . Indeed, to prove the left hand side includes in the right notice that if
x ∈ U ∩ V , then |fi(x)| ≤ |s(x)| 6= 0 and |gj(x)| ≤ |t(x)| 6= 0. Multiplicativity implies |fi(x)gj(x)| ≤
|s(x)t(x)| 6= 0 so x ∈W . On the other hand, if x ∈W then |fi(x)gm(x)| = |fi(x)t(x)| ≤ |s(x)t(x)| 6= 0,
so that |fi(x)| ≤ |s(x)| 6= 0, and so x ∈ U . A similar argument shows x ∈ V completing the proof.
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The adic spectrum Spa(R,R+) has a lot of properties similar to those of SpecA for a ring A.

Definition 3.18 ([27] Definition/Proposition 2.9). A topological space X is called spectral if it satisfies
the following equivalent properties.

(i) There is some ring A with X homeomorphic to SpecA.

(ii) The space X is quasicompact, has a basis of quasicompact open subsets stable under finite
intersections, and every irreducible closed subset has a unique generic point.

Remark 3.19
On a spectral space we can define the Krull dimension to be the maximal chain of irreducible closed
subsets.

Theorem 3.20 ([37] Theorem 7.35)
Let (R,R+) be an Huber pair. Then Spa(R,R+) is a spectral space whose rational subsets form a basis
of quasi-compact opens, stable under finite intersection. In particular, Spa(R,R+) is quasicompact.

All perfectoid algebras are complete, and rigid geometry also deals in complete rings, but we have made no
such assumptions for adic spaces. It turns out, that we are safe in restricting our attention to complete Huber
pairs. Indeed, every continuous valuation on R extends uniquely to one on R̂. In fact, we can do better.

Proposition 3.21 ([16] Proposition 3.9)
Let (R,R+) be a Huber pair with completion (R̂, R̂+). Then the inclusion R ↪→ R̂ induces a homeo-

morphism Spa(R̂, R̂+)→ Spa(R,R+) identifying rational subsets.

3.4 The Adic Unit Disk

In this section we define and study the adic unit disk, comparing it to the rigid unit disk from rigid geometry.
We will show that the adic unit disk avoids the pathology highlighted in Example 3.1. We will also use this
example to illustrate the role the integrally closed subring R+ plays in defining the adic spectrum Spa(R,R+).

Let K be a nonarchimedean field. Recall from Example 3.1 that the rigid unit disk, is defined to be the
maximal spectrum of convergent power series over K, D1 = SpmK〈X〉. Recall also that we have a bijective
open immersion StU → D1, where S is the circle {x ∈ K : |x| = 1}, and U is the open disk {x ∈ K : |x| < 1}.
This map is not an isomorphism or even a covering in the Grothendieck topology! What if instead we
considered the space Cont(K〈X〉)?

We can embed D1 ↪→ Cont(K〈X〉) as follows. Given some maximal ideal m ∈ Spm(K〈X〉), we get a field
K〈X〉/m which is a finite extension of K, and therefore has a unique absolute value extending that of K.
Pulling this absolute value back to K〈X〉 gives us an element of Cont(K〈X〉) whose support is precisely m,
showing that this mapping is injective.

Of course, Cont(K〈X〉) has many more points. One such point, x−, can be defined as follows. Let Γ = R>0×γZ
be an ordered group given by the relation a < γ < 1 for all a ∈ R>0 with a < 1. That is, γ is a number
infinitesimally smaller than 1. Then we can define x− as a valuation according to the rule

∞∑
n=0

anX
n 7→ sup

n≥0
|an|γn.

This is a point on which the function X evaluates to γ which is infinitesimally smaller than 1, so morally it
should be in the unit disk. We can view this point as strictly between the rigid open disk and the rigid unit
circle, and is essentially the ‘missing point’ which made Example 3.1 look pathological.

Unfortunately, it seems that we have picked up too many extra points. We can define another valuation
x+ ∈ Cont(K〈X〉) in the same way, except now with γ infinitesimally larger than 1. In particular, |X(x+)| > 1.
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Morally speaking, there should not be any point in the unit disk on which the function X evaluates to
something greater than 1. Here, the integrally closed open subring comes to the rescue.

We define the adic unit disk to be D1,ad = Spa(K〈X〉,K◦〈X〉). Since X ∈ K◦〈X〉 any x ∈ D1,ad must obey
|X(x)| ≤ 1. Therefore x− ∈ D1,ad but x+ /∈ D1,ad. We see that the subring R+ we specify allows us to sharpen
our edges, by specifying what sort of infinitesimal wiggling is allowed. Suppose we let

R+ =

{ ∞∑
n=0

anX
n ∈ K◦〈X〉 : |an| < 1 for all n ≥ 1

}
,

and define D1,ad+ := Spa(K〈X〉, R+). Because R+ ⊆ K◦〈X〉 we have D1,ad ⊆ D1,ad+, and it turns out that
we miss only one point: D1,ad+ \D1,ad = {x+}. The interested reader could check that if we embed D1,ad into
an open disk of a larger radius, then it will be an open subset, with closure D1,ad+.

To get a sense of the points on adic spaces, we include a classification of points on the adic unit disk, which is
examined quite carefully in [27] Section 2 and [38] Section 7.7.

Example 3.22 (Classification of Points on the Adic Unit Disk)
We assume for the following example that K is also algebraically closed. We classify the 5 types of

points appearing on the adic unit disk D1,ad = Spa(K〈X〉,K◦〈X〉).

1. Type 1 points are the classical points coming from the rigid unit disk. They correspond precisely
to the elements x ∈ K◦, and the associated valuations come from evaluation: f 7→ |f(x)|. More
precisely

x :

(
f =

∞∑
n=0

anX
n

)
7→
∣∣∣∑ anx

n
∣∣∣ .

2. Points of types 2 and 3 are called Gauss points, and are remeniscent of generic points of irreducible
closed subschemes. They correspond to closed disks D(α, r) in K◦. If α ∈ K◦ and r ≤ 1 is a real
number, we define the disk of radius r centered at α to be D(α, r) := {β ∈ K◦ : |α − β| < r}.
The associated valuation is

f 7→
∑
β∈D

|f(β)|.

If we expand f as a series about α, so f(X) =
∑∞
n=0 an(X−α)n, the valuation is f 7→ sup |an|rn.

If r ∈ |K×|, then the point is type 2, else it is type 3. If r = 1, then point is called the Gauss
point of the disk.

3. Type 4 points correspond to descending sequences of disks. If D1 ⊃ D2 ⊃ · · · , we can define a
valuation

f 7→ inf
i

sup
x∈Di

|f(x)|.

If the intersection of these disks is a point, then this will be equivalent to the type 1 valuation
associated to that point (and will therefore be a classical point). If the intersection is a disk, then
this will be equivalent to the type 2 or 3 valuation associated to that disk. Otherwise it is a new
type of point which we call type 4. Type 4 points do not exist precisely when K is spherically
complete (in fact, this may be taken as the definition of spherical completeness).

4. Type 5 points correspond to infinitesimal thickenings or thinnings of type 2 points, and are
points like x− defined above. Indeed, fixing any α ∈ K◦ and r ≤ 1, and a sign + or −, we let
Γ = R>0 × γZ, be the ordered group with γ infinitesimally larger or smaller than r, depending
on the chosen sign. We have a continuous valuation:

f =
∑

an(X − α)n 7→ sup |an|γn.
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If we let x be a type 2 Gauss point, and x− and x+ the corresponding type 5 points, we have

|f(x−)| < |f(x)| < |f(x+)|

albeit infinitesimally. If x were a type 3 point, then x− = x = x+. Also notice that for r = 1,
x+ /∈ D1,ad.

All these points are closed except for type 2 points, which are open. The closure of a type 2 point x
contains x+.

3.5 The Structure Presheaf OX

To construct a scheme, after defining the topological space X = SpecR, we define a structure sheaf OX
which tells us the regular functions on a given open set. It suffices to define OX on the basis of open sets
Xf , where f does not vanish, and on these we define OX(Xf ) = R[1/f ]. This has the pleasant consequence
that Xf

∼= SpecR[1/f ]. Similar considerations hold for adic spectra. We start by defining the analog of
localization.

Definition 3.23 (Rational Localization). Let R be a Huber ring, T = {f1, . . . , fn} ⊆ R a finite set which
generates the unit ideal, and g ∈ R. There is a unique nonarchimedean topology on the localization
Rg making it into a topological ring such that the set {fi/g} is power-bounded, and such that the
continuous homomorphism R→ Rg is initial among continuous homomorphisms φ : R→ S where φ(g)
is invertible and the set {φ(fi)φ(g)−1} is power-bounded in S. We denote Rg with this topology by

R
(
T
g

)
.

R
(
T
g

)
is constructed as follows. Let (R0, I) be a pair of definition and let

A := R0

[
f1

g
, · · · , fn

g

]
⊆ Rg.

We topologize Rg by letting (A, I ·A) be a pair of definition. In particular, In ·A is a neighborhood

basis for 0 in R
(
T
g

)
. It is clear from the definition that we have constructed a Huber ring.

Let R+ ⊆ R be a ring of integral elements, so that (R,R+) is a Huber pair. Then we define R+
(
T
g

)
to be the integral closure of R+

[
f1
g , · · · ,

fn
g

]
in Rg. This makes(

R

(
T

g

)
, R+

(
T

g

))
,

into a Huber pair. The rational localization of R (with respect to T and g) is the completion of this
Huber pair, denoted (

R

〈
T

g

〉
, R+

〈
T

g

〉)
.

Notice that because of the universal property of R
(
T
g

)
, the map R→ R

〈
T
g

〉
is initial among continuous

homomorphisms φ : R→ S where S is complete, φ(g) is invertible, and the set {φ(fi)φ(g)−1} is power-
bounded in S. Indeed, we will show below in Proposition 3.27 that this universal property is satisfied.

Remark/Open Problem 3.24
Notice that because we are taking completions of rings that are not necessarily noetherian, we cannot
assert that in general a rational localization of a Huber ring is flat. In fact, the question as to whether
rational localizations of perfectoid algebras are flat is open.
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Remark 3.25
In [19], Definition 1.2.1, Kedlaya defines the rational localization R

〈
f1,··· ,fn

g

〉
to be the quotient of the

algebra R〈T1, · · ·Tn〉 by the closure of the ideal (gT1 − f1, · · · , gTn − fn). With analytic Huber rings,
this definition is equivalent.

If all rational localizations of a ring have a certain property then that ring is said to stably have that property.
See for example the following definition.

Definition 3.26. Recall from Definition 3.8 the definition of a Huber ring being uniform. A Huber ring R is
stably uniform if all its rational localizations are uniform.

Let X = Spa(R,R+). It is straightforward to check that Spa
(
R
〈
T
g

〉
, R+

〈
T
g

〉)
→ X factors through

X
(
T
g

)
↪→ X. In fact, we can do better.

Proposition 3.27 ([15] Proposition 1.3)
The universal property of rational localization described in Definition 3.23 is satisfied by R

〈
T
g

〉
, and

has the following geometric strengthening. For every complete Huber pair (S, S+), with a continuous

morphism (R,R+)→ (S, S+) so that the induced map Spa(S, S+)→ X factors over X
(
T
g

)
, there is

a unique continuous morphism of Huber pairs(
R

〈
T

g

〉
, R+

〈
T

g

〉)
→ (S, S+),

so that the following diagram commutes.

Spa
(
R
〈
T
g

〉
, R+

〈
T
g

〉)

X
(
T
g

)
X

Spa(S, S+)

As a consequence the pair (
R

〈
T

g

〉
, R+

〈
T

g

〉)
depends only on the open set U = X

(
T
g

)
.

Definition 3.28. Define presheaves OX and O+
X on rational subsets by the rule

(OX(U),O+
X(U)) =

(
R

〈
f1, · · · , fn

g

〉
, R+

〈
f1, · · · , fn

g

〉)
,

and for general open W ⊂ X as

OX(W ) = lim
←−

U⊂W rational

OX(U),

and
O+
X(W ) = lim

←−
U⊂W rational

O+
X(U).

This is well defined due to Proposition 3.27, and makes OX into a presheaf of complete Huber rings
and (OX ,O

+
X) into a presheaf of complete Huber pairs.
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It is worth mentioning the following equivalent characterization of O+
X .

Lemma 3.29
The presheaf of integral elements obeys the following rule for all open U ⊆ X.

O+
X(U) = {f ∈ OX(U) : |f(x)| ≤ 1 for all x ∈ U}.

Proof. [37] Definition 8.13 and Proposition 8.15.

With this perspective in mind, the following subpresheaf of O+
X will be of some interest.

Definition 3.30. The presheaf of topologically nilpotent elements, denoted O++
X , is defined via the following

rule. For each open U ⊆ X

O++
X (U) = {f ∈ OX(U) : |f(x)| < 1 for all x ∈ U}.

Denote by ÕX the quotient O+
X/O

++
X .

Remark 3.31
If X = Spa(R,R+), then (OX(X),O+

X(X)) = (R̂, R̂+). Therefore, if R is complete, taking global
sections of these presheaves returns the original Huber pair.

The next proposition shows that rational subets of X can be given the natural structure of an adic spectrum.

Proposition 3.32 ([37] Proposition 8.2)
The natural map

Spa

(
R

〈
T

g

〉
, R+

〈
T

g

〉)
→ X,

is a homeomorphism onto the open set X
(
T
g

)
. As a consequence, for each rational subset U there is

a natural homeomorphism U ∼= Spa(OX(U),O+
X(U)), so that rational subspaces of adic spectra are

naturally adic spectra.

Definition 3.33 (Stalks of the Structure Presheaf). For x ∈ X, we can define the stalk of OX in the
usual way,

OX,x := lim
−→

x∈U open

OX(U) = lim
−→

x∈U rational

OX(U).

OX,x is a local ring (see [37] Proposition 8.6). Here we take the colimit in the category of rings, so
OX,x does not have an induced topology. That being said, for every rational subset U ⊂ X containing
x, the valuation defined by x extends uniquely to a valuation xU : OX(U)→ Γx ∪ {0}. Passing to the
colimit we obtain a valuation vx : OX,x → Γx ∩ {0}, whose support is the maximal ideal of OX,x.

If we denote by k(x) the residue field of OX,x, the valuation vx induces a nonarchimedean absolute value on
k(x) with valuation ring k(x)+. Thus we get a map

(R,R+)→ (k(x), k(x)+) ⊆ (k̂(x), k̂(x)
+

)

with dense image. The converse is also true.

Proposition 3.34 ([27] Proposition 2.27)
The points of Spa(R,R+) are in bijection with maps (R,R+)→ (k, k+) with dense image, where k is
a complete nonarchimedean field and k+ ⊆ k◦ is a valuation ring.
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3.6 The Categories of Pre-Adic and Adic Spaces

Schemes are a subcategory of locally ringed spaces. Similarly for adic spaces we start off with a larger category,
and give conditions on an object to be a pre-adic or adic space.

Definition 3.35 ([37] Section 8). Let C be the category of tuples X = (X,OX , (vx)x∈X) where,

(i) X is a topological space,

(ii) OX is a presheaf of complete topological rings such that the stalk OX,x is a local ring, and

(iii) vx is (an equivalence class of) a valuation on the stalk OX,x such that the support of vx is the
maximal ideal of OX,x.

A morphism f : X → Y is a pair (f, f#) where f : X → Y is a continuous map, f# : OY → f∗OX is a
morphism of presheaves of topological rings, so that evaluated on any open set the induced ring map is
continuous. In addition, for all x ∈ X, the induced ring homomorphism f#

x satisfies:

OY,f(x) OX,x

Γvf(x) ∪ {0} Γvx ∪ {0}.

f#
x

vf(x) vx

Notice that in particular, this implies that Γvf(x) ⊆ Γvx and that f#
x must be a local homomorphism.

Definition 3.36. If X is an object in C , and U ⊆ X is an open subset of the underlying topological
space, then (U,OX |U , (vx)x∈U ) is also an object in C . A morphism j : Y → X in C is called an open
immersion if j is a homeomorphism of Y onto an open subspace U inducing an isomorphism

(Y,OY , (vy)y∈Y )
∼−→ (U,OX |U , (vx)x∈U ).

Definition 3.37. Our discussion shows that Spa(R,R+) is an object of C . An affinoid pre-adic space is an
object of C which is isomorphic to Spa(R,R+) for a Huber pair (R,R+).

An object X of C is called a pre-adic space if there is an open covering {Ui → X} such that each Ui is
affinoid. The open affinoids form a basis for the underlying topology of X.

A pre-adic space X is an adic space if the presheaf OX is a sheaf.

An adic space is Tate (resp. analytic) if it can be covered by affinoid adic spaces which are Tate (resp.
analytic).

In general, even if R is Tate, there is no guarantee that OX is a sheaf. There are certain assumptions we can
make on R to guarantee that the structure presheaf is a sheaf.

Definition 3.38. Let R be a Huber ring. If for all integrally closed open subrings R+ ⊆ R, the pre-adic
space X = Spa(R,R+) is an adic space (that is OX is a sheaf), then R is called sheafy.

Theorem 3.39 ([37] Theorem 8.27 for (i), [6] for (ii))
Let R be a Huber ring. In the following cases R is sheafy.

(i) R is Tate and strongly noetherian, that is for all n, the ring of convergent power series
R〈T1, · · · , Tn〉 is a noetherian ring. This includes the Tate algebra and in fact all affinoid
algebras from rigid analytic geometry. In particular the adic unit disk is an adic space.
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(ii) R is stably uniform.

Remark 3.40
We will see in Section 4 that perfectoid algebras are stably uniform, so that in particular they are
sheafy.

Remark 3.41
The category of adic spaces in general does not contain all fibered products (see, for example, [37]
Section 8.6). Nevertheless, we will see in Section 4 that perfectoid spaces do contain all fibered products.

In algebraic geometry, the Spec functor is an equivalence of categories between rings and affine schemes.
Proposition 3.21 seems to suggest the same result is not true for adic spaces. Nevetheless, with appropriate
restrictions to our category of Huber pairs, we do get an analogous result.

Proposition 3.42 ([37] Proposition 8.18)
Let (R,R+) and (S, S+) be Huber pairs. If S is complete, the map

Hom((R,R+), (S, S+))→ Hom(Spa(S, S+),Spa(R,R+)), φ 7→ φ∗

is bijective.

In particular, the adic spectrum functor is an equivalence between complete sheafy Huber pairs to affinoid adic
spaces. Furthermore, we have the following characterization of morphisms to affinoid adic spaces (compare to
[14] Exercise II.2.4).

Proposition 3.43 ([27] Proposition 2.19)
Let X be an adic space, (R,R+) a complete sheafy huber pair, and Y = Spa(R,R+). Then the natural
map

Hom(X,Y ) −→ Hom
(
(R,R+), (OX(X),O+

X(X))
)

is bijective.

3.7 Examples of Adic Spaces

Let K be a nonarchimedean field, a fix a pseudouniformizer $. We’ve already seen the adic unit disk D1,ad in
Section 3.4. Let’s enumerate a few more examples.

Example 3.44 (The Adic Affine Line)
Let D1,ad be the closed adic unit disk. The map T 7→ $T embeds D1,ad into a closed disk which we

can think of as having radius |$|−1 > 1. We define A1,ad := lim
−→

D1,ad along this embedding. Thus

A1,ad is the ascending union of closed disks of unbounded radius. Since this cover by disks has no finite
subcover, A1,ad is not quasicompact, so that by Proposition 3.20 it cannot be affinoid.

Example 3.45 (The Adic Unit Polydisk)
We generalize the adic unit disk (of Section 3.4) to higher dimensions. The adic unit n-polydisk is the
adic space associated to the Tate algebra,

Dn,ad = Spa (K 〈T1, · · · , Tn〉 ,K◦ 〈T1, · · · , Tn〉) .

