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Traditional notations for partial derivatives become rather cumbersome for derivatives
of order higher than two, and they make it rather difficult to write Taylor’s theorem in an
intelligible fashion. (In particular, Apostol’s Dr1,...,rk is pretty ghastly.) However, a better
notation, which is now in common usage in the literature of partial differential equations, is
available.

A multi-index is an n-tuple of nonnegative integers. Multi-indices are generally denoted
by the Greek letters α or β:

α = (α1, α2, . . . , αn), β = (β1, β2, . . . , βn)
(
αj, βj ∈ {0, 1, 2, . . .}

)
.

If α is a multi-index, we define

|α| = α1 + α2 + · · ·+ αn, α! = α1!α2! · · ·αn!,

xα = xα1
1 x

α2
2 · · ·xαn

n (where x = (x1, x2, . . . , xn) ∈ Rn),

∂αf = ∂α1
1 ∂α2

2 · · · ∂αn
n f =

∂|α|f

∂xα1
1 ∂x

α2
2 · · · ∂xαn

n

The number |α| = α1 + · · ·+ αn is called the order or degree of α. Thus, the order of α is
the same as the order of xα as a monomial or the order of ∂α as a partial derivative.

If f is a function of class Ck, by Theorem 12.13 and the discussion following it the order
of differentiation in a kth-order partial derivative of f is immaterial. Thus, the generic
kth-order partial derivative of f can be written simply as ∂αf with |α| = k.

Example. With n = 3 and x = (x, y, z), we have

∂(0,3,0)f =
∂3f

∂y3
, ∂(1,0,1)f =

∂2f

∂x∂z
, x(2,1,5) = x2yz5.

As the notation xα indicates, multi-indices are handy for writing not only derivatives but
also polynomials in several variables. To illustrate their use, we present a generalization of
the binomial theorem.

Theorem 1 (The Multinomial Theorem). For any x = (x1, x2, . . . xn) ∈ Rn and any positive
integer k,

(x1 + x2 + · · ·+ xn)k =
∑
|α|=k

k!

α!
xα.

Proof. The case n = 2 is just the binomial theorem:

(x1 + x2)
k =

k∑
j=0

k!

j!(k − j)!
xj1x

k−j
2 =

∑
α1+α2=k

k!

α1!α2!
xα1

1 x
α2
2 =

∑
|α|=k

k!

α!
xα,
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where we have set α1 = j, α2 = k − j, and α = (α1, α2). The general case follows by
induction on n. Suppose the result is true for n < N and x = (x1, . . . , xN). By using the
result for n = 2 and then the result for n = N − 1, we obtain

(x1 + · · ·+ xN)k =
[
(x1 + · · ·+ xN−1) + xN

]k
=
∑
i+j=k

k!

i!j!
(x1 + · · ·+ xN−1)

ixjN

=
∑
i+j=k

k!

i!j!

∑
|β|=i

i!

β!
x̃βxjN ,

where β = (β1, . . . , βN−1) and x̃ = (x1, . . . , xN−1). To conclude, we set α = (β1, . . . , βN−1, j),
so that β!j! = α! and x̃βxjN = xα. Observing that α runs over all multi-indices of order k
when β runs over all multi-indices of order i = k − j and j runs from 0 to k, we obtain∑
|α|=k k!xα/α!.

A similar argument leads to the product rule for higher-order partial derivatives:

∂α(fg) =
∑

β+γ=α

α!

β!γ!
(∂βf)(∂γg).

The proof is by induction on the number n of variables, the base case n = 1 being the
higher-order product rule in your Assignment 1.

We now turn to Taylor’s theorem for functions of several variables. We consider only
scalar-valued functions for simplicity; the generalization to vector-valued functions is straight-
forward.

Suppose f : Rn → R is of class Ck on a convex open set S. We can derive a Taylor
expansion for f(x) about a point a ∈ S by looking at the restriction of f to the line joining
a and x. That is, we set h = x− a and

g(t) = f(a + t(x− a)) = f(a + th).

By the chain rule,
g′(t) = h · ∇f(a + th),

and hence
g(j)(t) = (h · ∇)jf(a + th),

where the expression on the right denotes the result of applying the directional derivative

h · ∇ = h1
∂

∂x1

+ · · ·+ hn
∂

∂xn
(1)

j times to f . The Taylor formula for g with a = 0 and h = 1,

g(1) =
k∑
0

g(j)(0)

j!
1j + (remainder),
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therefore yields

f(a + h) =
k∑
0

(h · ∇)jf(a)

j!
+Ra,k(h), (2)

where formulas for Ra,k(h) can be obtained from the Lagrange or integral formulas for
remainders, applied to g.

