Since Apostol talks about vector-valued functions right away, whereas I prefer to work with scalar-valued functions for a while and proceed to the vector-valued case later, there are some places where the way he says things is at variance with the way I do. This is a little guide to help you with translating one into the other. In what follows, all functions are real-valued, defined on \(\mathbb{R}^n \) or an open subset of \(\mathbb{R}^n \), unless explicitly described otherwise.

Directional Derivatives (Definition 12.1): The derivative of \(f \) at \(c \) in the direction \(u \) is

\[
f'(c; u) = \lim_{h \to 0} \frac{f(c + hu) - f(c)}{h} = \frac{d}{dt}f(c + tu) \bigg|_{t=0}.
\]

Partial derivatives: The partial derivatives of \(f \) are the directional derivatives in the directions of the unit coordinate vectors:

\[
D_j f(c) = \frac{\partial f}{\partial x_j}(c) = f'(c, e_j),
\]

where \(e_j \) is the vector whose \(j \)th component is 1 and whose other components are 0. (When \(n = 3 \), \(e_1, e_2, e_3 \) are often called \(i, j, k \).)

Differentiability, Total Derivatives, Gradients (Definition 12.2): The function \(f \) is differentiable at \(c \) if there is a vector \(a \) such that

\[
f(c + v) = f(c) + a \cdot v + o(\|v\|),
\]

in which case the vector \(a \) is called the gradient of \(f \) at \(c \) and is denoted by \(\nabla f(c) \). The total derivative of \(f \) at \(c \) is the linear function that maps the vector \(v \) to the number \(\nabla f(c) \cdot v \). Apostol denotes it by \(f'(c) \); thus, \(f'(c)(v) = \nabla f(c) \cdot v \). (Other people have different notations for the total derivative, and it’s also called the differential or Fréchet derivative of \(f \).)

Theorems 12.3 and 12.5: If \(f \) is differentiable at \(c \), its directional derivatives at \(c \) all exist and are given by \(f'(c, u) = \nabla f(c) \cdot u \). In particular, taking \(u = e_j \), we see that the partial derivative \(D_j f(c) \) is the \(j \)th component of \(\nabla f(c) \); that is, \(\nabla f(c) \) is the vector whose components are the partial derivatives of \(f \) at \(c \).

These results are not reversible: the existence of the partial derivatives \(D_j f(c) \) does not guarantee the differentiability (or even continuity) of \(f \) at \(c \). But:

Theorem 12.11: If the partial derivatives \(D_j f (1 \leq j \leq n) \) exist and are continuous on some open set containing \(c \), then \(f \) is differentiable at \(c \). (Apostol notes that it’s enough for all but one of the partial derivatives to be continuous, but that is a minor technicality. The statement just given is easier to remember and much more important in practice.)

If the partial derivatives \(D_j f \) exist and are continuous on some open set \(U \), we say that \(f \) is of class \(C^1 \) on \(U \), or that \(f \) is a \(C^1 \) function on \(U \), or that \(f \in C^1(U) \). Thus, if \(f \) is of class \(C^1 \) on \(U \) then \(f \) is differentiable at every point of \(U \).
Next we come to the chain rule, for which we do have to consider vector-valued functions. But for the basic version we need only vector-valued functions of a scalar variable, which were introduced back in Chapter 5.

Chain Rule, first version (special case of Theorem 12.7): Suppose \(g: \mathbb{R} \to \mathbb{R}^n \) is differentiable at \(a \) and \(f: \mathbb{R}^n \to \mathbb{R} \) is differentiable at \(b = g(a) \). Then \(h = f \circ g \) is differentiable at \(a \), and

\[
h'(a) = \nabla f(b) \cdot g'(a).
\]

If we now make \(g \) a function of several variables, we can apply this result to the function of one of the variables obtained by fixing all the others, and thereby get a result about partial derivatives:

Chain Rule, second version (another corollary of Theorem 12.7): Suppose \(g: \mathbb{R}^k \to \mathbb{R}^n \) is differentiable at \(a \) and \(f: \mathbb{R}^n \to \mathbb{R} \) is differentiable at \(b = g(a) \). Then the partial derivatives of \(h = f \circ g \) at \(a \) exist and are given by

\[
D_j h(a) = \nabla f(b) \cdot D_j g(a).
\]

In particular, if \(g \) is of class \(C^1 \) on an open set \(U \) and \(f \) is of class \(C^1 \) on an open set \(V \) that includes \(g(U) \), then \(h \) is of class \(C^1 \) (and hence is differentiable) on \(U \).

We’ll get the chain rule in its full glory when we consider vector-valued functions more systematically. For now, here’s one more important result:

Mean Value Theorem (Theorem 12.9): Suppose \(f \) is differentiable on an open set \(U \), and \(x \) and \(y \) are two points in \(U \) such that the line segment joining \(x \) and \(y \) lies in \(U \). Then there is some point \(z \) on this line segment such that

\[
f(y) - f(x) = \nabla f(z) \cdot (y - x).
\]