Example 3.46 (Adic Projective Line)
We can construct P1,ad by gluing two copies of D1,ad together along the map T 7→ T−1, on the adic

circle {|T | = 1}, which is a rational open subset of the closed disk. Notice that P1,ad contains A1,ad as
an open subspace, whose complement is a single point.
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Example 3.47 (Varieties and Rigid Analytic Spaces)
In [15], Huber showed that the category of rigid analytic spaces embeds into the category of adic
spaces. Affinoid locally, the space SpmR (where R is a Banach algebra) can be viewed as the adic
space Spa(R,R◦). Furthermore, this construction is compatible with rational localization so that any
rigid space can be viewed as an adic space. Under this construction, the rigid disk, rigid affine line,
and rigid projective line map to respective adic counterparts.

In fact, if X is any variety over a nonarchimedean field, one can construct an associated rigid space
Xan, and this analytification functor satisfies a GAGA principle, and in particular is fully faithful (see
for example [10] Chapter 5). Thus, composing with Huber’s adic analyitification allows us to view any
variety over a nonarchimedean field as an adic space. In particular, the adic analytifications of the
scheme theoretic affine and projective lines produce the adic affine and projective lines.

3.8 Sheaves on Adic Spaces

Definition 3.48. Let (R,R+) be a Huber pair and X = Spa(R,R+). For an R-module M , we define M̃ to
be the presheaf on X defined on the basis of rational sets U = Spa(S, S+) by the rule M̃(U) = M ⊗R S.

Definition 3.49 (Vector Bundles on Adic Spaces). Let FPModR be the category of finite projective
R-modules. A vector bundle on an adic space X is a sheaf E of OX -modules which is locally of the
form M̃ for M finite projective. That is, there is a covering {Ui → X} with Ui = Spa(Ri, R

+
i ) affinoid

and E |U ∼= M̃i for Mi a finite projective Ri module. Equivalently, a vector bundle is a locally free
OX -module. We denote the category of vector bundles on X by VecX , where morphisms are those of
OX -modules.

Remark 3.50
This is the definition appearing in [19] Section 1.4, and is analogous to the situation for schemes, where
vector bundles on affine schemes correspond to finite projective modules on their coordinate rings,
and more generally vector bundles on schemes correspond to locally free sheaves. See for example [14]
Exercise II.5.18.

Theorem 3.51 ([19] Theorem 1.3.4)
If R is sheafy, X = Spa(R,R+), and M a finite projective R module, then Hi(X, M̃) = 0 for all i > 0.

Theorem 3.52 ([19] Theorem 1.4.2)
If R is sheafy, X = Spa(R,R+), then the functor FPModR → VecX is an equivalence of categories.
In particular, every vector bundle is acyclic.

Remark 3.53
Theorem 3.52 implies that the pullback functor VecSpec(R) → VecX is an equivalence of categories,
and so understanding vector bundles on adic spaces can be locally reduced to questions in commutative
algebra.

Definition 3.54. An R-module M is pseudocoherent if it admits a projective resolution (possibly infinite)
by finite projective R-modules. We let PCohR be the category of pseudocoherent R-modules that are
complete for the natural topology.

Although rational localizations are not known to be flat in general, if the underlying ring is sheafy we get
close.

Theorem 3.55 ([19] Theorem 1.4.13)
If R is sheafy and (R,R+)→ (S, S+) is a rational localization, then base extension defines an exact
functor PCohR → PCohS .

Definition 3.56. A pseudocoherent sheaf on an adic space X is a sheaf F of OX -modules which is locally
of the form M̃ for M a complete pseudocoherent module. By Theorem 3.55, if X = Spa(R,R+) is an
affinoid adic space, the functor PCohR → PCohX , M 7→ M̃ is exact.
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Theorem 3.57 ([19] Theorem 1.4.15)
If R is sheafy, then for any M ∈ PCohR, the sheaf M̃ is acyclic.

Open Problem 3.58
Over affine schemes, all coherent sheaves are acyclic, and Serre showed in [32] that this property
characterizes affine schemes. Theorem 3.57 says that over affinoid adic spaces, pseudocoherent sheaves
are acyclic, but in fact no such cohomological characterization of affinoid adic spaces exists. In fact,
Liu in [24] constructed examples of non-affinoid rigid spaces with no coherent cohomology. It is still
unknown if such counterexamples exist for perfectoid spaces.
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4 Perfectoid Spaces

We now have the requisite theory to construct perfectoid spaces. We fix one and for all the following data.
Begin with a perfectoid field K with integral subring K◦ whose unique maximal ideal is the ideal K◦◦

of topologically nilpotent elements. Let K[ be the tilt of K, and ($[) a pesudouniformizer of K[ so that

$ =
(
$[
)]

is a pseudouniformizer of K. In this section we study adic spaces built out of adic spectra of
Huber pairs (R,R+) where R is a perfectoid K-algebra, and extend the tilting results of Section 2.5 to this
geometric context.

4.1 Affinoid Perfectoid Spaces

We begin by extending the tilting equivalence (Theorem 2.57) to perfectoid Huber pairs.

Definition 4.1. A Huber pair (R,R+) is called an affinoid perfectoid K-algebra if R is a perfectoid K-algebra.
The tilt of (R,R+) is (R[, R[+), where R[+ = lim

←−x 7→xp
R+ with addition structure inherited as a subset

of R[ (or equivalently, following the same rule as in Definition 2.56).

An affinoid perfectoid space over K is an affinoid (pre-)adic space X ∼= Spa(R,R+) where (R,R+) is
an affinoid perfectoid K-algebra.

Remark 4.2
Notice that since R+ is integrally closed and open in R, we must have that $ ∈ R+. Indeed, since $

is topologically nilpotent, $N ∈ R+ for some N , but then $ is a solution to the monic polynomial
TN −$N .

Lemma 4.3 ([27] Lemma 6.2)
Let (R,R+) be an affinoid perfectoid K-algebra. Then (R[, R[+) is an affinoid perfectoid K[-algebra.

Furthermore, the functor (R,R+) 7→ (R[, R[+) is an equivalence of categories between affinoid perfectoid
K-algebras and affinoid perfectoid K[-algebras. Furthermore, the Teichmüller map x 7→ x] induces an
isomorphism of rings R[+/$[ ∼= R+/$.

Importantly, the notion of being perfectoid is preserved under rational localization.

Lemma 4.4 ([27] Corollary 6.8)
Let (R,R+) be an affinoid perfectoid K-algebra and let X = Spa(R,R+) be the associated affinoid

perfectoid space. Then for all rational U ⊆ X, the pair
(
OX(U),O+

X(U)
)

is an affinoid perfectoid
K-algebra.

This has the following important corollary.

Corollary 4.5
Affinoid perfectoid K-algebras are sheafy, and hence affinoid perfectoid spaces are adic spaces.

Proof. The discussion in Example 3.8 showed that perfectoid K-algebras are uniform, so that Lemma 4.4
implies they are stably uniform. Therefore by Theorem 3.39, they are sheafy giving the result.

It turns out that the algebraic tilting functor preserves quite a bit of the geometry of the associated adic
spaces.

Theorem 4.6 ([27] Theorem 6.3)
Let (R,R+) be a affinoid perfectoid K-algebra, and X = Spa(R,R+), with associated sheaves OX and

O+
X . Let (R[, R[+) be the tilt, viewed as an affinoid perfectoid K[-algebra. Let X[ = Spa(R[, R[+),

with associated sheaves OX[ and O+
X[

.
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(i) Pulling back along the Teichmüller defines a homeomorphism φ : X → X[. Explicitly, φ maps a
valuation x ∈ X to the valuation |f(φ(x))| = |f ](x)|.

(ii) The homeomorphism φ identifies rational subsets. Explicitly, for any rational subset U , the
pair (OX(U),O+

X(U)) is again a perfectoid K-algebra. The map (R[, R[+)→ (OX(U)[,O+
X(U)[)

induces a map U [ → X[ which can be identified with the inclusion φ(U) ↪→ X[. Under this
identification φ(U) = U [ is a rational subset of X. In particular, the tilt of (OX(U),O+

X(U)) is
(OX[(U

[),O+
X[

(U [)).

(iii) For any open U ⊆ X, U is rational if and only if φ(U) ⊆ X[ is.

(iv) The cohomology groups Hi(X,OX) = 0 for all i > 0.

(v) The cohomology groups Hi(X,O+
X) are K◦◦-torsion for all i > 0.

Notation 4.7
As an abuse of notation, for any subset M ⊆ X, we denote the image φ(M) in X[ by M [. Lemma 4.3
and Theorem 4.6 say that if M is a rational open subset, there is no confusion.

4.2 Globalization of the Tilting Functor

Definition 4.8. An adic space X over K (i.e. with a map to Spa(K,K◦)) is a perfectoid space if it has an
open cover by affinoid perfectoid spaces. Morphisms between perfectoid spaces are morphisms of adic
spaces.

Open Problem 4.9
It is currently unknown if a perfectoid space in mixed characteristic which is affinoid as an adic
space is affinoid as a perfectoid space. Explicitly, if (R,R+) is a complete sheafy Huber pair and
X = Spa(R,R+) is a perfectoid space (that is, it is covered by adic spectra of affinoid perfectoid
algebras), does this imply that (R,R+) was a perfectoid pair to begin with? The positive characteristic
case is settled in the affirmative by [6] Corollary 10 or [21] Proposition 3.1.16.

With the machinery of adic spaces tilting glues.

Definition 4.10. Let X be a perfectoid space over K. We call a perfectoid space X[ over K[ the tilt of X if
for any affinoid perfectoid K-algebra (R,R+) there are isomorphisms

Hom(Spa(R,R+), X) ∼= Hom(Spa(R[, R[+), X[).

which are functorial in (R,R+).

With this definition in hand, we can globalize Theorem 4.6.

Theorem 4.11 ([27] Proposition 6.17)
(i) Any perfectoid space X over K admits a tilt X[ which is unique up to unique isomorphism. The

functor X 7→ X[ is an equivalence of categories between the category of perfectoid spaces over K
and the category of perfectoid spaces over K[.

(ii) The underlying topological spaces X and X[ are naturally identified and homeomorphic. We
denote by M [ the image of a subset M ⊆ X under this identification.

(iii) A perfectoid space X is affinoid if and only if X[ is.

(iv) For any affinoid perfectoid subspace U ⊂ X, the pair (OX(U),O+
X(U)) is an affinoid perfectoid

K-algebra with tilt (OX[(U
[),O+

X[
(U [)).
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Although the category of adic spaces does not contain fibered products, the category of perfectoid spaces
does.

Theorem 4.12 ([27] Proposition 6.18)
If X → Y ← Z are morphisms of perfectoid spaces over K, then the fibered product X ×Y Z exists in
the category of adic spaces over K, and is a perfectoid space.

Remark 4.13
Although we do not include the full proof, it is worth describing what the fibered product is on the level
of affinoid perfectoid spaces. Let X = Spa(A,A+), Y = Spa(B,B+), and Z = Spa(C,C+), together
with morphisms as in Theorem 4.12. We can identify X ×Y Z with Spa(D,D+), where D = A⊗̂BC is
the completed tensor product of A and C over B (that is, the completion of the ordinary tensor product
with its inherited topological structure), and D+ is the integral closure of the image of A+ ⊗B+ C+ in
D.

4.3 The Étale Site

We can also globalize Theorem 2.61.

Definition 4.14. (i) A morphism (R,R+)→ (S, S+) of affinoid perfectoid K-algebras is called finite étale
if S is a finite étale R-algebra, and S+ is the integral closure of the image of R+ in S.

(ii) A morphism f : X → Y of perfectoid spaces over K is called finite étale if there is a cover of
Y by affinoids V such that the preimage U = f−1(V ) is affinoid, and the associated morphism
(OY (V ),O+

Y (V ))→ (OX(U),O+
X(U)) is finite étale.

(iii) A morphism f : X → Y of perfectoid spaces over K is called étale if for any x ∈ X, there are
open neighborhoods U and V of x and f(x) respectively together with a commutative diagram

U W

V
f |U

j

p

where j is an open immersion and p is finite étale.

As one would hope, the notion of being finite étale is preserved under base change.

Lemma 4.15 ([27] Lemma 7.3)
Let X → Y be a finite étale morphism of perfectoid spaces and Z → Y any morphism of perfectoid
spaces. Then the induced map X ×Y Z → Z is finite étale.

As a consequence being étale can be checked locally.

Proposition 4.16 ([27] Proposition 7.6)
If f : X → Y is a finite étale morphism of perfectoid spaces, then for any affinoid perfectoid V ⊂ Y ,
its preimage U is affinoid perfectoid, and the ring map

(OY (V ),O+
Y (V ))→ (OX(U),O+

X(U))

is finite étale.

Remark 4.17
Scholze’s proof of this Proposition 4.16 required being in positive characteristic and used the notions
of completed perfections. Nevertheless, by Theorem 2.61 and the fact that tilting preserves rational
subsets, we may first tilt and a proof in positive characteristic suffices. This is a common method of
proof for theorems about perfectoid objects, and one we will use in the following sections.
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We can now define the étale site of a perfectoid space.

Definition 4.18. Let X be a perfectoid space. The (small) étale site of X, denoted Xét consists of perfectoid
spaces which are étale over X. The coverings are given by topological coverings, i.e., jointly surjective
morphisms.

Our preparations show that all the conditions on a site are satisfied, and a morphism f : X → Y of perfectoid
spaces induces a morphism of sites Xét → Yét. Theorem 2.61 along with the results of this section immediately
imply the following theorem.

Theorem 4.19 ([27] Theorem 7.12)
Let X be a perfectoid space over K with tilt X[ over K[. The tilting functor induces an equivalence of

sites Xét
∼= X[

ét which is functorial in X.

4.4 Examples of Perfectoid Spaces and their Tilts

Let’s exhibit a few naturally arising perfectoid spaces. These examples will be our central objects of study for
the remainder of this work. Compare to the examples of adic spaces in Section 3.7.

Example 4.20 (The Perfectoid Unit Disk)
Much like the definition of the to the adic unit disk (Section 3.4), we define the perfectoid unit disk to
be the adic space associated to the perfectoid Tate algebra in one variable,

D1,perf
K := Spa

(
K
〈
T 1/p∞

〉
,K◦

〈
T 1/p∞

〉)
.

We can similarly define the n-dimensional perfectoid unit polydisk as the adic space associated the
perfectoid Tate algebra in n variables,

Dn,perf
K := Spa

(
K
〈
T

1/p∞

1 , · · · , T 1/p∞

n

〉
,K◦

〈
T

1/p∞

1 , · · · , T 1/p∞

n

〉)
.

Example 4.21 (The Perfectoid Unit Circle)
We define the perfectoid unit circle to be

S1,perf
K = Spa

(
K
〈
T±1/p∞

〉
,K◦

〈
T±1/p∞

〉)
.

Notice that the circle can be identified with the rational open subset D1,perf
(

1
T

)
in the perfectoid disk,

and consists of points on the disk on which the function T evaluates to something with absolute value
1, precisely what our idea of the circle is.

Similarly, we can define the perfectoid unit sphere by

Sn,perf
K = Spa

(
K
〈
T
±1/p∞

1 , · · · , T±1/p∞

n

〉
,K◦

〈
T
±1/p∞

1 , · · · , T±1/p∞

n

〉)
.

It is open in Dn,perf
K , as the intersection of all the rational opens of the form Dn,perf

K

(
1
Ti

)
, and consists

of points on which the all the coordinate functions Ti evaluate to something with absolute value 1.

Example 4.22 (The Projectivoid Line)
Analogously to the construction of the Riemann sphere or of P1 in rigid analytic geometry or algebraic
geometry, we can build the perfectoid analog of he projecitve line by gluing two copies of the perfectoid
unit disk along the perfectoid unit circle.

Explicitly, the inclusion K
〈
T 1/p∞

〉
→ K

〈
T±1/p∞

〉
corresponds to the open immersion S1,perf ↪→

D1,perf . The map K
〈
T−1/p∞

〉
→ K

〈
T±1/p∞

〉
also corresponds to an open immersion of the circle into

the disk, where now the disk has coordinate T−1. Identifying the circles on each of these disks and
gluing produces the projectivoid line, denoted P1,perf

K .
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Example 4.23 (Projectivoid Space)
As with the projectivoid line, we could define projectivoid n-space, denoted Pn,perf , by gluing together
n+ 1 perfectoid unit n-polydisks along their associated perfectoid sphere exteriors as in Example 4.22.
This is a useful perspective as is provides projectivoid space with a cover by perfectoid unit polydisks.
In [28] Section 7, Scholze showed that we could also define projectivoid space in the following way. Let
PnK be projective space over K, which can be viewed as an adic space as in Example 3.47, that is, first
viewed as a rigid space using the rigid analytification functor, and then as an adic space as in [15].
Let ϕ : PnK → PnK be the morphism given in projective coordinates by (T0 : · · · : Tn) 7→ (T p0 : · · · : T pn).
Then

Pn,perf
K ∼ lim

←−
ϕ

PnK .

Note that here “∼ lim
←−

” does not denote the categorical inverse limit (since these are not in general

unique in the category of adic spaces). Nevertheless, it should be thought of affinoid locally as
corresponding to the completed directed limit, and if such a limit exists as a perfectoid space, it is
unique among all perfectoid spaces and satisfies the usual universal property (among perfectoid spaces).
See [29] Definition 2.4.1 and subsequent discussion.

The constructions of these examples are compatible with tilting.

Proposition 4.24
Let K be a perfectoid field with tilt K[. Then:(

Dn,perf
K

)[ ∼= Dn,perf
K[(

Sn,perf
K

)[ ∼= Sn,perf
K[(

Pn,perf
K

)[ ∼= Pn,perf
K[

Proof. The cases for the polydisk and the sphere follow from Proposition 2.59 together with Theorem 4.6.
The case for projectivoid space follows from these two and Theorem 4.11 since tilts are constructed
locally and are compatible with rational localizations.
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5 The Perfectoid Tate Algebra

Let K be a perfectoid field with pseudouniformizer $. We defined the perfectoid Tate algebra T perf
n,K in

Example 2.58. In this section we will study the algebraic structures and module theory of this ring in order
to understand the structure of vector bundles on the associated perfectoid space Dn,perf defined in Example
4.20.

Let us present an alternative but equivalent definition of the perfectoid Tate algebra.

T perf
n,K = K

〈
X

1/p∞

1 , · · · , X1/p∞

n

〉
=

̂⋃
n≥0

K
〈
X

1/pn

1 , · · · , X1/pn
n

〉
.

This way, we express the perfectoid Tate algebra as a completed union of Tate algebras (whose module theory
is well understood, mostly due to Lütkebohmert, see [25]). The completion is taken with respect to topology
induced by the absolute value coming at each finite level (that is with respect to the Gauss norm inherited
from K).

In this way we see that the perfectoid Tate algebra consists of formal power series over K which converge on
the unit disk. Letting X = (X1, · · · , Xn) be an n-tuple, we can write down the elements of this ring.

T perf
n,K =


∑

α∈(Z[1/p]≥0)
n

aαX
α : for all λ ∈ R>0 only finitely many |aα| ≥ λ

 .

This ring inherits the Gauss norm, ||
∑
α aαX

α|| = sup{|aα|}.(
T perf
n,K

)◦
is the subring {||f || ≤ 1} of power-bounded elements of T perf

n,K , and consists of power series with

coefficients in K◦. The ideal
(
T perf
n,K

)◦◦
of topologically nilpotent elements consists of power series with

coefficients in K◦◦. The quotient is

T̃ perf
n,K :=

(
T perf
n,K

)◦
/
(
T perf
n,K

)◦◦
= k

[
X

1/p∞

1 , · · · , X1/p∞

n

]
where k = K◦/K◦◦ is the residue field. Notice that every element in the quotient ring is a polynomial, because

a power series
(
T perf
n,K

)◦
can only have finitely many coefficients of norm 1.