It is usually preferable, however, to rewrite (2) and the accompanying formulas for the
remainder so that the partial derivatives of f appear more explicitly. To do this, we apply
the multinomial theorem to the expression (1) to get

(h · ∇)j =
∑
|α|=j

j!

α!
hα∂α.

Substituting this into (2) and the remainder formulas, we obtain the following:

Theorem 2 (Taylor’s Theorem in Several Variables). Suppose f : Rn → R is of class Ck+1

on an open convex set S. If a ∈ S and a + h ∈ S, then

f(a + h) =
∑
|α|≤k

∂αf(a)

α!
hα +Ra,k(h), (3)

where the remainder is given in Lagrange’s form by

Ra,k(h) =
∑
|α|=k+1

∂αf(a + ch)
hα

α!
for some c ∈ (0, 1). (4)

and in integral form by

Ra,k(h) = (k + 1)
∑
|α|=k+1

hα

α!

∫ 1

0

(1− t)k∂αf(a + th) dt. (5)

This result bears a pleasing similarity to the single-variable formulas — a triumph for
multi-index notation! It may be reassuring, however, to see the formula for the second-order
Taylor polynomial written out in the more familiar notation:

Pa,2(h) = f(a) +
n∑
j=1

∂jf(a)hj +
1

2

n∑
j,k=1

∂j∂kf(a)hjhk (6)

= f(a) +
n∑
1

∂jf(a)hj +
1

2

n∑
j=1

∂2
j f(a)h2

j +
∑

1≤j<k≤n

∂j∂kf(a)hjhk. (7)

The first of these formulas is (2) with k = 2; the second one is (3). (Every multi-index α
of order 2 is either of the form (. . . , 2, . . .) or (. . . , 1, . . . , 1, . . .), where the dots denote zero
entries, so the sum over |α| = 2 in (3) breaks up into the last two sums in (7).) Notice that
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the mixed derivatives ∂j∂k (j 6= k) occur twice in (6) (since ∂j∂k = ∂k∂j) but only once in
(7) (since j < k there); this accounts for the disappearance of the factor of 1

2
in the last sum

in (7).
As in the one-variable case, the following estimate for the remainder term follows from

the Lagrange or integral formulas for it:

Corollary 1. If f is of class Ck+1 on S and |∂αf(x)| ≤M for x ∈ S and |α| = k + 1, then

|Ra,k(h)| ≤ M

(k + 1)!
‖h‖k+1,

where
‖h‖ = |h1|+ |h2|+ · · ·+ |hn|.

Proof. It follows easily from either (5) or (4) that

|Ra,k(h)| ≤M
∑
|α|=k+1

|hα|
α!

,

and this last expression equals M‖h‖k+1/(k + 1)! by the multinomial theorem.

As in the one-variable case, the Taylor polynomial
∑
|α|≤k(∂

αf(a)/α!)(x − a)α is the

only polynomial of degree ≤ k that agrees with f(x) to order k at x − a, so the same
algebraic devices are available to derive Taylor expansions of complicated functions from
Taylor expansions of simpler ones.

Example. Find the 3rd-order Taylor polynomial of f(x, y) = ex
2+y about (x, y) = (0, 0).

Solution. The direct method is to calculate all the partial derivatives of f of order ≤ 3
and plug the results into (3), but only a masochist would do this. Instead, use the familiar
expansion for the exponential function, neglecting all terms of order higher than 3:

ex
2+y = 1 + (x2 + y) + 1

2
(x2 + y)2 + 1

6
(x2 + y)3 + (order > 3)

= 1 + x2 + y + 1
2
(x4 + 2x2y + y2) + 1

6
(x6 + 3x4y + 3x2y2 + y3)

+ (order > 3)

= 1 + y + x2 + 1
2
y2 + x2y + 1

6
y3 + (order > 3).

In the last line we have thrown the terms x4, x6, x4y, and x2y2 into the garbage pail, since
they are themselves of order > 3. Thus the answer is 1+y+x2+ 1

2
y2+x2y+ 1

6
y3. Alternatively,

ex
2+y = ex

2

ey = (1 + x2 + · · · )(1 + y + 1
2
y2 + 1

6
y3 + · · · )

= 1 + y + x2 + 1
2
y2 + x2y + 1

6
y3 + · · ·

where the dots indicate terms of order > 3.

4