When there will be no confusion, we omit K from the notation.

Remark 5.1
We have established that the perfectoid Tate algebra is the completed union of Tate algebras, and that
its ring of power-bounded elements is the completed union of rings of power-bounded elements of Tate
algebras. Therefore using the notation of Example 3.45 and Example 4.23 we have

Dn,perf ∼ lim
←−
ϕ

Dn,ad,

where ϕ is the pth power map on coordinates.

Remark 5.2 (A Note on Convergence)
Suppose f =

∑
fαX

α ∈ T perf
n . Morally speaking, saying that the sum converges on the unit disk

should mean that evaluating at any x ∈ (K◦)
n

should give an element of K. Since are sums are not
taken over Zn≥0, but rather (Z[1/p]≥0)n, we must be more careful in defining what convergence means.
Let us begin by studying f(1, 1, · · · , 1) =

∑
fα. This should converge, so to make sense of this we

define the partial sums

sm =
∑

α∈( Z
pm )

n
:0≤αi≤m

fα.
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These partial sums are approaching the infinite sum, and if the sequence (sm) converges, we define the
infinite sum to be the limit. Let us check that the convergence of the power series f implies convergence
of
∑
fα in this sense. Fixing some ε > 0, there are only finitely many fα with |fα| ≥ ε. Therefore,

there is some large N such that for each such fα we have α = (α1, · · · , αn) ∈
(

Z
pN

)n
0 < αi < N .

Therefore, fixing m ≥ r > N , the differences sm − sr have none of the coefficients fα with absolute
value larger than ε, so that by the nonarchimedean property |sm − sr| < ε. This shows that the sum
converges to an element f(1) ∈ K.

We remark now that if |gα| ≤ 1, the same argument would show that
∑
fαgα also converges. In

particular f(x) ∈ K for all x ∈ (K◦) (letting gα = Πxαii ).

We record a useful normalization trick for further use down the line.

Lemma 5.3 (Normalization)
Let f ∈ T perf

n be nonzero. There is some λ ∈ K such that ||λf || = 1.

Proof. Since only finitely many coefficients in f have absolute value above ||f || − ε, the supremum of that
absolute values of the coefficients is achieved by some fα. Taking λ = f−1

α completes the proof.

5.1 The Group of Units

As a first step towards understanding the perfectoid Tate algebra, we compute its group of units.

Proposition 5.4
Let f ∈ T perf

n with ||f || = 1. The following are equivalent:

(i) f is a unit in
(
T perf
n

)
.

(ii) f is a unit in
(
T perf
n

)◦
.

(iii) The image of f of f in T̃ perf
n is a nonzero constant λ ∈ k×.

(iv) |f(0)| = 1 and ||f − f(0)|| < 1.

Proof. (i)⇐⇒ (ii). An inverse to f must have absolute value 1, and therefore would also lie in
(
T perf
n

)◦
.

(ii) =⇒ (iii). The map
(
T perf
n

)◦ → T̃ perf
n must send units to units, and the group of units of T̃ perf

n is

precisely the nonzero constant polynomials. Indeed, the inverse to any element of T̃ perf
n would also

have to be a polynomial (in X1/pm for some m), implying that they both must be constants.

(iii)⇐⇒ (iv). This is immediate.

(iv) =⇒ (i). If |f(0)| = 1 then f(0) ∈ K× ⊆ (T perf
n )×. Therefore 1− f

f(0) ∈ T
perf
n and∣∣∣∣∣∣∣∣1− f

f(0)

∣∣∣∣∣∣∣∣ = ||f(0)|| ·
∣∣∣∣∣∣∣∣1− f

f(0)

∣∣∣∣∣∣∣∣ = ||f(0)− f || < 1.

Therefore 1− f
f(0) is topologically nilpotent, so that by Lemma 2.26, f

f(0) is a unit. Since f(0) is too,

we can conclude that f is a unit.

Corollary 5.5
f =

∑
fαX

α ∈
(
T perf
n

)◦
is a unit if and only if |f0| = 1 and |fα| < 1 for all α 6= 0.

Corollary 5.6
f =

∑
fαX

α ∈ T perf
n is a unit if and only if |fα| < |f0| for all α 6= 0.

Proof. Using our normalization trick, we know ||λf || = 1 for some λ ∈ K×. The f is a unit if and only if
λf , if and only if |λfα| < 1 = |λf0| for all α 6= 0. Cancelling shows this holds if and only if |fα| < |f0|
for all α 6= 0.
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5.2 Krull Dimension in Characteristic p

If the characteristic of K is p, we can compute the Krull dimension of T perf
n , using the notion of perfections.

Proposition 5.7 ([12])
Let R be a domain of characteristic p. There is a perfect ring Rperf of characteristic p and a morphism

R → Rperf which is initial among morphisms of R to perfect rings of characteristic p. This map is
injective, so we can identify R with a subset of Rperf . Under this identification, for any f ∈ Rperf there
is some m such that fp

m ∈ R.

Proposition 5.8
Let R→ Rperf be the perfection. Then the Krull dimensions of R and Rperf agree.

Proof. First let
p1 ( p2 ( · · · ( pr

be an ascending chain of prime ideals in Rperf . Intersection with R gives a chain q1 ⊂ · · · ⊂ qr. Suppose
qi = qi+1 for some i. Then for any f ∈ pi+1 we have

fp
m

∈ pi+1 ∩R = qi+1 = qi ⊆ pi.

Since pi is prime then f ∈ pi contradicting that pi ( pi+1. This shows that KdimRperf ≤ KdimR. For
the converse we first we establish the following fact.

Claim 5.9
Let q ⊆ R be prime. Then

√
qRperf is prime.

Proof. Let fg ∈
√
qRperf . Thus for some m we have (fg)m = a1s1 + · · ·+ atst for si ∈ q. Since we

are in characteristic p we have

(a1s1 + · · ·+ atst)
pN = ap

N

1 sp
N

1 + · · ·+ ap
N

t sp
N

t .

Choosing N large enough so that each ap
N

i , fmp
N

, gmp
N ∈ R, we have that (fg)mp

N

=

fmp
N

gmp
N ∈ q. So then fmp

N

or gmp
N

are in q ⊆ qRperf . Thus either f or g are in
√
qRperf .

Now let q1 ( · · · ( qt be a chain of prime ideals in R. Then
√
q1Rperf ⊂ · · · ⊂

√
qtRperf is a chain of

primes in Rperf . Suppose
√
qiRperf =

√
qi+1Rperf for some i. Then for any g ∈ qi+1 ⊆

√
qi+1Rperf =√

qiRperf we have gm = a1s1 + · · ·+ aksk with si ∈ qi. Using the same trick as in the proof of Claim

5.9, we can see that gmp
N ∈ qi so that g must be. Since g was arbitrary, this contradicts that qi ( qi+1,

so that KdimRperf ≥ KdimR completing the proof.

Definition/Proposition 5.10
For a ring R with an I-adic topology, one can form the completed perfection R̂perf by taking the IRperf -

adic completion of the perfection Rperf of R. If we have a Tate Huber ring R with pseudouniformizer
$, one can obtain the completed perfection by taking

R̂perf := R̂◦perf [1/$].

The completed perfection of a Huber ring is the initial continuous homomorphism R → R̂perf to a
complete perfect ring. If R is a Tate Huber ring, then completed perfection preserves Krull dimesion.

Proof. The universal property follows from the sequential combination of the universal properties of
perfection and completion. Further, we just saw that perfection preserves Krull dimension. Completion
preserves Krull dimension because $ is contained in the Jacobson radical (since 1 +$ is a unit by
Proposition 5.4).
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Recall from Example 2.19 that the Tate algebra Tn := K〈X1, · · · , Xn〉 is defined to be the completion of
K[X1, · · · , Xn] with respect to the Gauss norm. It is well known that over any complete nonarchimedean
field, KdimTn = n (see, for example, [4] Section 6.1).

Proposition 5.11
In characteristic p, the the completed perection of the Tate algebra is the perfectoid Tate algebra.

That is, ̂(Tn)perf = T perf
n .

Proof. We check that T perf
n satisfies the universal property of completed perfections. It is perfect, because

it is perfectoid. Let φ : Tn → R, be a contiuous homomorphism to a complete perfect ring R which

maps Xi 7→ ai. This factors uniquely through the perfection (Tn)perf → R by mapping X
1/pr

i 7→ a
1/pr

i ,
where the pth power roots of each ai exist and are unique because R is perfect. This in turn passes
uniquely to the completion T perf

n because R is complete.

Corollary 5.12
In characteristic p, KdimT perf

n = n.

Open Problem 5.13
We hope to use the tilting equivalence to deduce this result in characteristic 0. Unfortunately, it
is not known in general that tilting preserves Krull dimension. Since the adic spectrum of the
tilt is homeomorphic to the adic spectrum of the original ring, we would have the result if the
KdimR = Kdim SpaR. Huber in [17] proves this result for certain classes of Huber rings, but his
proofs relied heavily of these rings being noetherian. We conjecture that this should also be true for
these perfectoid algebras.

5.3 Weierstrass Division

For the Tate algebra K〈X1, · · · , Xn〉 there is a notion of a power series f being regular in Xn of degree d.
Morally, this means that f is close to being a monic polynomial of degree d in the variable Xn. Weierstrass
division ([4] Section 5.2.1 Theorem 2) then says we can do Euclidean division when dividing by a regular
element f , and and as a corollary one can show that f = ug where u is a unit and g is a polynomial in Xn of
degree d. This is generally called the Weierstrass preparation trick.

Furthermore, for any power series f , there is an automorphism Φ of the Tate algebra so that Φ(f) is regular
in Xn of some degree. Morally speaking, this shows that every convergent power series, after perhaps an
automorphism of the ring, is close to being a polynomial in Xn. This machinery allows many arguments in
rigid geometry to be reduced to the cases of polynomial rings. See [4] Chapter 5 for a good summary of this
process in the rigid analytic context.

Unfortunately for the perfectoid Tate algebra the analogous result is not quite as strong. In particular, for
power series regular in Xn of degree d, we can show that f = ug for u a unit and g having degree d in Xn.
Because pth power roots of Xn all exist, this does not imply that g is a polynomial in Xn (see Example 5.19).

Over the next two sections we explore how far these techniques carry over to the perfectoid Tate algebra. The
work was begun by Das in [7], where he proved the perfectoid analog of Weiestrass division. We record his
proof here, and then continue with our contribution to this question, namely, the existence and uniqueness of
the Weierstrass preperation of a regular element, and the construction of an automorphism of T perf

n taking a
given element to a regular element.

Definition 5.14. Fix element f ∈ T perf
n , and write it as a power series in Xn.

f =
∑

α∈Z[1/p]

fαX
α
n ,

for fα ∈ T perf
n−1 = K〈X1/p∞

1 , · · · , X1/p∞

n−1 〉. We say that f is regular in Xn of degree d if
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(i) ||f || = ||fd|| > ||fα|| for all α > d.

(ii) fd ∈ T perf
n−1 is a unit.

If ||f || = 1 there is an equivalent characterization of regularity.

Lemma 5.15
Suppose f ∈ T perf

n with ||f || = 1. Then f is regular in Xn of degree d if and only if

f = λXd + g ∈ T̃ perf
n , (1)

where λ ∈ k× and degXn g < d.

Proof. If f =
∑
fαX

α
n is regular in Xn of degree d and ||f || = 1, then 1 = ||fd|| > ||fα|| for all α > d. Thus

fd = λ ∈ k×, and fα = 0 for all α > d showing that f satisfies Equation 1

Conversely, if f satisfies Equation 1. Then |fα| < 1 = |fd| for all α > d. Proposition 5.4 applied to

T perf
n−1 shows that since fd = λ ∈ k×, fd must be a unit. Thus f is regular in Xn of degree d.

Theorem 5.16 (Weierstrass Division, [7] Proposition 4.4.2)
Let f ∈ T perf

n be regular in Xn of degree d. For any g ∈ T perf
n , there exist unique q, r ∈ T perf

n with
degXn r < d such that

g = qf + r.

Furthermore, ||g|| = max{||q|| · ||f ||, ||r||}.

Proof. We first reduce to the case that ||f || = 1. Suppose we can divide by regular elements of degree
1. Replace g by λg for λ ∈ K× with ||λf || = 1. Then λg = q(λf) + r, so that g = qf + λ−1r and
degXn λ

−1r = degXn r < d. The rest is easily checked. Therefore we may assume ||f || = 1.

We may also assume ||g|| > 0, since if ||g|| = 0 then g = 0 and r = s = 0.

We begin by proving the statement about absolute values. Suppose that g = qf + r is a Weierstrass
quotient. Since ||f || = 1, we have ||g|| ≤ max{||q||, ||r||}. Assume that ||g|| < max{||q||, ||r||}. By
Lemma 2.22, ||q|| = ||r|| > 0. Normalize so that ||λq|| = ||λr|| = 1. Then λg = λqf + λr, and pass to
T̃ perf
n . Then

0 = λqf + λr.

We have that λq is a nonzero polynomial and f has degree d in Xn. Thus λqf is a polynomial of
degree ≥ d in Xn. But we also know λr is a polynomial of degree < d in Xn, a contradiction. So
||g|| = max{||q||, ||r||}.

We now prove the division result in 2 steps. For the first, we assume that f =
∑
fαX

α
n ∈ T

perf
n−1 [X

1/pn

n ]
is a Weierstrass polynomial. That is, it is a degree d polynomial in Xn which is also regular in degree
d. For each α, there is some constant N(α) so that both

Xα
n , f ∈ T

perf
n−1

[
X1/pN(α)

n

]
are polynomials in Xn. Furthermore, the leading coefficient of f is a unit, so we can do polynomial
long division.

Xα
n = qαf + rα,

where degXn rα < d. Furthermore, max{||qα||, ||rα||} = ||Xα
n || = 1.

Write g as
∑
gαX

α
n . The discussion in Remark 5.2 shows that

q =
∑

gαqα
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and
r =

∑
gαrα

both converge to elements in T perf
n . Since degXn gα = 0 for all α, we have that

degXn r ≤ max{degXn(gαrα)} ≤ max{degXn rα} ≤ d.

Now we can directly check that,

qf + r =
∑

(gαqαf + gαrα)

=
∑

gα (qαf + rα)

=
∑

gαX
α
n

= g.

For the general case, we have f =
∑
fαX

α
n . We let f0 =

∑
|fα|=1 fαX

α
n . Then f0 is a Weierstrass

polynomial of degree d. Let D = f0 − f . We have ||D|| < ||f0|| = ||f || = 1. Because f0 is a Weierstrass
polynomial, we can divide g by f0. That is, there are unique q0, r0 with degXn r0 < d so that

g = q0f0 + r0 = q0f + q0D + r0.

We let g1 = q0D. Then by our first statement about absolute values we have ||g1|| ≤ ||g|| · ||D||. We
divide g1 by f0 next:

g1 = q1f0 + r1 = q1f + q1D + r1.

Now letting g2 = q1D, we have ||g1|| ≤ ||g1|| · ||D|| ≤ ||g|| · ||D||2. We continue in this fashion, letting
each gi+1 = gi ·D where gi = qif0 + ri. In each case, ||qi||, ||ri|| ≤ ||gi|| < ||g|| · ||D||i. In particular,
because ||D|| < 1, we have limi→∞ qi = 0 and limi→∞ ri = 0. Therefore by Lemma 2.24 we can form
the infinite sums

q =

∞∑
i=0

qi

and

r =

∞∑
i=0

ri.

Then we can check (setting g0 = g) that

qf + r =

∞∑
i=0

(qi(f0 −D) + ri)

=

∞∑
i=0

((qif0 + ri)− qiD)

=

∞∑
i=0

gi − gi+1

= g

To check uniqueness we suppose that g = qf+r = q′f+r′ with deg r, deg r′ < d. Then (q−q′)f+(r−r′) =
0. Since ||f || = 1 this implies that ||q − q′|| = ||r − r′||. If both are equal to 0 we are done, otherwise
normalize by λ. Then we have in T̃ perf

n

λ(q − q′)f + λ(r − r′) = 0.

Since (λ(q − q′)) 6= 0 we have that degXn

(
λ(q − q′)f

)
≥ d. But degXn(r − r′) < d, a contradiction.

Corollary 5.17 (Weierstrass Preparation)
If f is regular of degree d, then f = u · g for g a monic and of degree d in Xn, and u a unit.
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Proof. Without loss of generality we may assume that ||f || = 1. Since f is regular of degree d we can write
Xd
n = qf + r and because degXn r < d and ||r|| ≤ ||Xd|| we have that Xd

n − r is regular of degree d.
Thus we can divide f by it.

f = (Xd
n − r)p+ s

= ((fq + r)− r) p+ s

= f · qp+ s.

Since degXn s < d, then this is the unique Weierstrass division of f by f , so that in particular qp = 1
and s = 0. Therefore, letting g = Xd

n − r and u = p gives us our preparation.

Unfortunately in the perfectoid Tate algebra having finite degree is not the same as being a polynomial.
Therefore it is not true in general that g is a polynomial in Xn. In Example 5.19 we will construct an example
of some f which is regular in Xn of degree d, but such that there is no factorization f = ug with u a unit and

g a polynomial in X
1/pm

n for any m. First we need a uniqueness result, that any two Weierstrass preparations
differ by a constant multiple.

Proposition 5.18 (Uniqueness of Preparation)
Suppose f is regular in Xn of degree d and f = ug = vh are two factorizations with u, v units, and
g, h of degree d in Xn. Then u−1v ∈ K×.

Proof. Normalize so that ||u|| = ||g|| = ||v|| = ||h|| = 1. Passing to T̃ perf
n we see that vh = λXd

n + l for
degXn l < d, since f is regular in degree d. Therefore the leading coefficient of h is a unit, and passing
it to v we may assume that h is monic. Write h =

∑
hαX

α
n . Notice that g = u−1vh. We can write

u−1v =
∑
qαX

α
n , and by Corollary 5.5 we have ||q0|| = 1 and ||qα|| < 1 for all α 6= 0.

Assume some ||qα|| = ε > 0 for α > 0. Then only finitely many qα have absolute value greater than or
equal to ε. Let τ be the maximum absolute value achieved by one of these coefficients (not including
q0), and choose γ the largest index such that |qγ | = τ . For every α > γ we have ||qα|| < ||qγ ||. We
examine the coefficient of Xd+γ

n in u−1vh. In particular, since it must be 0, we know that∑
α+β=d+γ

qαhβ = 0.

Since hd = 1, we have qγ = −
∑
α>γ qαhβ . Since each |hβ | ≤ 1 we have ||qγ || > ||qαhβ || for each

α > γ. But by the nonarchimedean property, then || −
∑
α>γ qαhβ || < ||qγ ||, a contradiction. So qγ = 0,

completing the proof.

We can now produce a counterexample to [7] Corollary 4.4.4.

Example 5.19
Let f =

∑∞
n=0$

nX1/pn ∈ T perf
1 . Then f is regular of degree 1, and f = 1 · f is a Weierstrass

preparation of f . Any other preparation, f = ug must have u ∈ K×, so that g cannot be a polynomial.

5.4 Generating Regular Elements

Although not every regular element in T perf
n is a unit away from being a polynomial, it is a unit away from

having finite degree. Next we show that for every f ∈ T perf
n , there is an automorphism of T perf

n taking f to a
regular element. Therefore every element in T perf

n is an automorphism and a unit away from having finite
degree.

Theorem 5.20
For every nonzero f ∈ T perf

n , there is some K-linear automorphism Φ of T perf
n depending on f , such

that Φ(f) is regular in Xn of some degree.
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Notice that without loss of generality, we may assume ||f || = 1. If not we can normalize by λ ∈ K× so
||λf || = 1. Then Φ(λf) = λΦ(f) is regular in Xn so that Φ(f) is regular in Xn of the same degree.

Taking this into account, we fix an element f ∈ T perf
n with ||f || = 1. The proof will take several steps. First

we define the map and show that it is well defined. Then we prove Theorem 5.20 in characteristic p. Finally
we use the tilting equivalence to deduce the characteristic 0 case.

Let’s begin by defining Φ. We let d = deg f ∈ T̃ perf
n . Write f =

∑
fαX

α. Consider all α 6= β such that
fα, fβ 6= 0. Without loss of generality let α < β lexicographically, and let r be the first index such that
αr < βr. Then there is some m such that βr −αr ≥ 1/pm. Since f has only finitely many nonzero coefficients,
we can let M be larger than all m found in this way. We inductively define constants λn, · · · , λ1 ∈ Z as
follows. Let λn = 1. For all 1 ≤ j < n we define

λn−j = 1 + pMd

j−1∑
i=0

λn−i.

Then we define Φ = Φd,M : T perf
n → T perf

n on the generators X
1/pm

i of T perf
n as follows, and extend K-linearly.

Φ
(
X1/pm

n

)
= X1/pm

n ,

and for i < n

Φ
(
X

1/pm

i

)
= lim
r→∞

(
X

1/pm+r

i +Xλi/p
m+r

n

)pr
.

The limit converges due to Proposition 2.29.

Lemma 5.21
Φ is a well defined continuous ring homomorphism.

Proof. To see that Φ is well defined, it suffices to show that Φ
(
X

1/pm+1

i

)p
= Φ

(
X

1/pm

i

)
. For i = n, this is

immediate. Otherwise,

Φ
(
X

1/pm+1

i

)p
= lim

r→∞

(
X

1/pm+1+r

i +Xλi/p
m+1+r

n

)pr+1

= Φ
(
X

1/pm

i

)
,

where the last step follows because r →∞ if and only if r + 1→∞.

Continuity follows from Proposition 2.28, since Φ is bounded. Indeed, for all i we have∣∣∣∣∣∣Φ(X1/pr

i

)∣∣∣∣∣∣ = 1 =
∣∣∣∣∣∣X1/pr

i

∣∣∣∣∣∣ .
Since ||g|| = max{|aα|} among all coefficients aα, and because Φ is K linear, the strong triangle
inequality shows that ||Φ(g)|| ≤ ||g||, so that Φ is bounded by ρ = 1, and is therefore continuous.

If the characteristic of K is p, the map Φ simplifies considerably. In this case we still have

Φ
(
X1/pm

n

)
= X1/pm

n ,

but for i < n
Φ
(
X

1/pm

i

)
= X

1/pm

i +Xλi/p
m

n ,

Proposition 5.22
If the characteristic of K is p, then Φ is an isomorphism.
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Proof. We first check surjectivity. We only need to check that each generator of T perf
n over K is in the

image of Φ. Certainly X
1/pm

n is in the image for each m. For i < n,

X
1/pm

i = X
1/pm

i +Xλi/p
m

n −Xλi/p
m

n

= Φ
(
X

1/pm

i

)
− Φ

(
X1/pm

n

)λi
= Φ

(
X

1/pm

i −Xλi/p
m

n

)
.

Before proving injectivity we establish the following fact.

Claim 5.23
If α 6= β ∈ Z[1/p]≥0, then Φ (Xα

i ) and Φ
(
Xβ
i

)
are linearly independent as elements of T perf

n

viewed as a module over T perf
n−1 = K〈X1/p∞

1 , · · · , X̂1/p∞

i , · · · , X1/p∞

n 〉.

Proof. If i = n this is clear. Otherwise, view α = a/pk and β = b/pl with a, b coprime to p and

without loss of generality suppose k ≥ l. Suppose that there are g, h ∈ T perf
n−1 (embedded into

T perf
n away from the ith coordinate).

gΦ (Xα
i ) + hΦ

(
Xβ
i

)
= 0.

Then raising both sides to the pk power, we have

gp
k

Φ (Xi)
a

+ hp
k

Φ (Xi)
bpk−l

= gp
k (
Xi +Xλi

n

)a
+ hp

k (
Xi +Xλi

n

)bpk−l
= 0.

Notice that a 6= bpk−l. Indeed, if k = l then a 6= b because α 6= β. Otherwise they can’t be equal
because a is coprime to p. Unless g = 0, we have

degXi

(
gp
k (
Xi +Xλi

n

)a)
= a,

and similarly, unless h = 0

degXi

(
hp

k (
Xi +Xλi

n

)bpk−l)
= bpk−l.

Since their difference is 0, we must have g = h = 0.

We can now complete the proof of injectivity using induction on n. For n = 0, 1, Φ is the identity map
so we are done. In general, fix g and write it as

∑
gαX

α
i for some i 6= n. Then Φ(g) =

∑
Φ(gα)Xα

i . If

this is 0, Claim 5.23 shows that Φ(gα) = 0 for all α. But gα ∈ T perf
n−1 , and Φ restricted to this ring is an

isomorphism by the inductive hypothesis, and therefore injective. Thus gα = 0 for all α, and so g = 0.

Now that we have established that Φ is an automorphism of the perfectoid Tate algebra (at least in
characteristic p), let’s show that the image of f under Φ is regular of degree d.

Proposition 5.24
Let K have characteristic p. Let γ = (γ1, · · · , γn) be the lexicographically maximal m-tuple of elements
of Z[1/p]≥0 such that |fγ | = ||f || = 1. Then Φ(f) is regular in Xn of degree δ = λ1γ1 + · · ·+ λnγn.

Proof. Write f =
∑
fαX

α. Let α = (α1, · · · , αn) and β = (β1, · · · , βn) be tuples such that fα, fβ 6= 0.
By the definition of d, we have d ≥ αi, βi for all i. We first check that α < β lexicographically
if and only if

∑
λiαi <

∑
λiβi. Indeed, since α < β there is some r with 0 ≤ r < n so that
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α1 = β1, α2 = β2, · · · , αr−1 = βr−1 and αr < βr. We know that βr − αr < 1/pM , so that

n∑
i=1

λiαi ≤
r−1∑
i=1

λiβi + λr(βr − 1/pM ) +

n∑
i=r+1

λid

=

(
r∑
i=1

λiβi

)
− 1

<

n∑
i=1

λiβi.

Recall that f =
∑
fαX

α =
∑
fαX

α1
1 · · ·Xαn

n . Write αi = ci/p
ki for ci prime to p. Then we have

Φ
(
f
)

=
∑

fα

(
X

1/pk1

1 +Xλ1/p
k1

n

)c1
· · ·
(
X

1/pkn−1

n−1 +Xλn−1/p
kn−1

n

)cn−1

Xαn
n

=
∑(

(lower order terms) + fαX
∑n
i=1 λiαi

n

)
.

Our computation above shows that the maximal degree of Xn corresponds precisely to the maximal
lexicographic γ with fγ 6= 0, or equivalently, with |fγ | = 1, so that Φ

(
f
)

is monic in Xn of degree δ,
and so Φ(f) is regular in Xn of the same degree.

Now that we have the desired result in characteristic p, we hope to extend it to the general case.

Lemma 5.25
Let K be an arbitrary perfectoid field, and K[ its characteristic p tilt. Let ΦK and ΦK[ be the maps

constructed above. Then (ΦK)
[

= ΦK[ .

Proof. Let T perf
n,K = K〈X1/p∞

1 , · · · , X1/p∞

n 〉 and T perf
n,K[ = K[〈Y 1/p∞

1 , · · · , Y 1/p∞

n 〉. Viewing the perfectoid

Tate algebra over K[ as the tilt of the perfectoid Tate algebra over K, we can view Y
1/pm

i =(
X

1/pm

i , X
1/pm+1

i , · · ·
)

. Then we have

ΦK[

(
Y 1/pm

n

)
= Y 1/pm

n

=
(
X1/pm

n , X1/pm+1

n , · · ·
)

=
(

ΦK

(
X1/pm

n

)
,ΦK

(
X1/pm+1

n

)
, · · ·

)
= Φ[K

(
Y 1/pm

n

)
.

For i < n, we consider the rth coordinate of ΦK[

(
Y

1/pm

i

)
.(

ΦK[

(
Y

1/pm

i

))
r

=
((
X

1/pm

i , X
1/pm+1

i , · · ·
)

+
(
Xλi/p

m

n , Xλi/p
m+1

n , · · ·
))

r

= lim
t→∞

(
X

1/pm+r+t

i +Xλi/p
m+r+t

n

)pt
= ΦK

(
X

1/pm+r

i

)
=

(
Φ[K

(
Y

1/pm

i

))
r
,

completing the proof.

Corollary 5.26
In any characteristic, ΦK is an isomorphism.
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Proof. By Theorem 2.57, tilting defines an equivalence of categories Kperf → K[
perf . Since Φ[K = ΦK[ is an

isomorphism, ΦK must be as well.

Finally, we show that Proposition 5.24 extends to characteristic 0. We use the tilting equivalence here.
The important point is that T̃ perf

n,K and T̃ perf
n,K[ can be identified via the Teichmüller map, and under this

identification the reductions of ΦK and ΦK[ agree. Futhermore, Lemma 5.15 allows regularity to be checked
after reducing modulo topologically nilpotent elements.

Proposition 5.27
In any characteristic, Φ(f) is regular in Xn of degree δ.

Proof. Identify T̃ perf
n,K and T̃ perf

n,K[ along the Teichmüller map, and choose some f [ ∈ K[◦ whose image in

T̃ perf
n,K is f . Since the invariants d,M used in defining Φ only relied on the image of f in the quotient

ring, we see that ΦK[(f [) is regular in Xn of degree δ. Under our identification, ΦK = ΦK[ , so that,

ΦK
(
f
)

= ΦK[

(
f [
)

= λXδ
n + g,

where degXn g < δ. In particular, Φ(f) is regular of degree δ.

45



6 Vector Bundles on the Perfectoid Unit Disk

There is a well known correspondence between finite projective modules over a ring, and finite dimensional
(algebraic) vector bundles over the associated affine scheme, and more generally, between vector bundles over
a locally ringed space and locally free sheaves on that space (see, for example, [14] Exercise 2.5.18). In [30],
Serre asked whether there could be finite projective modules which are not free over the polynomial ring
A = k[x1, · · · , xn] for a field k. This became known as Serre’s conjecture, and can be interpreted geometrically
as asking whether there are any nontrivial vector bundles over affine space An = SpecA. In 1976, Quillen [26]
and independently Andrei Suslin proved Serre’s conjecture, which is now known as the Quillen-Suslin theorem.
Using these methods, Lütkebohmert in [25] was able to extend the result to the Tate algebra K〈X1, · · · , Xn〉
of convergent power series over a complete nonarchimedean field.

In this section we establish a perfectoid analog of the Quillen-Suslin theorem. Specifically, we prove that all
finite projective modules on the perfectoid Tate algebra are isomorphic to free modules. This implies that the
perfectoid unit disk has no nontrivial finite vector bundles. Along the way we will show that both the subring
of integral elements

(
T perf
n

)◦
, and the residue ring T̃ perf

n also have no nontrivial finite projective modules.
Although these results are not necessary to establish the result for the perfectoid Tate algebra, they will be
important in asserting the acyclicity of certain sheaves in Section 7.

In his 1986 paper [36], Leonid Vaserštĕın gave a greatly simplified version of the Quillen-Suslin theorem which
later appeared in Serge Lang’s Algebra, [23]. It is this proof that we loosely follow in Section 6.3 so we begin
by summarizing their methods.

6.1 Finite Free Resolutions and Unimodular Extension

There are two main ingredients to proving Serre’s conjecture. The first step is showing that every finite
projective module over the polynomial ring is stably free.

Definition 6.1. Let R be a commutative ring. An R-module M is said to be stably free if M ⊕ F is free for
some finite free module F .

To do this, we use finite free resolutions.

Definition 6.2. A finite free resolution of a module M is an exact sequence (possibly infinite)

· · · → Fm → Fm−1 → · · · → F 0 →M → 0

where each F i is a finite free module. If the exact sequence has finite length, then M is said to have a
finite free resolution of finite length

Proposition 6.3
A projective R-module P is stably free if and only if it has a finite free resolution of finite length.

Proof. If P ⊕ F ∼= Rn for some n, then 0 → F → Rn → P → 0 is a finite free resolution of length 1.
Conversely, let 0 → Fm → · · · → F 0 → M → 0 be a finite free resolution, we proceed by induction
on m. If m = 0, P is free and so stably free. For m ≥ 1, we let M1 = ker(F 0 → M). This gives
rise to an exact sequence 0 → M1 → F 0 → P → 0. Since P is projective, F 0 ∼= P ⊕M1. But M1

has a finite free resolution of length m− 1 and is therefore stably free. Thus for some finite free F ,
F 0 ⊕ F ∼= P ⊕M1 ⊕ F is free with M1 ⊕ F free, and so P is stably free.

Serre proved finite projective modules over a polynomial ring are stably free in [33]. Indeed, using associated
primes and the following lemma, one can reduce where M is a prime ideal of R.

Lemma 6.4 ([23] Theorem XXI.2.7)
Let 0→ P →M → N → 0 be an exact sequence of R-modules. If any two of these modules have finite
free resolutions of finite length, then so does the third.
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Theorem 6.5 ([33] Proposition 10)
If k is a field, every finite k[x1, · · · , xn]-module admits a finite free resolution of finite length. In
particular, finite projective modules are stably free.

To complete the proof, we must show that every stably free module over this ring is in fact free. To do this,
we introduce the concept of unimodular extension.

Definition 6.6. Let R be a commutative ring. A vector v = (r1, · · · , rn) ∈ Rn is called unimodular if the
elements ri generate the unit ideal.

A unimodular vector v ∈ Rn is said to have the unimodular extension property if its transpose vt is the
first column of a matrix M ∈ GLn(R). Equivalently, if there is some M ∈ GLn(R) such that Me1 = u
for the standard basis element e1 = (1, 0, · · · , 0).

R is said to have the unimodular extension property if every unimodular vector has the unimodular
extension property. Equivalently, if for all n the group GLn(R) acts transitively on the set of unimodular
vectors of length n.

This turns out to be the exact condition necessary for stably free module to be free.

Theorem 6.7
Let R have the unimodular extension property. If a finitely generated module E is stably free, then it
is free.

Proof. First suppose that R ⊕ E = Rn. Let π : R ⊕ E → R be projection onto the first coordinate. Let
u1 ∈ π−1(1), and write u1 = (r1, · · · , rn). Then π(u1) = r1π(e1) + · · ·+ rnπ(en) = 1. In particular, the
r1, · · · , rn generate the unit ideal, and so u1 is unimodular. Since R has the unimodular extension
property, we can find an invertible matrix M : Rn → Rn such that Me1 = u1. For j > 1 define vectors
uj = Mej . We have the following diagram.

Rn Rn ∼= R⊕ E

R

M

π̃
π

Define cj = π̃(uj) ∈ R, and with them define a new basis for Rn by b1 = u1 and bj = uj − cju1 for
j > 1. Then π(bj) = 0 for all j > 1. We now have the following diagram of short exact sequences.

0 E R⊕ E R 0

0 Rn−1 Rn R 0.

bi 7→ei

π

π1

Since the two righthand vertical maps are isomorphisms, so is the vertical map on the left, and so E is
free.

For the general case we proceed by descending induction. If Rm ⊕ E is free, then our discussion shows
that Rm−1 ⊕ E is also free, and continuing in this way we conclude that E is free.

To complete the proof of the Quillen-Suslin theorem for the polynomial ring over a field, all that remains is
to show that the polynomial ring has the unimodular extension property, which was the result that Quillen
and Suslin independently arrived at. See [23] Section XXI for a complete proof of the theorem.
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6.2 Coherent Rings

To extend the result from the polynomial ring to the Tate algebra, Lütkebohmert uses certain tools which
are absent from the case from the perfectoid Tate algebra. To illustrate this we summarize the proof given
in [20]. To prove that a finite projective module M has a finite free resolution of finite length, we can use
the noetherian condition and Lemma 6.4 to reduce to proving that the associated primes of M have finite
free resolutions of finite lengths, and the noetherian condition again to state that these primes are finitely
generated ideals. Then Weierstrass preparation ([4] Section 5.2.2) implies that these ideals may be assumed
to generated by polynomials and thus we can reduce to the polynomial case. Similarly, to prove that the
Tate algebra has the unimodular extension property we may use Weierstrass preparation to assume that our
unimodular vector is made up of polynomials (up to perhaps a unit) and again reduce to the polynomial
case. In Example 5.19 we showed that the Weierstrass preparation theorem for the perfectoid Tate algebra,
Theorem 5.17, is not strong enough to reduce us to the case of polynomials. Also the perfectoid Tate algebra
is far from being noetherian (unless n = 0, see Remark 2.53). Nevertheless, the residue ring T̃ perf

n is something
pretty close.

Definition 6.8. Let R be a commutative ring. A finitely generated R-module M is called coherent if every
finitely generated submodule of M is finitely presented.

We call R a coherent ring if it is coherent as a module over itself. Equivalently, if every finitely generated
ideal of R is finitely presented.

Coherent rings are studied extensively by Glaz in [11], and have a lot of the pleasant properties of noetherian
rings. We will use the following facts.

Proposition 6.9 ([11] Theorem 2.2.1)
Let R be a commutative ring and 0→ P → N →M → 0 a short exact sequence of R-modules. If any
two modules in the sequence are coherent, so is the third.

Corollary 6.10 ([11] Corollary 2.2.2)
Let φ : M → N be a homomorphism of coherent R-modules. Then kerφ, imφ, and cokerφ are coherent
modules. In particular, these are all finitely generated.

There is also the following characterization of coherent rings.

Theorem 6.11 ([11] Theorem 2.3.2)
A commutative ring R is coherent if and only every finitely presented R module is coherent.

Corollary 6.12
Let M be a coherent module over a coherent ring R. Every finitely generated submodule of M is
coherent.

From this we can deduce the following.

Lemma 6.13
Let M be a coherent module over a coherent ring R. Then there is a filtration

0 = M0 ⊆M1 ⊆ · · · ⊆Mr = M,

with subquotients Mi/Mi−1
∼= R/Ji for finitely generated ideals Ji.

Proof. Let x1, · · · , xr be a minimal generating set for M . We induct on r. M1 = Rx1 is a finitely generated
submodule of M , and is therefore coherent. We have the presentation

0→ J1 → R→M1 → 0.
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Since M1 and R are coherent, so is J1, so that in particular it is finitely generated. (This also serves as
a base case.)

Now we apply induction to M ′ = M/M1 and let π : M →M ′ be the projection. By induction there is
a finite filtration

0 = M ′1 ⊆M ′2 ⊆ · · · ⊆M ′n = M ′,

and M ′i/M
′
i−1
∼= R/Ji for Ji finitely generated in R. Letting Mi = π−1(M ′i) produces a filtration of M

with the same subquotients.

6.3 Finite Projective Modules on the Residue Ring

In this section we prove that all finite projective modules are free over the residue ring

T̃ perf
n = k

[
X

1/p∞

1 , · · · , X1/p∞

n

]
=
⋃
m

k
[
X

1/pm

1 , · · · , X1/pm

n

]
,

where, as before, k = K◦/K◦◦ is the residue field of K. As a first step, we prove that T̃ perf
n is coherent. To

simplify notation we will often denote the tuple (X1, · · · , Xn) by X.

Proposition 6.14
Let I = (f1, · · · , fr) ⊆ T̃ perf

n be a finitely generated ideal. Then I admits a finite free resolution of

finite length. In particular, I is finitely presented so that T̃ perf
n is a coherent ring.

Proof. Each fi ∈ k
[
X1/pNi

]
for some Ni. Let N ≥ maxNi Then for all m > N we have fi ∈ k

[
X1/pm

]
.

Let Im be the ideal generated by the fi in this ring. Since it is a finite module over a polynomial ring,
Theorem 6.5 implies that Im has a finite free resolution

0→
(
k
[
X1/pm

])nl
→ · · · →

(
k
[
X1/pm

])n1

→
(
k
[
X1/pm

])n0

→ (f1, · · · , fr) = Im → 0.

Taking the union as m→∞ and noting that filtered colimits are exact produces a finite free resolution
of I of finite length.

Corollary 6.15
Let M be a coherent T̃ perf

n -module. Then M has a finite free resolution of finite length.

Proof. We induct on the number of generators of M . If there is only 1, then we have

0→ I → T̃ perf
n →M → 0.

By Proposition 6.9 I is coherent and hence finitely generated. Therefore I has a finite free resolution of
finite length by Proposition 6.14, so that by Lemma 6.4, M has a finite free resolution of finite length.

For the general case we notice that by Lemma 6.13, we have a filtration

0 = M0 ⊆M1 ⊆ · · · ⊆Mr = M,

where r is a minimal number of generators for M . Consider the exact sequence

0→M1 →Mr →Mr/M1 → 0.

Proposition 6.9 applied to this short exact sequence implies that M/M1 is coherent, and therefore
has a finite free resolution of finite length by the induction hypothesis (having r − 1 generators). M1

is coherent by Proposition 6.9 applied to 0 → J1 → R → M1 → 0, and therefore has a finite free
resolution of finite length by the induction hypothesis noting it has 1 generator. Therefore Mr has a
finite free resolution of finite length by Lemma 6.4.

49



This together with Proposition 6.3 implies that all finite projective T̃ perf
n -modules are stably free. To show

that they are in fact free, we prove that T̃ perf
n has the unimodular extension property.

Proposition 6.16
T̃ perf
n has the unimodular extension property.

Proof. Let u = (f1, · · · , fm) be a unimodular vector in
(
T̃ perf
n

)m
. Then there are some gi such that∑

figi = 1. Each fi, gi ∈ k
[
X1/pN

]
for some large N . Therefore (f1, · · · , fm) is a unimodular vector

in
(
k
[
X1/pN

])m
which is a polynomial ring and therefore has the unimodular extension property.

Therefore there is some matrix

M ∈ GLm

(
k
[
X1/pN

])
⊆ GLm

(
T̃ perf
n

)
with Me1 = u.

We now completely understand finite projective modules on T̃ perf
n .

Corollary 6.17
Every finite projective T̃ perf

n -module is free.

Proof. A finite projective module is stably free by Corollary 6.15 and Proposition 6.3, and is therefore free
by Theorem 6.7 and Proposition 6.16.

6.4 Finite Projective Modules on the Ring of Integral Elements

We extend Corollary 6.17 to the subring of power-bounded elements of the perfectoid Tate algebra,
(
T perf
n

)◦
,

using Nakayama’s lemma. We first fix some notation.

Notation 6.18
For a commutative ring R and an ideal I contained in the Jacobson radical of R we let R0 = R/I.
For an R module M we will denote by M0 the R0 module M/IM , and for a homomorphism φ of
R-modules we denote by φ0 its reduction mod I. If m ∈M , then we denote by m its image in M0.

Lemma 6.19
Let R be a commutative ring, and I an ideal contained in the Jacobson radical of R. If M and N

are two projective R-modules such that there exists an isomorphism φ : M0
∼→ N0, then φ lifts to an

isomorphism ψ : M
∼→ N .

Proof. We have the following commutative diagram.

M N

M0 N0

π

ψ

ρ

φ

Indeed, a lift ψ exists because M is projective. Notice that ψ0 = φ. Indeed,

ψ0(m) = ψ(m)

= ρψ(m)

= φπ(m)

= φ(m).
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Since φ surjects, so does ψ by Nakayama’s lemma. Since N is projective, ψ has a section σ which is
necessarily injective. We claim that σ0 = φ−1. Indeed, we can check this after applying φ.

φσ0(n) = φπσ(n)

= ρψσ(n)

= ρ(n)

= n.

Therefore σ0 surjects, so that σ surjects by Nakayama’s lemma. Thus σ is an isomorphism.

Corollary 6.20
With the same setup as Lemma 6.19, we let P be a projective R-module. If P0 is a free R0 module,
then P is free.

Proof. Suppose P0
∼= Rm0 . We also have (Rm)0

∼= Rm0 so that by the lemma, P ∼= Rm.

The result now follows.

Corollary 6.21
Let P be a finite projective

(
T perf
n

)◦
module. Then P is free.

Proof. Notice that P0 is a finite projective T̃ perf
n module. Then P0 is free by Corollary 6.17. Therefore by

Corollary 6.20 it suffices to show that the kernel of the reduction map is contained in the Jacobson
radical. Let f be in the kernel. Then ||f || < 1 so that for all g, ||fg|| < 1 and so fg = 0. Therefore
1− fg = 1 ∈ k×. By Proposition 5.4 we know that 1− fg is a unit. Since g was arbitrary, f is in the
Jacobson radical.

Remark 6.22
The author remarks that

(
T perf
n

)◦
also exhibits the unimodular extension property, but this fact is not

necessary in the proof and so is not included.

6.5 The Quillen-Suslin Theorem for the Perfectoid Tate Algebra

We now prove the main theorem of this section.

Theorem 6.23
Finite projective modules on the perfectoid Tate algebra are free.

Keeping Theorem 3.52 in mind, we have the following geometric restatement.

Theorem 6.24
All finite vector bundles on the perfectoid unit disk are free.

We do not use the setup of the previous sections. Instead, recall that

T perf
n =

̂⋃
i

K
〈
T

1/pi

1 , · · · , T 1/pi
n

〉
,

so that the perfectoid Tate algebra is the completed union of Tate algebras. Lütkebohmert showed that
finite projective modules on Tate algebras are free ([25] Satz 1), so we have reduced to proving the following
proposition.

Proposition 6.25
Suppose A = ∪̂Ai where Ai are complete Banach algebras. Then any finite projective module on A is
isomorphic to the base extension of a finite projective module on one of the factors.
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We devote the rest of this section to the proof of Proposition 6.25, drawing inspiration from proof of Lemma
5.6.8 in [22].

Fix a finite projective module P over A, and take a presentation π : An → P , as well as a section of this
projection σ. The composition σ ◦π can be thought of as a projector matrix U ∈Mn(A), which is idempotent
(i.e., U2 = U).

An An An

P P

π

U

id

π

U

σ σ

Conversely, the image of an idempotent matrix is always projective, with the section just given by the natural
inclusion imU ⊆ An. In this way, we get a (non unique) correspondence between finite projective modules
and idempotent matrices over A. To approximate a projective module over A by one over some Ai, we will
try to approximate the associated idempotent matrix over A by one over Ai for some i.

We view Mn(A) as a complete noncommutative nonarchimedean Banach A-algebra with the supremum norm
||(aij)|| = max{|aij |}. This is a submultiplicative norm, that is, ||X ·Y || ≤ ||X|| · ||Y ||, where we cannot insist
on equality because matrix multiplication involves addition. Since A is the completion of the union of the Ai
we have that Mn(A) is the completed union of the Mn(Ai). In particular, fixing any U ∈ Mn(A) and any
ε > 0, there is some i and V ∈Mn(Ai) such that ||V − U || < ε.

Fix a matrix U ∈Mn(A) whose image is P . Our goal is to find an idempotent W ∈Mn(Ai) which is close
to U in the given nonarchimedean topology. The fact that W is idempotent would show that its image is
projective, and the hope is that W being close to U can be leveraged into showing they have isomorphic
images (after base change to A). We first note that if V is close to U , then U being idempotent should
imply that V is pretty close to being idempotent, that is, ||V 2 − V || is small. This can be thought of as a
consequence to the fact that x2 − x is a continous function on Mn(A). Let’s prove this. Choose V such that
||V − U || < ε. Then:

||V 2 − V || = ||V 2 − V − (U2 − U)||
= ||V 2 − U2 − (V − U)||
≤ max{||V 2 − U2||, ||V − U ||}.

We already know that ||V − U || < ε, which should imply that ||V 2 − U2|| is small too. Indeed:

||V 2 − U2|| = ||(V − U)2 + UV + V U − 2U2||
= ||(V − U)2 + U(V − U) + (V − U)U ||
≤ max{||V − U ||2, ||U || · ||V − U ||}
= max{ε2, ε · ||U ||}.

Since ||U || will never change, this means we can make this as small as we want. Later, we will want
||V 2 − V || < ||U ||−3, so once and for all we fix V ∈Mn(Ai) such that ||V − U ||| < ||U ||−4.

Notice that ||U || ≥ 1. Indeed, if ||U || < 1 then U would be topologically nilpotent, that is, Un would
converge to 0. We also know it converges to U by idempotence, so that U = 0. So for any interesting
case we have ||U || ≥ 1. Since the norm is submultiplicative we cannot insist ||U || = 1. We do have that
||V − U || < ||U ||−4 ≤ 1.

Recall from Section 2.2 that all triangles in any nonarchimedean group are isosceles. Indeed, according to
Lemma 2.22, ||a+ b|| ≤ max{||a||, ||b||}, with equality if ||a|| 6= ||b||. In particular, if ||a+ b|| < max{||a||, ||b||},
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then we conclude that ||a|| = ||b||. We can think about this as saying two things that are close together
must have the same size. In particular, since ||V − U || < 1 ≤ ||U || ≤ max{||U ||, ||V ||}, we can conclude that
||V || = ||U ||.

We must produce matrix W over Ai, which is near to V (and hence near to U), and which is also idempotent.
To find such a W we will use Newton’s method of approximation. For functions of 1 variable, Newton’s
method is the following: given a function f(x) and a guess x0 for a root, we generate closer and closer guesses
according to the formula

xl+1 = xl −
f(xl)

f ′(xl)
,

which is the zero of the tangent line to f at xl. If x0 was a good guess and f is well enough behaved, then
the xl will converge to a root of f . It turns out that there is a formulation of Newton’s method for matrices,
or more generally for functions between Banach spaces. To make this formulation we need the following
definition. We do not need the full strength of the definition, but we include it for completeness.

Definition 6.26. Let M and N be Banach spaces, and x ∈M . A function F : M → N is said to be Frèchet
differentiable if there exists a bounded linear operator L : M → N such that

lim
h→0

||F (x+ h)− F (x)− Lh||
||h||

= 0.

Then L is called the Frèchet derivative of F at x and is denoted F ′(x).

Certainly F ′(x) is a linear approximation of F near x, and thus its roots are more easily discoverable.
Therefore we can continue as with classical Newton approximation. Suppose we are trying to find a root of a
function F on Mn(A). If we have a guess X0 we can iterate along,

Xl+1 = Xl − F ′(Xl)
−1F (Xl),

where F ′(Xl) is the Frechèt derivative of F at Xl, and hope that the Xl converge to a root of F . We are
trying to find a zero of the function F (X) = X2 −X, whose roots are precisely the idempotent matrices, and
we would like to find one near U (and therefore near V ). So let’s try starting from a guess W0 = V , and then
impliment Newton’s method to try and find a root of F near V .

A first thing to notice is that F ′(X) is the linear functional H 7→ XH +HX −H. Since we are applying this
to H = X2 −X, we have that X and H commute, so that F ′(X) = 2X − 1. Therefore we are iterating along

X − X2 −X
2X − 1

.

There is no reason to believe that 2X − 1 is invertible. This may seem like an obstacle, but since we are
approximating, we don’t need a perfect inverse, just an approximation of one. Since all the matrices we are
studying are idempotent, or close to it, we guess that 2X − 1 is its own inverse. Indeed

(2X − 1)(2X − 1) = 4X2 − 4X + 1 = 4(X2 −X) + 1.

Since X will be close to U , it will be close to being idempotent, so that X2 −X is small, and if Newton’s
method works, then X converges to an idempotent matrix, and so 2X − 1 converges to its own inverse.
Therefore we will try finding W using Newton’s method as follows.

W0 = V

Wl+1 = Wl − (2Wl − 1)(W 2
l −Wl) = 3W 2

l − 2W 3
l .

Amazingly, this works.

Proposition 6.27
The Wl converge to an idempotent W ∈Mn(Ai) such that |W − U | < 1.
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Proof. Let us make a few initial computations.

Wl+1 −Wl = 3W 2
l − 2W 3

l −Wl

= (W 2
l −Wl)(1− 2Wl).

If the Wl converge an idempotent matrix, then this converges to 0. Note also that

W 2
l+1 −Wl+1 = (3W 2

l − 2W 3
l )2 − 3W 2

l + 2W 3
l

= 4W 6
l − 12W 5

l + 9W 4
l + 2W 3

l − 3W 2
l

= (W 2
l −Wl)

2(4W 2
l − 4Wl − 3).

With this in hand, we establish the following fact by induction.

Claim 6.28
For any l ≥ 0 we have

i) ||Wl − U || < ||U ||−2

ii) ||W 2
l −Wl|| ≤ ||U ||−2

(
||V 2 − V || · ||U ||2

)2l
Proof. The base case is immediate, because W0 = V . For (i) we have

||V − U || < ||U ||−3 ≤ ||U ||−2.

For (ii) we have

||V 2 − V || = ||U ||−2||V 2 − V || · ||U ||2 = ||U ||−2
(
||V 2 − V || · ||(U)||2

)20

.

For the inductive step we assume both (i) and (ii) hold for ≤ l. Then

||Wl+1 − U || = ||Wl+1 −Wl +Wl − U || ≤ max{||Wl+1 −Wl||, ||Wl − U ||}.

The latter is < ||U ||−2 by the inductive hypothesis, so it suffices to show this for the former. By
our earlier computation

||Wl+1 −Wl|| = ||(W 2
l −Wl)(1− 2Wl)|| ≤ ||W 2

l −Wl|| · ||1− 2Wl||.

By the inductive hypothesis we have

||W 2
l −Wl|| ≤ ||U ||−2

(
||V 2 − V || · ||U ||2

)2l
< ||U ||−2

(
||U ||−3||U ||2

)2l
= ||U ||−2−2l

≤ ||U ||−3.

It is important that we have a strict inequality in the second line above, but our choice of V
above ensured this. Now we also notice that

||1− 2Wl|| = ||1− 2U + 2U − 2Wl|| ≤ max{||1− 2U ||, ||2U − 2Wl||}.

The latter is < ||U ||−2 by the inductive hypothesis (and noting that ||2|| ≤ 1 by Lemma 2.21),
and the former is ≤ ||U || by the strong triangle inequality (and again Lemma 2.21). Putting
this all together we have shown that ||W 2

l −Wl|| < ||U ||−2, which proves statement (i).
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For statement (ii) we compute the following, applying the inductive hypothesis in the third line.

||W 2
l+1 −Wl+1|| = ||(W 2

l −Wl)
2(4W 2

l − 4Wl − 3)||
≤ ||W 2

l −Wl||2||4W 2
l − 4Wl − 3||

≤
(
||U ||−2

(
||V 2 − V || · ||U ||2

)2l)2

||4W 2
l − 4Wl − 3||

= ||U ||−4
(
||V 2 − V || · ||U ||2

)2l+1

||4W 2
l − 4Wl − 3||.

So it suffices to show that ||4W 2
l − 4Wl − 3|| ≤ ||U ||2. Well,

||4W 2
l − 4Wl − 3|| = ||(4W 2

l − 4Wl + 1)− 4|| ≤ max{||4W 2
l − 4Wl + 1||, ||4||}.

Certainly ||4|| ≤ 1 ≤ ||U ||2, and

||4W 2
l − 4Wl + 1|| = ||(2Wl − 1)2|| ≤ ||2Wl − 1||2 ≤ ||U ||2.

This completes the proof of the claim.

Since ||V 2 − V || · ||U ||2 < ||U ||−2 ≤ 1, we have (||V 2 − V || · ||U ||2)2l converging to zero, so that
||W 2

l −Wl|| converges to zero as l increases. Therefore,

||Wl+1 −Wl|| ≤ ||W 2
l −Wl|| · ||1− 2Wl|| ≤ ||W 2

l −Wl|| · ||U ||,

converges to zero. By Lemma 2.23 we only need the difference successive terms to converge to 0 in
order for a sequence to converge, and since each Wl is over Ai, which is complete, we have shown
that the Wl converge to some W ∈Mn(Ai). Not only that, since ||W 2

l −Wl|| converges to 0, we have
that ||W 2 −W || = 0 so that W 2 = W . As above, the proof boils down to the fact that X2 −X is
continuous, but we record it here for posterity.

Claim 6.29
W is idempotent.

Proof. For every l we have

||W 2−W || = ||W 2−W −(W 2
l −Wl)+W 2

l −Wl|| ≤ max{||W 2−W −(W 2
l −Wl)||, ||W 2

l −Wl||}.

We can make the latter as small as we want by increasing l, As for the former,

||W 2 −W − (W 2
l −Wl)|| = ||(W 2 −W 2

l )− (W −Wl)|| ≤ max{||W 2 −W 2
l ||, ||W −Wl||}.

Again, we can make the latter as small as we want by increasing l. So we’d like to say the same
about the former. First, we notice that

||Wl|| ≤ ||Wl − U + U || ≤ max{||Wl − U ||, ||U ||} ≤ ||U ||.

Therefore,

||W 2 −W 2
l || = ||(W −Wl)

2 −WWl −WlW − 2Wl||
= ||(W −Wl)

2 − (W −Wl)Wl −Wl(W −Wl)||
≤ max{||W −Wl||2, ||Wl|| · ||W −Wl||}
≤ max{||W −Wl||2, ||U || · ||W −Wl||}.

Since we can make both factors as small as we want by increasing l, we can conclude that
||W 2 −W || = 0 so that W 2 = W .
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To complete the proof of Proposition 6.27, we must check that W is close to U .

||W − U || = ||W −Wl +Wl − U || ≤ max{||W −Wl||, ||Wl − U ||}.

We can make the former term as small as we’d like by increasing l, and the latter is strictly less than
||U ||−2 ≤ 1, so that ||W − U || < 1. This completes the proof.

This shows that the image of W is a projective module. To complete the proof of Proposition 6.25 we must
show that imW ⊗Ai A ∼= imU = P . Since Mn(Ai) ⊆Mn(A), we can view W as a matrix over A, and then it
suffices to show that imW ∼= imU as modules over A (since tensor product is extension of scalars).

Let u = Ux be an arbitrary nonzero element in imU . Since U acts as the identity on u, we have

||Wu− u|| = ||(W − U)(u)|| < ||u||.

Since all triangles are isosceles (Lemma 2.22), this implies that ||Wu|| = ||u||. Therefore the restriction of W
to imU ⊆ An is injective. Indeed, if ||Wu|| = 0 then ||u|| = 0 and since the norm on An is the maximum of
the coordinates, this would imply u = 0. A symmetric argument shows that the restriction of U to the image
of W is also injective. In summary, we have

imU imW imU.W U

Since ||W −U || < 1, it is topologically nilpotent as a map from An to itself, but in fact, I claim that (W −U)2

is a topologically nilpotent in the ring of bounded linear maps from imU → imU . That it is bounded and
topologically nilpotent has already been established, so it just suffices to show that that the image lands in
imU . Indeed, because U acts as the identity on u and W acts as zero on W − 1 we have

(W − U)2u = (W − U)(W − U)u

= (W − U)(W − 1)u

= −U(W − 1)(u)

= (1− UW )u ∈ imU.

This not only shows that it is a topologically nilpotent map from imU to itself, but in fact, that it is equal
to 1 − UW when restricted to imU . Therefore, by the geometric series (Lemma 2.26) we conclude that
1− (1− UW ) = UW is a unit and is therefore invertible, i.e., an isomorphism. So we have

imU imW imU.W

UW

U

The composition is an isomorphism so that U : imW → imU surjects. We have already established injectivity,
so this completes the proof of Proposition 6.25. We have the following immediate consequence.

Theorem 6.30
A finite projective module on the perfectoid Tate algebra is free. A finite projective module on Laurent
series ring of a perfectoid Tate algebra (given by inverting any number of the indeterminates) is free.

Proof. Both of these are completed unions of Tate algebras (or Laurent series Tate algebras), on which
these properties hold by [25].
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7 Line Bundles and Cohomology on Projectivoid Space

In classical algebraic geometry, the notion of projective geometry is a very powerful tool to study properties
of varieties and schemes. Indeed, one can learn a lot about a scheme by understanding its maps to various
projective spaces, and this theory is intimately connected to the theory of line bundles on that space. In this
and the following section we develop an analogous theory for perfectoid spaces.

In Example 4.23 we defined a perfectoid analog of projective space, which we call projectivoid space, and
denote by Pn,perf . Proposition 4.24 stated that the construction of projectivoid space is compatible with the
tilting functor. In this section we begin our exploration of so called projectivoid geometry by developing the
theory of line bundles on projectivoid space. In particular, we compute the Picard group of Pn,perf , as well
as the sheaf cohomology of all line bundles (as invertible sheaves). We continue developing the theory in
the following section, where we will show how an arbitrary perfectoid space’s maps to projectivoid space is
intimately connected to its theory of line bundles, reflecting the situation in classical algebraic geometry but
with an extra arithmetic twist.

Recall that for any ringed space X, there is a natural isomorphism Pic(X) ∼= H1(X,O∗X) (see for example
[14] Exercise III.4.5). We will frequently use this isomorphism in what follows.

7.1 Reductions Using Čech Cohomology

In Example 4.23 we constructed n-dimensional projectivoid space by gluing together n + 1 copies of the
perfectoid unit disk. We will henceforth refer to the cover of Pn,perf by these disks as the standard cover.
Furthermore, Theorem 6.30 shows that any line bundle on Pn,perf becomes trivial on the standard cover and
its various finite intersections. It therefore seems reasonable to use Čech cohomology with respect to this
cover to study line bundles on projectivoid space.

Theorem 7.1 (Čech-to-Derived Spectral Sequence: [1] Exposé V Théorème 3.2)
Let F be a sheaf of abelian groups on a topological space X, and U a cover of X. Let H q(F ) : U 7→
Hq(U,F ) be the cohomology presheaf. Then there is a spectral sequence:

Ep,q2 : Ȟp(U,H q(F )) =⇒ Hp+q(X,F ).

Let X = Pn,perf , and U = {U0, · · · , Un} be the standard cover by perfectoid disks. Theorem 6.24 tells us that

H 1(O∗X)(Ui) ∼= H1(Dn,perf ,O∗) ∼= PicDn,perf = 0,

for each i, so that
E0,1

2 = Ȟ0(U,H 1(O∗X)) = 0.

Therefore the sequence of low degree terms degenerates to

Ȟ1(U,O∗X) ∼= H1(X,O∗X).

Thus Čech cohomology with respect to this cover computes sheaf cohomology, as desired. To summarize:

Lemma 7.2
With our notation as above, Pic(X) ∼= Ȟ1(U,O∗X).

Recall from Definition 3.28 the sheaf O+
X of integral elements:

U 7→ {f ∈ OX(U) : |f(x)| ≤ 1 for all x ∈ U}.

Let O+∗
X be the subsheaf of integral units. We next reduce to computing the cohomology of this sheaf.
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Lemma 7.3
With our notation as above, Pic(X) ∼= Ȟ1(U,O+∗

X ).

Proof. We have a short exact sequence of chain complexes:

0
∏
i O

+∗
X (Ui)

∏
i O
∗
X(Ui)

∏
i |K∗| 0

0
∏
i,j O+∗

X (Ui ∩ Uj)
∏
i,j O∗X(Ui ∩ Uj)

∏
i,j |K∗| 0

0
∏
i,j,k O+∗

X (Ui ∩ Uj ∩ Uk)
∏
i,j,k O∗X(Ui ∩ Uj ∩ Uk)

∏
i,j,k |K∗| 0

...
...

...

The left and middle complexes are the Čech complexes for O+∗
X and O∗X respectively, and the map on

the right is | · | which is plainly surjective. Also the right hand complex has kernel |K∗| and is otherwise
exact, so that the long exact sequence on cohomology gives

Ȟi(U,O+∗
X ) ∼= Ȟi(U,O∗X),

for all i > 0. Letting i = 1 completes the proof.

This lemma opens up the possibility of reducing modulo the topologically nilpotent functions. Recall from
Definition 3.30 the sheaf of topologically nilpotent elements,

O++
X : U 7→ {f ∈ OX(U) : |f(x)| < 1 for all x ∈ U}.

This is an ideal in O+
X , and the quotient we denote by ÕX . We need the following lemma of commutative

algebra.

Lemma 7.4
Let R→ S be a surjection of rings whose kernel I is contained in the Jacobson radical of R. Then the
induced map on unit groups, R∗ → S∗, remains surjective.

Proof. Fix s ∈ S∗ and r ∈ R mapping to s. If r ∈ m for any maximal ideal of r, then its image would be
contained in m/I ·m, a proper ideal of S. Since its image is a unit this cannot be the case. Since r is
not contained in any maximal ideal it must be a unit.

By Lemma 2.26, 1 + f is a unit for any topologically nilpotent f . In particular, O++
X is contained in the

Jacobson radical of O+
X , so that taking unit groups on the surjection O+

X → ÕX induces the following exact
sequence of multiplicative groups.

1 −→ 1 + O++
X −→ O+∗

X −→ Õ∗X −→ 1.

By Proposition 5.4, the right hand map remains surjective when evaluated on the standard cover U and all
finite intersections. Thus we get an exact sequence of Čech complexes

0 −→ Č∗(U, 1 + O++
X ) −→ Č∗(U,O+∗

X ) −→ Č∗(U, Õ∗X) −→ 0,

which induces a long exact sequence of Čech cohomology groups. Let’s analyze the relevant portion.

Ȟ1(U, 1 + O++
X ) −→ Ȟ1(U,O+∗

X ) −→ Ȟ1(U, Õ∗X) −→ Ȟ2(U, 1 + O++
X ).
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The second term is PicX by Lemma 7.3. Let’s compute the third. We will make use of projective coordinates
[T0 : · · · : Tn] for Pn,perf , and as above we denote by k the residue field of K. We denote the differentials of
the Čech complex Č∗(U, ÕX) by di. Note that for all Ui we have

ÕX(Ui) = k

[(
T0

Ti

)1/p∞

, · · · ,
(
Tn
Ti

)1/p∞
]
,

so that Õ∗X(Ui) ∼= k∗, since the only invertible polynomials are the constant functions. Therefore we

have C0(U, Õ∗X(Ui)) ∼= (k∗)n+1, and viewing the kernel as the intersection we have ker d0 ∼= k∗, so that
im d0 ∼= (k∗)n.

The rings ÕX(Ui ∩ Uj) consist of Laurent polynomials, and the only invertible Laurent polynomials are
monomials in the invertible variable. That is,

Õ∗X(Ui ∩ Uj) =

{
λ

(
Ti
Tj

)α
: λ ∈ k∗, α ∈ Z[1/p]

}
∼= k∗ ⊕ Z[1/p].

Let (fij) ∈ C1(U, Õ∗X), and suppose (fij) ∈ ker d1. This means that for all i < j < k we have fijfjk = fik.
That is,

λij

(
Ti
Tj

)αij
· λjk

(
Tj
Tk

)αjk
= λik

(
Ti
Tk

)αik
.

In particular, αij = αjk = αik, and so the degree of every factor in an element of the kernel must match. The
fact that λijλjk = λik leaves n degrees of freedom for the coefficient, so that ker d1 = (k∗)n ⊕ Z[1/p], and

since im d0 = (k∗)n, we conclude that Ȟ1(U, Õ∗X) ∼= Z[1/p]. Thus the exact sequence above becomes

Ȟ1(U, 1 + O++
X ) −→ PicX

ϕ−→ Z[1/p] −→ Ȟ2(U, 1 + O++
X ).

We’d like to show that ϕ is an isomorphism. If we could show that C∗(U, 1 + O++
X ) is acyclic, we would

be done. Unfortunately this is not so easy from the Čech complex alone. Nevertheless, we can begin by
constructing a section to ϕ.

By Corollary 6.17, finite projective T̃ perf
n -modules are free. In particular, for each Ui, we have that invertible

ÕUi-modules are free. Together with the Čech-to-derived spectral sequence, we can conclude that

H1(X, Õ∗X) ∼= Ȟ1(U, Õ∗X) ∼= Z[1/p].

With this in mind, we look more closely at,

ϕ : Pic(X)→ Z[1/p].

The Z[1/p] on the right can be interpreted as follows. For each α ∈ Z[1/p] we can build an invertible
ÕX -module starting with ÕUi on each open set in the standard cover, and gluing along transition maps(
Ti
Tj

)α
on Ui ∩ Uj . Doing the same construction, but starting with O+

Ui
gives us a section of ϕ (call it σ). In

particular, ϕ is surjective and we have an embedding Z[1/p] ↪→ Pic(X). Therefore we can consider twisting
sheaves O(d) ∈ Pic(X) for every d ∈ Z[1/p]. Furthermore, our construction implies the following lemma.

Lemma 7.5
Let A = K

〈
T

1/p∞

0 , · · · , T 1/p∞

n

〉
. Then,

Γ(Ui1 ∩ · · · ∩ Uir ,O(d)) ∼=
(

̂ATi1 ···Tir
)
d

the degree d part of the completion of the localization of A.

In the next section we show that σ is surjective.

59



7.2 The Picard Group of Projectivoid Space

For the first part of this section we let X be a Tate adic space over K with pseudouniformizer $. We make
the following standing assumptions.

• Hi(X,O+
X) = 0 for all i > 0.

• H1(X,O∗X) ∼= H1(X,O+∗
X ).

The first has something to do with deformation theory, whereas the second seems more arithmetic in nature.
We will show that projectivoid space satisfies both assumptions. First, let’s enumerate a few useful exact
sequences.

0 −→ O++
X −→ O+

X −→ ÕX −→ 0. (2)

Because O++
X consists of toplogically nilpotent functions, it is contained in the Jacobson radical of O+

X , so
that the right hand map of the sequence remains surjective on unit groups by Lemma 7.4.

1 −→ 1 + O++
X −→ O+∗

X −→ Õ∗X −→ 1. (3)

If 1 + O++
X were acyclic, we could reduce finding line bundles on X to finding invertible ÕX modules, which

has in practice been much easier. But this acyclicity has so far been rather elusive (and seems unlikely in
general). That being said, there is a filtration of O++

X by sheaves of (principal) ideals ($d) for d > 0, so let’s
explore these ideals.

0 −→ ($d) −→ O+
X −→ Ad −→ 0. (4)

Notice that Ad is a sheaf of (nonreduced) O+
X -algebras, and that for every d′ > d, we have surjections

Ad′ � Ad with kernel ($d)/($d′). As before, ($d) is contained in the Jacobson radical, so that we also have

1 −→ 1 + ($d) −→ O+∗
X −→ A ∗d −→ 1. (5)

Notice that lim
−→

(1 + ($d)) = ∪d(1 + ($d)) = 1 + O++
X . Since colimits are exact on sheaves abelian groups,

this implies
lim
−→

A ∗d
∼= Õ∗X .

On the other hand, lim
←−

(Ad) ∼= O+
X since O+

X is $-adically complete. Since the unit group functor commutes

with inverse limits (indeed, it is left adjoint to the group ring functor), we have

lim
←−

A ∗d
∼= O+∗

X .

Lemma 7.6
For all i > 0 and d > 0, Hi(X,Ad) = 0.

Proof. This follows from the long exact sequence on cohomology associated to Sequence 4 and the first
standing assumption (about the cohomology of O+

X), noticing that ($d) ∼= O+
X since it is a principal

ideal.

Lemma 7.7
For all d, i > 0, the natural map

Hi(X,A ∗2d) −→ Hi(X,A ∗d )

is an isomorphism.

Proof. Consider:

0 1 + ($2d) O+∗
X A2d 0

0 1 + ($d) O+∗
X Ad 0
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By the snake lemma, we have

1 −→ 1 + ($d)/($2d) −→ A ∗2d −→ A ∗d −→ 1. (6)

Notice that 1 + ($d)/($2d) has a natural Ad-module structure making it isomorphic to Ad, given
locally by the map 1 7→ $d. Indeed, the map is well defined because ($d)/($2d) is a square zero ideal,
and the kernel is precisely ($d) (which is 0 in Ad), while surjectivity is clear. In particular, by Lemma
7.6, 1 + ($d)/($2d) has no higher cohomology, so the conclusion follows from the long exact sequence
on cohomology on Sequence 6.

Lemma 7.8
For all d′ > d > 0 and i > 0, the natural map:

Hi(X,A ∗d′) −→ Hi(X,A ∗d ),

is an isomorphism.

Proof. By Lemma 7.7, replacing d with 2ld will not change cohomology, so we may assume d < d′ < 2d.
Then we have the following commutative diagram.

Hi(X,A ∗2d) Hi(X,A ∗d )

Hi(X,A ∗2d′) Hi(X,A ∗d′)

ψ

∼

∼

In particular, ψ is injective and surjective, so an isomorphism, which implies the result.

Therefore we have the following sequence of morphisms, whose composition is the map ϕ from Section 7.1.
We leverage the fact that colimits of abelian sheaves are exact.

Pic(X) ∼= H1(X,O∗X)
∼= H1(X,O+∗

X )
∼= H1(X, lim

←−
A ∗d )

−→ lim
←−

H1(X,A ∗d )

∼= H1(X,A ∗d )
∼= lim

−→
H1(X,A ∗d )

∼= H1(X, lim
−→

A ∗d )

∼= H1(X, Õ∗X).

Now let us specialize to the case where X = Pn,perf , so that ϕ has a section σ (defined at the end of Section
7.1).

Lemma 7.9
X = Pn,perf satisfies both the standing assumptions from the beginning of this section. Explicitly:

• Hi(X,O+
X) = 0 for all i > 0.

• H1(X,O∗X) ∼= H1(X,O+∗
X ).

Proof. The first statement will be proven in the next section (see Remark 7.12). The second follows
from Lemma 7.3, noticing that Čech cohomology with the standard cover is effective due to the
Čech-to-derived spectral sequence (Theorem 7.1) together with Corollary 6.21.

61



We make the necessary identifications to view the map ϕ and its section σ as maps between the following
groups.

H1(X,O+∗
X ) lim

←−
H1(X,A ∗d )

ϕ

σ

We can view the first group as isomorphism classes of invertible O+
X modules, and the second as inverse

systems of isomorphism classes of invertible Ad modules. Under these identifications we have:

ϕ : L 7→ {L /$dL }
σ : {Md} 7→ lim

←−
Md.

In particular, there is a natural map

L −→ lim
←−

L /$dL = σϕL .

Locally, on an affinoid Spa(R,R+), we associate L to an invertible R-module M . Then this map becomes,

M −→ lim
←−

M/$dM ∼= M̂,

which is an isomorphism since M is already complete. We conclude that σ is surjective, and therefore an
isomorphism. Putting all this together, we have proved the following theorem.

Theorem 7.10
PicPn,perf ∼= Z[1/p].

7.3 Cohomology of Line Bundles

In their Ph.D. thesis [2], Harpreet Bedi computed the cohomology of some of the twisting sheaves O(d) on
projectivoid space. His proof was modeled on the computation for classical projective space in Ravi Vakil’s
algebraic geometry notes ([35] Chapter 18.2), but doesn’t explicitly take into account the completions involved,
and only includes the case for n = 2. Instead, we adapt the proof from EGA III [13] which relates Čech
cohomology to the Koszul complex. We also fill in the result, computing the cohomology of every line bundle
in every degree. Our rings are going to be Z[1/p] graded, and for a graded ring A we will denote by Ad the
degree d part.

Theorem 7.11
Let X = Pn,perf be projectivoid space, and OX(d) ∈ PicX an arbitrary line bundle. Then:

1. If d ≥ 0,

H0 (X,OX(d)) = K
〈
T

1/p∞

0 , · · · , T 1/p∞

n

〉
d
.

2. If d < 0, then Hn (X,OX(d)) is the completion of the K vector space generated by monomials of
degree d, where the degree of each indeterminate is strictly negative, that is:

Hn (X,OX(d)) =
〈
Tα0

0 · · ·Tαnn
∣∣ αi ∈ Z[1/p]<0 and

∑
αi = d

〉̂
3. In all other cases,

Hr (X,OX(d)) = 0.

62



In particular:

hr (X,OX(d)) =


1 r = d = 0

∞ r = 0 and d > 0

∞ r = n and d < 0

0 all other cases

.

Proof. We will leverage that colimits of abelian groups are exact, so that cohomology of finite complexes
of abelian groups commute with arbitrary direct sums. We will therefore study the Čech sequence
associated to the sheaf

H =
⊕

d∈Z[1/p]

OX(d).

Let A = K
〈
T

1/p∞

0 , · · · , T 1/p∞

n

〉
, and U = {Ui} be the standard cover of X. Then by Lemma 7.5 we

have
Čr(U,H ) =

∏
0≤i1<···<ir≤n

̂ATi1 ···Tir .

Since the differentials commute with degree and cohomology commutes with direct sums, we can
conclude that

Ȟi(U,OX(d)) = Ȟi(U,H )d.

Furthermore, all finite intersections of the Ui are affinoid, and vector bundles on affinoids are acyclic
([19] Theorem 1.4.2). Then by Theorem 7.1, Čech cohomology computes the sheaf cohomology. We
first consider the 0th cohomology.

Ȟ0(U,H ) =

n⋂
i=0

ÂTi = A.

This proves the first statement of the theorem. For the second, we consider the sequence

C∗(A) : 0 −→
∏

ATi −→
∏

ATiTj −→ · · · −→ AT0···Tn −→ 0.

In each case, there is a countable fundamental system of neighborhoods of zero, given by ($n), so that
proceeding by induction from the left to the right, we see that completion on this sequence commutes
with taking cohomology (see, for example, [34] tag 0AMQ). In particular,

Ȟi(U,H ) = ̂Hi (C∗(A)).

Let’s analyzeHn(C∗(A)). Notice that AT0···Tn is theK vector space generated by monomials Tα0
0 · · ·Tαnn

for α ∈ Z[1/p]. The image of the (n− 1)st differential is the K vector space generated by monomials
where at least one of the αi ≥ 0. Therefore Hn(C∗(A)), which is the cokernel of this differential, is the
K vector space generated by monomials where each αi < 0. Taking completions proves the second
statement of the theorem.

For the third statement of the theorem, the cases of r < 0 and r > n are trivial, so we assume 0 < r < n.
We will show that Hr(C∗(A)) = 0 since the completion of 0 is 0. We point out that for any f ∈ A,

Af ∼= lim
−→

(
A
·f−→ A

·f−→ · · ·
)
.

For all s ≥ 0, let T s = (T s0 , · · · , T sn). Then T s is an A-regular sequence, and the associated Koszul
complex K∗(T s) is a free resolution of A/(T s0 , · · · , T sn).

K∗(T s) : 0 −→ Λn+1An+1 −→ · · · −→ Λ2An+1 −→ An+1 (T s0 ,··· ,T
s
n)−→ A −→ 0.

In particular, the homology groups Hi(K
∗(T s)) = 0 for all i > 0. For each s we can also look at the

dual Koszul complex, and take the colimit as s goes to infinity, with the above identification to the
localization in mind.
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...
...

...
...

Cs : 0 A An+1 Λ2An+1 · · · Λn+1An+1 0

Cs+1 : 0 A An+1 Λ2An+1 · · · Λn+1An+1 0

...
...

...
...

lim
−→

Cs : 0 A
∏
ATi

∏
ATiTj · · · AT0···Tn 0

T s

·T

·∧T s

·(T∧T ) ·T∧(n+1)

T s+1 ·∧T s+1

For i > 0, the bottom row is C∗(A)[1]. By the self-duality of the Koszul complex, we have that

Hi(Cs) ∼= Hn+1−i(K
∗(T s)),

so that in particular, for i < n+ 1, we have Hi(Cs) = 0. Since colimits of finite complexes commute
with cohomology, we conclude that for 0 < r < n,

Hr(C∗(A)) ∼= Hr+1(lim
−→

Cs)

∼= lim
−→

Hr+1(Cs)

= lim
−→

0

= 0.

Taking completions proves the third statement of the theorem, and so we are done.

Remark 7.12
An identical argument, but replacing K with K◦, computes the cohomology of the integral line bundles

O+
X(d) for all d > 0. In particular we see that O+

X is acyclic, which is what we need for projectivoid
space to meet the first standing assumption in Section 7.2, thus we complete the proof of Lemma 7.9.

7.3.1 Koszul-to-Čech: The Details

We made some identifications in order to have the sequences of Koszul complexes converge to the (shifted)
Čech complexes. To be safe, we make these identifications explicit and check that all the diagrams commute
as asserted above.

As a first step, let’s make explicit the identification

lim
−→

(A
f→ A

f→ A
f→ · · · ) ∼−→ Af .

In fact, this identification works replacing A with any A-module. We get a map out of the colimit via the
(module) homomorphisms a 7→ a/fr from the rth factor, and this map is clearly surjective. Injectivity follows
because a/fr = 0 implies fs · a = 0 for some s so that a maps to 0 in the colimit.

For the following, we fix a basis e0, · · · , en for An+1. Then ΛkAn+1 is the free module generated by {ei1 ∧
· · · ∧ eik : 0 ≤ i1 < · · · < ik ≤ n}. Then the k-th differential of the Koszul complex,

∂ks : ΛkAn+1 ∧T s−→ Λk+1An+1,
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associated to the regular sequence T s is given coordinate wise by

(fi1···ikei1 ∧ · · · ∧ eik) 7→

∑
j

T sijfi1···îj ···ik+1

 ei1 ∧ · · · ∧ eik+1
.

The vertical maps, T∧k : ΛkAn+1 −→ ΛkAn+1 from the Koszul complex associated to T s to the one given by
T s+1 are given coordinate wise by multiplication,

fi1···ikei1 ∧ · · · ∧ eik 7→ Ti1 · · ·Tikfi1···ikei1 ∧ · · · ∧ eik .

Finally, identifying the colimit of the multiplication by Ti1 · · ·Tik maps with the localization ATi1 ···Tik , the

map ΛkAn+1 −→
∏
ATi1 ···Tik from the Koszul complex associated to T s to the colimit is given coordinatewise

by

fi1···ikei1 ∧ · · · ∧ eik 7→
fi1···ik

(Ti1 · · ·Tik)s
.

It is now an exercise in careful book keeping to check that the following diagram commutes, which completes
the result.

ΛkAn+1 Λk+1An+1

ΛkAn+1 Λk+1An+1

∏
ATi1 ···Tik

∏
ATi1 ···Tik+1

.

·∧T s

·T∧k ·T∧(k+1)

·(Ti1 ···Tik+1
)−s·∧T s+1

·(Ti1 ···Tik )−s−1

∂

Let’s start with the top block, and see what happens going from the top left corner to the middle left side
coordinatewise. Going right and then down is

(fi1···ik) 7→

∑
j

T sijfi1···îj ···ik+1

 7→
Ti1 · · ·Tik+1

∑
j

T sijfi1···îj ···ik+1

 .

Meanwhile, down and then to the right is

(fi1···ik) 7→ (Ti1 · · ·Tikfi1···ik) 7→

∑
j

(Ti1 · · · T̂ij · · ·Tik+1
)T s+1
ij

fi1···îj ···ik+1

 .

Therefore the upper half of diagram commutes. For the bottom half, we relabel s + 1 as s to conserve
notational energy. Chasing as before, first to the right and down.

(fi1···ik) 7→

∑
j

T sijfi1···îj ···ik+1

 7→
∑

j

fi1 · · · îj · · · ik+1

T si1 · · · T̂
s
ij
· · ·T sik+1

 .

The bottom horizontal map is the Čech differential, so that going down and then to the right gives

(fi1···ik) 7→
(

fi1···ik
T si1 · · ·T

s
ik

)
7→

∑
j

fi1 · · · îj · · · ik+1

T si1 · · · T̂
s
ij
· · ·T sik+1

 .

65



8 Maps to Projectivoid Space

Suppose S is a scheme over K. Then there is a well known correspondence between maps from S → Pn and
globally generated line bundles on S and together with a choice of n+ 1 generating global sections (see for
example [14] Theorem II.7.1). In this chaopter we will prove an analog of this correspondence for perfectoid
spaces.

Definition 8.1. To a perfectoid space X over K, we associate a groupoid Ln(X) whose objects consist of

tuples
(
Li, s

(i)
j , αi

)
for i ≥ 0 and j = 0, · · · , n, where Li are line bundles on X, s

(i)
0 , · · · , s(i)

n ∈ Γ(X,Li)

are generating global sections, and αi : L ⊗pi+1
∼−→ Li are isomorphisms mapping

(
s

(i+1)
j

)⊗p
7→ s

(i)
j .

Morphisms are isomorphisms of line bundles which are compatible with the global sections and
isomorphisms αi.

If f : X → Y is a K-morphism, we get a pullback functor f∗ : Ln(Y ) → Ln(X), so that Ln is a
category fibered in groupoids.

Remark 8.2
Under a suitable Grothendieck topology on the category of perfectoid spaces over K, we could view
Ln as a stack. We will show that Ln is actually representable by a perfectoid space.

Remark 8.3
Note that if some αi exists, it is unique. Indeed, for each i the global sections s

(i)
j generate Li, so that

an isomorphism L ⊗pi+1 −→ Li shows that the global sections
(
σ

(i+1)
j

)⊗p
generate L ⊗pi+1. In particular,

the isomorphism is completely determined by the images of these global sections.

Remark 8.4
For each i, the data

(
Li, s

(i)
j

)
corresponds to a map to a projective space (as a rigid analytic variety),

so that in positive characteristic objects of the category Ln(X) correspond to Frobenius compatible
systems of maps to projective space.

The main result of this section is that the category Ln(X) parametrizes K-morphisms X −→ Pn,perf . In
particular, viewing Ln as a functor to sets we construct a natural isomorphism Hom(·,Pn,perf) ∼= Ln of
functors from perfectoid spaces over K to sets. First we introduce a bit of notation.

Definition 8.5. Denote by mi : O(1/pi+1)⊗p
∼−→ O(1/pi) the isomorphism of line bundles on Pn,perf coming

from multiplying factors together.

We now state the main theorem of this section (compare to [14] Theorem II.7.1).

Theorem 8.6
The functor Ln is represented by projectivoid space.

Explicitly, the natural transformation Hom(·,Pn,perf) → Ln, which evaluated on X takes φ : X →
Pn,perf to the tuple

(
φ∗O(1/pi), φ∗T

1/pi

j , φ∗mi

)
∈ Ln(X) is an isomorphism of functors.

Since
{
T

1/pi

j

}n
j=0

generates O(1/pi), we have that
{
φ∗
(
T

1/pi

j

)}n
j=0

generates φ∗
(
O(1/pi)

)
. Furthermore, the

standard isomorphisms O(1/pi+1)⊗p
∼−→ O(1/pi) coming from multiplying factors together send (T

1/pi+1

j )⊗p

to T
1/pi

j , so pulling back these isomorphisms along φ gives us an element of Ln(X). We construct an inverse
to this transformation in Section 8.2, but first we will need a bit of setup.
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8.1 L -Distinguished Open Sets

For this section we let X be an adic space, L a line bundle on X, and s1, · · · , sn global sections of L which
generate it at every point. Let D(si) = {x ∈ X : si|x generates Lx} be the doesn’t vanish set of the section
si. Then the map OX → L determined by si is an isomoprhism on the stalks of every point of D(si), and
therefore restricts to an isomorphism on it. We suggestively denote the inverse by s 7→ s/si. Let’s validate
this notation with the following lemma.

Lemma 8.7
On D(si) ∩D(sj), we have the following relation.

si
sj
· sj
si

= 1.

Proof. We have two isomorphisms,

Γ(D(si) ∩D(sj),OX) Γ(D(si) ∩D(sj),L ).
si

sj

Then we have
si
sj

= s−1
j ◦ si(1)

sj
si

= s−1
i ◦ sj(1).

Since the maps s−1
i ◦ sj and s−1

j ◦ si are inverses to each other, we win.

For every x ∈ D(si), we can use the isomorphism s−1
i to get a valuation on Γ(X,L ).

Γ(X,L ) Γ(D(si),L ) Γ(D(si),OX) Γx ∪ {0}

s |(s/si)(x)|

res s−1
i x

With this in hand, we can define the following open subsets of D(si) for each i.

Definition 8.8. Let X be a perfectoid space, L a line bundle on X and s1, · · · , sn generating global sections
of L . An open set of X is called an L -distinguished open set if it is of the form

X

(
s1, · · · , sn

si

)
= {x ∈ D(si) : |(sj/si)(x)| ≤ 1 for all j}.

For the case of classical projective space, we can build a map to projective space along the doesn’t vanish sets
of the given sections, and glue them together. Here with our analytic topology, we must use these smaller
L -distinguished open sets. Let’s prove these smaller open sets cover X. Indeed, our notation suggests that
one of |(sj/si)(x)| or |(si/sj)(x)| should be less than 1, let’s check the details.

Lemma 8.9
The L -distinguished open sets Xi = X

(
s1,··· ,sn

si

)
for i = 1, · · · , n are open and cover X.

Proof. The openness of Xi follows because it is in fact a rational open in the adic space D(si), which is
open in X. To show these cover X, fix some x ∈ X. We already know the D(si) cover X, because the
si generate L . So x ∈ D(si) for some i. Fix some j. If x /∈ D(sj) then |(sj/si)(x)| = 0 < 1. Suppose
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otherwise that x ∈ D(sj). By Lemma 8.7 together with the multiplicativity of the valuation given by
x, we have either |(si/sj)(x)| ≤ 1 or |(sj/si)(x)| ≤ 1. If the former holds for every j, then x ∈ Xi.

Suppose the latter holds for some j, and suppose further that x ∈ D(sk) for some other k. Then arguing
as above we have |(si/sk)(x)| ≤ 1 or |(sk/si)(x)| ≤ 1. If the first case holds, then also |(sj/sk)(x)| ≤ 1.
Indeed,

|(si/sk)(x)| = |(si/sj)(x)| · |(sj/sk)(x)| ≤ 1,

so that
|(sj/sk)(x)| ≤ |(sj/si)(x)| ≤ 1.

In this case, what remains is to compare sj to the rest of the sections excluding i. We continue in this
way going through each section we will find some r such that for all l, |(sl/sr)(x)| ≤ 1, and so x ∈ Xr.

Example 8.10
The standard cover of Pn,perf by perfectoid unit disks consists of the O(1)-distinguished open sets

Pn,perf
(
T0,··· ,Tn

Ti

)
.

We finally prove a lemma which implies that if L ⊗p ∼= M and s and t are global sections of L and M
respectively, with s⊗p = t, then D(s) = D(t). In particular, using the notation of Definition 8.1, this implies

that if the s
(i)
j generate Li, then the s

(i+1)
j generate Li+1.

Lemma 8.11
Let (R,m) be a local ring, and M,N invertible R-modules such that M⊗r ∼= N for a positive integer r.
Let f ∈M , and g ∈ N such that under this identification f⊗r = g. Then if g generates N , f generates
M .

Proof. We show the contrapositive. If f does not generate M , then by Nakayama’s lemma, f ∈ mM . Thus
f = a · s for some a ∈ m and s ∈M . But then under the appropriate identification,

g = f⊗r = (a · s)⊗r = ar · s⊗r ∈ mrN ⊆ mN.

Therefore g cannot generate N .

8.2 Construction of the Projectivoid Morphism

We can now finish the proof of Theorem 8.6 by constructing an inverse to the natural tranformation from the
theorem. The result follows from the following proposition.

Proposition 8.12
Let X be a perfectoid space over K and

(
Li, s

(i)
j , αi

)
∈ Ln(X). There is a unique K-morphism

φ : X −→ Pn,perf such that (
φ∗O(1/pi), φ∗T

1/pi

j , φ∗mi

)
∼=
(
Li, s

(i)
j , αi

)
.

Proof. Let Xj = X

(
s
(0)
0 ,··· ,s(0)n
s
(0)
j

)
be the cover of X by L0-distinguished opens. Let Uj = Pn,perf

(
T0,··· ,Tn

Tj

)
⊆

Pn,perf be the standard cover by affinoids, which are isomorphic to the perfectoid unit polydisk, given
by

Spa

(
K

〈(
T0

Tj

)1/p∞

, · · · ,
(
Tn
Tj

)1/p∞
〉
,K◦

〈(
T0

Tj

)1/p∞

, · · · ,
(
Tn
Tj

)1/p∞
〉)

.

We build φ locally from maps φj : Xj → Uj . Since Uj is affinoid, Proposition 3.43 implies that it is
equivalent to build a map of Huber pairs,(
K

〈(
T0

Tj

)1/p∞

, · · · ,
(
Tn
Tj

)1/p∞
〉
,K◦

〈(
T0

Tj

)1/p∞

, · · · ,
(
Tn
Tj

)1/p∞
〉)

γj−→
(
OX(Xj),O

+
X(Xj)

)
.
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That is, a ring map

K

〈(
T0

Tj

)1/p∞

, · · · ,
(
Tn
Tj

)1/p∞
〉

γj−→ Γ(Xj ,OX),

satisfying

γj

(
K◦

〈(
T0

Tj

)1/p∞

, · · · ,
(
Tn
Tj

)1/p∞
〉)
⊆ Γ

(
Xj ,O

+
X

)
.

We define γj on generators by the rule

γj

((
Tr
Tj

)1/pi
)

=
s

(i)
r

s
(i)
j

.

To make sure this actually gives a homomorphism, we must check that(
s

(i+1)
r

s
(i+1)
j

)p
=
s

(i)
r

s
(i)
j

.

First notice that, under the identification αi : L ⊗pi+1
∼= Li, the following diagram commutes (keeping in

mind that the horizontal maps are not homomorphisms).

OX OX

Li+1 Li.

x 7→xp

s
(i+1)
j s

(i)
j

s7→s⊗p

Indeed, the commutativity of this diagram follows directly from the multilinearity of tensor product

together with the identification
(
s

(i+1)
j

)⊗p
= s

(i)
j . Chasing this diagram, we see that(

s
(i+1)
r

s
(i+1)
j

)p
=

((
s

(i+1)
j

)−1 (
s(i+1)
r

))p
=

(
s

(i)
j

)−1 (
s(i)
r

)
=

s
(i)
r

s
(i)
j

,

as desired. Therefore γj is a homomorphism. Finally, the definition of Xj implies that for all x ∈ Xj ,∣∣∣∣γj (TiTj
)

(x)

∣∣∣∣ =

∣∣∣∣∣s(0)
i

s
(0)
j

(x)

∣∣∣∣∣ ≤ 1,

so that

γj

(
Ti
Tj

)
∈ Γ

(
Xj ,O

+
X

)
.

The multiplicativity of the valuation associated to x shows the same holds for all pth power roots so
that

γj

(
K◦

〈(
T0

Tj

)1/p∞

, · · · ,
(
Tn
Tj

)1/p∞
〉)
⊆ Γ

(
Xj ,O

+
X

)
.

Therefore we get a morphism φj : Xj → Uj ⊆ Pn,perf , for each j. Notice that this diagram chase also

says that s
(i)
r /s

(i)
j is a pi-th root of s

(0)
r /s

(0)
j which is what we’d like.
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To get the map φ, we must check that these morphisms glue. This seems obvious with the notation
we’ve selected, but let’s be more careful. We must show that the restrictions of γj and γk are equal as
maps from Γ(Uj ∩ Uk,OPn,perf ) −→ Γ(Xj ∩Xk,OX). Therefore it suffices to show that,

γj

((
Tk
Tj

)1/pi
)

= γk

((
Tj
Tk

)1/pi
)−1

.

With our notation, this boils down to

s
(i)
k

s
(i)
j

·
s

(i)
j

s
(i)
k

= 1.

But this is just Lemma 8.7.

The rest is immediate from the construction. Since OPnperf (d) is generated by the monomials of degree

d, the construction shows that φ∗O(1/pi) = Li, and that φ∗
(
T

1/pi

j

)
= s

(i)
j . Furthermore, any map

ψ : X → Pn,perf with these properties must locally be given by the γi (composed with s
(i)
j ), so that

ψ = φ. In fact, this could be an interpretation of the precise meaning of the data given by an element
of Ln(X). Indeed, the γi can be viewed as descent data for the Li as the pullback of O(1/pi).

8.3 The Positive Characteristic Case

If X is a perfectoid space of characteristic p, then the Frobenius morphism F : Gm → Gm, x 7→ xp is an
isomorphism. Therefore the pth power map on PicX is an isomorphism as well, since it is H1(X,F ). This

means that given
(
Li, s

(i)
j , αi

)
∈ Ln(X), the Li for i > 0 are uniquely determined by L0. Similarly, since X

is perfect, the map γi constructed in the proof of Proposition 8.2 is completely determined by where Tr/Ti
goes for each r 6= j, because the pth roots of the image are unique. We summarize this in the following
corollary.

Corollary 8.13
If X is a perfectoid space over K of characteristic p, a map X → Pn,perf is equivalent to a line bundle
L on X and global sections s0, · · · , sn that generate L , or equivalently, to a map to classical projective
space Pn (where Pn can be viewed as an adic space as in Example 3.47).

We can now leverage the tilting equivalence to say that maps to X → Pn,perf in any characteristic are
governed by single line bundles on X[. Indeed, by the tilting equivalence (Theorem 4.11), we have that

Hom(X,Pn,perf
K ) = Hom(X[,Pn,perf

K[ ). This implies the following corollary to Theorem 8.6.

Corollary 8.14
If X is a perfectoid space over K of any characteristic, a map X → Pn,perf

K is equivalent to a single line

bundle L on X[ together n+ 1 global sections generating L .

Using this corollary as an intermediary, we get a natural and geometric correspondence between certain
inverse systems of line bundles on X and single line bundles on X[.

Corollary 8.15
An element of Ln(X) is equivalent to the a line bundle L ∈ PicX[ together with n+ 1 generating
global sections.

This will be a useful tool in understanding the relationship between PicX and PicX[.
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9 Untilting Line Bundles

The tilting equivalence (Theorem 4.11) is one of the most powerful tools perfectoid spaces provide us with.
It allows us to pass back and forth between mixed characteristic and positive characteristic geometry and
algebra, while maintaining much of the same information. In this section, we use the tilting equivalence as
well as the tools of projectivoid geometry developed in Sections 7 and 8 in order to compare the Picard
groups of a perfectoid space X and its tilt X[. Indeed, the theory of maps to projectivoid space allows us
to pass between line bundles on X and X[ by choosing (compatible) generating sections, constructing the
associated map to projectivoid space, and then using the tilting equivalence to pass across characteristics.
We remark that the theory of pro-étale cohomology on perfectoid spaces allows us to make this comparison
cohomologically, but the geometric theory we developed in the previous section gives us a firm geometric
grasp.

9.1 Cohomological Untilting

In [3], Bhatt and Scholze introduce the pro-étale site for schemes and perfectoid spaces. We review the
definition here.

Definition 9.1. A map f : Y = Spa(S, S+) → X = Spa(R,R+) of affinoid perfectoid spaces is called
affinoid pro-étale if it can be written as a cofiltered limit of étale maps Yi = Spa(Si, S

+
i ) → X of

affinoid perfectoid spaces. More generally, a map f : Y → X of perfectoid spaces is pro-étale if is
locally on the source and target affinoid pro-étale.

The (small) pro-étale site of X is the Grothendieck topology on the category of perfectoid spaces
f : Y → X pro-étale over X on which a collection {fi : Yi → X}i∈I is a covering if for each quasicompact
open U ⊆ X there exists a finite subset J ⊆ I and quasicompact open subsets Vi ⊆ Yi for i ∈ J such
that U = ∪i∈Jfi(Vi).

If F is a pro-étale sheaf on X (that is a sheaf on the pro-étale site of X), the pro-étale cohomology
groups Hi(Xpro-ét,F ) are the derived functor sheaf cohomology groups on the pro-étale site.

Let X be a perfectoid space over K. The pro-étale sheaf Gm,X maps U 7→ Γ(U,OU )∗. We have the following
theorem.

Theorem 9.2
H1(Xpro-ét,Gm) ∼= PicX.

Proof. For any site S, the cohomology group H1(XS ,Gm) parametrizes isomorphism classes of line bundles
on X with respect to the topology of S. Furthermore, due to [22] Theorem 3.5.8, vector bundles (of
any rank) on a perfectoid space with respect to the pro-étale, étale, and analytic topologies coincide.

We use the equivalence of the pro-étale topologies of X and X[ to construct the tilt of Gm as a pro-étale
sheaf on X:

G[m,X : U 7→ (Γ(U,OU )[)∗ = Γ(U [,OU[)
∗ = Γ(U [,Gm,X[).

The equivalence of the étale topologies on X and X[ show that G[m,X is indeed a sheaf. Better yet, the

effectiveness of Čech cohomology on the pro-étale site shows that

Hi(Xpro-ét,G[m,X) ∼= Hi(X[
pro-ét,Gm,X[).

In particular, H1(Xpro-ét,G[m,X) ∼= PicX[. Now consider the Kummer sequence for various powers of p.

0 −→ µµpn −→ Gm,X −→ Gm,X −→ 0.

This is an exact sequence of sheaves on the pro-étale site of X. Indeed, this can be checked on the stalks,
which on the pro-étale site are strictly Henselian local rings. Therefore we can form an inverse system of
exact sequences:
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0 µµp Gm,X Gm,X 0

...
...

...

0 µµpn Gm,X Gm,X 0

0 µµpn+1 Gm,X Gm,X 0

...
...

...

The vertical maps on the the left and middle sides are x 7→ xp. Taking this limit gives the following sequence.

0 −→ Zp(1) −→ G[m,X
]−→ Gm,X .

The middle term is G[m,X by definition. Indeed, in construction the tilt of a perfectoid algebra R (Definition
2.56), we constructed an isomorphism of multiplicative monoids:

R[ ∼= lim
←−
x 7→xp

R,

which restricts to the desired isomorphism on unit groups. Finally, exactlness on the right can be checked
explicitly in the pro-étale topology. Indeed, adjoining a pth power root is an étale cover so passing to the limit
we get ] to be surjective on a pro-étale cover. Therefore we get a short exact sequence of pro-étale sheaves:

0 −→ Zp(1) −→ G[m,X
]−→ Gm,X −→ 0.

Remark 9.3
If R is a perfectoid algebra we always get a map of monoids ] : R[ → R given by projection onto the
first coordinate. Although it is not a ring homomorphism unless R already had characteristic p, its
restriction to unit groups (R[)∗ → R∗ is a group homomorphism. This construction is another way of
building the map ] : G[m,X → Gm,X . The advantage of our construction is that it explicitly exhibits
the Tate module Zp(1) as the kernel.

Taking long exact sequences in cohomology gives us the following diagram, where the rows are exact.

...
...

...
...

· · · H1(Xpro-ét, µµpn) PicX PicX H2(Xpro-ét, µµpn) · · ·

· · · H1(Xpro-ét, µµpn+1) PicX PicX H2(Xpro-ét, µµpn+1) · · ·

...
...

...
...

· · · H1(Xpro-ét,Zp(1)) PicX[ PicX H2(Xpro-ét,Zp(1)) · · ·

L 7→L⊗p

θ0

θn+1

θn

72



Taking the inverse limit of the θn, we get a homomorphism of groups,

θ : PicX[ −→ lim
←−

L 7→L⊗p

PicX, (7)

and θ0 is this map composed with the projection onto the first coordinate.

Remark 9.4
In Corollary 8.15 we established that inverse systems of pth roots of line bundles (with generating

sections) on X correspond to individual line bundles (with generating sections) on X[. This seems to
suggest that θ could be an isomorphism in cases where we have nice maps to projective space.

9.2 Untilting Via Maps to Projectivoid Space

We hope to give a geometric understanding of θ and θ0 in terms of maps to projectivoid space. For a perfectoid
space X over a perfectoid field K, we hope to understand whether the following correspondence holds.

{
Globally generated
L ∈ PicX[

}
↔

 Systems of globally generated line
bundles (L0,L1, · · · ) on X such
that L ⊗pi+1

∼= Li.


We begin by constructing a map in the righthand direction. Given a globally generated invertible sheaf
L ∈ PicX[, choose n sections which generate L . Associated to this data there is a unique morphism
φ[ : X[ −→ Pn,perf

K[ , which is the tilt of a unique morphism φ : X −→ Pn,perf
K . Let Li = φ∗(O(1/pi)). This

gives a system of (L0,L1, · · · ) on the right hand side. As a first step we show that the sheaves Li do not
depend on the choices of global sections of L .

Proposition 9.5
The construction in the previous paragraph is well defined, and (L0,L1, · · · ) = θ(L ) where θ is the
cohomological map defined above (Equation 7).

Proof. φ∗ can be constructed cohomologically by applying cohomology to the unit of the adjunction,
u : Gm,Pn,perf

K
→ φ∗Gm,X and composing with the natural map H1(Pn,perf , φ∗Gm,X)→ H1(X,Gm,X).

Pulling u back along the pth power map gives φ[∗ the same way. Since the pth power map commutes
with pullback, we get the following commutative diagram.

PicPn,perf
K[ PicX[

lim
←−

PicPn,perf
K lim

←−
PicX.

φ[∗

θPn,perf θX

φ∗

Since L = φ[∗OPn,perf

K[
(1) and Li = φ∗OPn,perf

K
(1/pi), we have reduced to proving the proposition for

Pn,perf
K . Explicitly, we must show

θPn,perf (O(1)) = (O(1),O(1/p),O(1/p2), · · · ).

Since PicPn,perf = Z[1/p], and is therefore uniquely p-divisible, it is enough to show that

θ0,Pn,perfO(1) = O(1).

Now θ0 is the cohomological map associated to the Teichmuller map ] : G[m −→ Gm. We have seen in
Proposition 2.59 that the Teichmuller map on the perfectoid Tate algebra maps Ti 7→ Ti. View θ0 as
a map on Čech cohomology with respect to the standard affine covers, and view H1(Pn,perf ,Gm) as
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descent data for building a line bundle (and similarly for the tilt). Then we see that ] sends descent
data for O(1) (which is monomials of degree one), to monomials of degree one, which build O(1) on

Pn,perf
K .

This tells us that the geometric method of untilting line bundles is well defined because it agrees with
the cohomological method which does not depend on the choice of sections.

In order to show this is a bijection, there are two questions that need answering (injectivity and surjectivity).
Let’s analyze them and see where the difficulties may lie.

• Injectivity: Suppose L ,M ∈ Pic(X[) are globally generated. Suppose choosing sections and untilting

the associated maps to projectivoid space gives us maps φ : X → Pn,perf
K and ψ : X → Pr,perf

K . If
φ∗(O(1/pi)) ∼= ψ∗(O(1/pi) =: Li for all i, can we conclude that L ∼= M ? We can attack this using

the methods of Section 8 by considering the tuples (Li, s
(i)
j , αi) ∈ Ln(X) and (Li, t

(i)
j , βi) ∈ Lr(X)

associated to φ and ψ respectively. If the αi and βi agree, we can consider
(
Li,

{
s

(i)
j , t

(i)
k

}
, αi

)
∈

Ln+r+1(X) and consider how the associated map X → Pn+r+1,perf
K tilts. We settle the case where

αi = βi below. If αi and βi do not agree, they do differ by a global section of Gm.

• Surjectivity: Suppose (L0,L1, · · · ) are globally generated with L ⊗pi+1
∼= Li, and there are global

sections s
(i)
j generating Li such that

(
s

(i)
j

)⊗p
= s

(i)
j . Then passing through the maps to projective

space we get L ∈ PicX[ which maps to (L0,L1, · · · ) under θ. But, can we always find sections s
(i)
j

and isomorphisms such that
(
s

(i+1)
j

)⊗p
= s

(i)
j ? Restated, are there generating global sections of L0 all

of whose pth power roots exist? If so, our correspondence surjects.

In the rest of this section we settle injectivity in the case where the isomorphisms L ⊗pi+1
∼= Li agree for the

two sets of sections.

Proposition 9.6
Let X be a perfectoid space over K. Suppose

(
Li, s

(i)
j , αi

)
∈ Ln(X) and

(
Li, t

(i)
j , αi

)
∈ Lr(X)

correspond to maps φ : X → Pn,perf
K and ψ : X → Pr,perf

K respectively. Then

φ[∗OPn,perf

K[
(1) ∼= ψ[∗OPr,perf

K[
(1).

Fix
(
Li, s

(i)
j , αi

)
corresponding to a map φ : X → Pn,perf

K . As a first step, we show that we can add

one global section to each Li that are compatible with the αi without changing the line bundle we get
over X[. Suppose that for each i, ti ∈ Γ(X,Li) is a global section such that αi

(
t⊗pi+1

)
= ti. For every

λ = (λ0, λ1, · · · ) ∈ lim
←−

K∗ = K[∗, we let ψλ : X −→ Pn+1,perf
K be the projectivoid map corresponding to

adding λiti to the global sections defining the map. That is, ψλ corresponds to
(
Li, {s(i)

j , λiti}, αi
)

. We hope

to fit φ and ψλ in a commutative diagram. To do so we must develop an analog of rational maps in this
analytic context.

If we want to define a map Pn+1,perf −→ Pn,perf given by
(
O(1/pi),

{
T

1/pi

0 , · · · , T 1/pi

n

}
,mi

)
we would notice

that this isn’t defined wherever |Ti/Tn+1| > 1. In particular, it is only defined on the open set:

U =
⋃

j 6=n+1

Pn+1,perf
K

(
T0, · · · , Tn+1

Tj

)
.

This is the projectivoid analog of projecting away from the hyperplane where Tn+1 vanishes, (here we are
projecting away from a polydisk at the ‘north pole’). Unfortunately, the image of ψλ does not lie in U , because
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there may be points x where
∣∣∣(s(0)

j /t0)(x)
∣∣∣ > 1 for all i, so that |(Ti/Tn+1)(ψλ(x))| > 1. But, restricted to

the open set

Vλ =
⋃
j

X

(
s

(0)
0 , · · · , s(0)

n , λ0t0

s
(0)
j

)
,

the image of ψλ does lie in U . Thus we have the following commutative diagram for every λ.

Pn,perf
K

X Vλ U

Pn+1,perf
K

φ

ψλ

ψλ

π

Lemma 9.7
The sets V($[)r form an open cover of X. As a consequence the sets V [

($[)r
cover X[.

Proof. Notice ($[)r = ($r, $r/p, · · · ). Fix x ∈ X. There is some j such that x ∈ X
(
s
(0)
0 ,··· ,s(0)n
s
(0)
j

)
. Further-

more, since $ is topologically nilpotent, there is some r such that∣∣∣($rt0/s
(0)
j )(x)

∣∣∣ = |$r| ·
∣∣∣(t0/s(0)

j )(x)
∣∣∣ < 1

proving the first statement. The second is an immediate consequence of the tilting equivalence.

Lemma 9.8
For any λ ∈ K[∗,(

φ[∗OPn,perf

K[
(1)

)
|V [λ
∼= ψ[∗λ

(
OPn+1,perf

K[
(1)|U[

)
∼=
(
ψ[∗λ OPn+1,perf

K[
(1)

)
|V [λ

Proof. This follows from the commutativity of the tilt of the diagram above, reproduced below, together
with the fact that π[ is given by the line bundle OPn+1,perf

K[
(1)|U together with the sections T0, · · · , Tn.

Pn,perf
K[

X[ V [λ U [

Pn+1,perf
K[

φ[

ψ[λ

ψ[λ

π[

Lemma 9.9
Fix any λ, ξ ∈ lim

←−
K∗ = K[∗. Then

ψ[∗λ OPn+1,perf

K[
(1) ∼= ψ[∗ξ OPn+1,perf

K[
(1).

Proof. Let τ : Pn+1,perf
K → Pn+1,perf

K be the map determined by
(
O(1/pi),

{
T

1/pi

0 , · · · , T 1/pi

n , γiξi T
1/pi

n+1

}
,mi

)
.

Then τ is an isomorphism, and τ [ is the map determined by O(1) and T0, · · · , Tn, γξ Tn+1. We have the
following two commutative diagrams, the right hand diagram being the tilt of the left.
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Pn+1,perf
K Pn+1,perf

K[

X X[

Pn+1,perf
K Pn+1,perf

K[

τ τ[

ψλ

ψξ

ψ[λ

ψ[ξ

Since τ [∗O(1) = O(1), we are done.

Putting these three lemmas together, we conclude that

φ[∗OPn,perf

K[
(1) ∼= ψ[∗1 OPn+1,perf

K[
(1).

Indeed, the pullback of O(1) along ψ[1 agrees with the pullback along ψ($[)r , for any r, but this agrees with

the restriction of φ[∗OPn,perf

K[
(1) to V [

($[)r
for any r. Since these sets cover X[, we are done.

In summary, we have proved the following proposition.

Proposition 9.10
Let

(
Li, s

(i)
j , αi

)
∈ Ln(X), correspond to a map φ : X → Pn,perf

K . Suppose ti ∈ Γ(X,Li) is a global

section such that αi
(
t⊗pi+1

)
= ti, and let ψ : X → Pn+1

K be the map associated to
(
Li, {s(i)

j , ti}, αi
)
∈

Ln+1(X). Then
φ[∗OPn,perf

K[
(1) ∼= ψ[∗OPn+1,perf

K[
(1).

Adding sections one at a time by induction completes the proof of Proposition 9.6.

9.3 Injectivity of θ

With these tools in hand, we can prove the injectivity of θ for certain perfectoid spaces X. We will first need
one more lemma.

Lemma 9.11
Let

(
Li, s

(i)
j , αi

)
∈ Ln(X) correspond to a map φ : X → Pn,perf

K . Fix λ = (λ0, λ1, · · · ) ∈ Γ(X,O[∗
X ),

that is, λpi+1 = λi, so that
(
Li, λis

(i)
0 , λiαi

)
∈ Ln(X) corresponds to a map ψ : X → PnK . Then φ = ψ.

Proof. We can prove this in two ways.

In the proof of Theorem 8.6, we built φ from ring maps γj :
T

1/pi

k

T
1/pi

j

7→ s
(i)
k

s
(i)
j

, and ψ from ring maps

γ′j :
T

1/pi

k

T
1/pi

j

7→ λis
(i)
k

λis
(i)
j

=
s
(i)
k

s
(i)
j

. Since γj = γ′j , we have φ = ψ.

Alternatively, notice that multiplication by λi for each i gives us an isomorphism
(
Li, s

(i)
j , αi

)
∼−→(

Li, λis
(i)
0 , λiαi

)
in Ln(X). Then we are done by Theorem 8.6.

Before we state the main theorem we make the following definition.

Definition 9.12. A line bundle L on a perfectoid space X is said to be weakly ample if for any other line
bundle M , there is some N >> 0 such that for all r > N we have M ⊗L r globally generated.
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Theorem 9.13
Suppose X is a perfectoid space over K. Suppose that X has a weakly ample line bundle and that

H0(XK ,OXK ) = K, where K is a fixed algebraic closure of K. Then

θ : PicX[ ↪→ lim
←−

L 7→L p

PicX.

In particular, if PicX has no p torsion, then

θ0 : PicX[ ↪→ PicX.

Proof. Fix L ,M ∈ PicX[ with θ(L ) = θ(M ). We first reduce to the case that L ,M are globally generated.
Indeed, letting F be a weakly ample line bundle, we have θ(L ⊗FN ) = θ(M ⊗FN ). If the result
holds for globally generated line bundles, for large enough N we conclude that L ⊗FN ∼= M ⊗FN

so that L ∼= M .

Next we prove it for the case where K contains all pth power roots for all its elements. Choose
generating sections s0, · · · , sn for L and t0, · · · , tr of M , which give us maps

φ[ : X[ −→ Pn,perf
K[ ,

and
ψ[ : X[ −→ Pr,perf

K[ ,

respectively. These untilt to
φ : X −→ Pn,perf

K ,

and
ψ : X −→ Pr,perf

K ,

which in turn correspond to tuples
(
Li, s

(i)
j , αi

)
∈ Ln(X) and

(
Li, t

(i)
j , βi

)
∈ Lr(X). Notice that αi

and βi differ by an element

λi ∈ Isom(Li,Li) = Γ(X,O∗X) = K∗.

That is, αi = λiβi. Choose pth power roots λ
1/pj

i for each i, j (these exist by assumption), and for all
j define:

t̃
(0)
j = t

(0)
j

t̃
(1)
j = λ

−1/p
0 t

(1)
j

t̃
(2)
j = λ

−1/p
1 λ

−1/p2

0 t
(2)
j

...

t̃
(i+1)
j = λ

−1/p
i λ

−1/p2

i−1 · · ·λ−1/pi+1

0 t
(i+1)
j

...

Then

αi

((
t̃
(i+1)
j

)⊗p)
= λiβi

((
λ
−1/p
i λ

−1/p2

i−1 · · ·λ−1/pi+1

0 t
(i+1)
j

)⊗p)
= λiλ

−1
i λ

1/p
i−1 · · ·λ

1/pi

0 β

((
t
(i+1)
j

)⊗p)
= λ

1/p
i−1 · · ·λ

1/pi

0 t
(i)
j

= t̃
(i)
j .
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Therefore the tuple (Li, t̃
(i)
j , αi) ∈ Ln(X), and it also corresponds to ψ by Lemma 9.11. Furthermore,

the isomorphisms corresponding to this data are now αi in both cases, so that by Proposition 9.6

L = φ[∗OPn,perf

K[
(1) ∼= ψ[∗OPn,perf

K[
(1) = M .

For the general case, we let L/K be the extension given by adjoining all pth power roots of all elements
of K. We have the following diagram.

PicX[
L lim

←−
PicXL

PicX[ lim
←−

PicX

θL

θ

θL injects by the argument we just made. Furthermore, since X[
L → X[ is a pro-étale cover of pth

power degree, the kernel of PicX[ → PicX[
L is pth power torsion. Since X[ is perfect, PicX[ has no

pth power torsion, so the map injects. Therefore θ injects.

Open Problem 9.14
In which contexts does θ surject?
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Math. 307, 2 (1988), 83–86.

[25] Lütkebohmert, W. Vektorraumbündel über nichtarchimedischen holomorphen Räumen. Math. Z. 152,
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