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Since Apostol talks about vector-valued functions right away, whereas I prefer to work
with scalar-valued functions for a while and proceed to the vector-valued case later, there
are some places where the way he says things is at variance with the way I do. This is a
little guide to help you with translating one into the other. In what follows, all functions are
real-valued, defined on Rn or an open subset of Rn, unless explicitly described otherwise.

Directional Derivatives (Definition 12.1): The derivative of f at c in the direction u is

f ′(c; u) = lim
h→0

f(c + hu)− f(c)

h
=

d

dt
f(c + tu)

∣∣∣∣
t=0

.

Partial derivatives : The partial derivatives of f are the directional derivatives in the
directions of the unit coordinate vectors:

Djf(c) = ∂jf(c) =
∂f

∂xj

(c) = f ′(c, ej),

where ej is the vector whose jth component is 1 and whose other components are 0. (When
n = 3, e1, e2, e3 are often called i, j, k.)

Differentiability, Total Derivatives, Gradients (Definition 12.2): The function f is differ-
entiable at c if there is a vector a such that

f(c + v) = f(c) + a · v + o(‖v‖),

in which case the vector a is called the gradient of f at c and is denoted by ∇f(c). The total
derivative of f at c is the linear function that maps the vector v to the number ∇f(c) · v.
Apostol denotes it by f ′(c); thus, f ′(c)(v) = ∇f(c)·v. (Other people have different notations
for the total derivative, and it’s also called the differential or Fréchet derivative of f .)

Theorems 12.3 and 12.5 : If f is differentiable at c, its directional derivatives at c all
exist and are given by f ′(c, u) = ∇f(c) · u. In particular, taking u = ej, we see that the
partial derivative Djf(c) is the jth component of ∇f(c); that is, ∇f(c) is the vector whose
components are the partial derivatives of f at c.

These results are not reversible: the existence of the partial derivatives Djf(c) does not
guarantee the differentiability (or even continuity) of f at c. But:

Theorem 12.11 : If the partial derivatives Djf (1 ≤ j ≤ n) exist and are continuous on
some open set containing c, then f is differentiable at c. (Apostol notes that it’s enough for
all but one of the partial derivatives to be continuous, but that is a minor technicality. The
statement just given is easier to remember and much more important in practice.)

If the partial derivatives Djf exist and are continuous on some open set U , we say that
f is of class C1 on U , or that f is a C1 function on U , or that f ∈ C1(U). Thus, if f is of
class C1 on U then f is differentiable at every point of U .
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Next we come to the chain rule, for which we do have to consider vector-valued functions.
But for the basic version we need only vector-valued functions of a scalar variable, which
were introduced back in Chapter 5.

Chain Rule, first version (special case of Theorem 12.7): Suppose g : R → Rn is differ-
entiable at a and f : Rn → R is differentiable at b = g(a). Then h = f ◦ g is differentiable
at a, and

h′(a) = ∇f(b) · g′(a).

If we now make g a function of several variables, we can apply this result to the function
of one of the variables obtained by fixing all the others, and thereby get a result about partial
derivatives:

Chain Rule, second version (another corollary of Theorem 12.7): Suppose g : Rk → Rn is
differentiable at a and f : Rn → R is differentiable at b = g(a). Then the partial derivatives
of h = f ◦ g at a exist and are given by

Djh(a) = ∇f(b) ·Djg(a).

In particular, if g is of class C1 on an open set U and f is of class C1 on an open set V that
includes g(U), then h is of class C1 (and hence is differentiable) on U .

We’ll get the chain rule in its full glory when we consider vector-valued functions more
systematically. For now, here’s one more important result:

Mean Value Theorem (Theorem 12.9): Suppose f is differentiable on an open set U , and
x and y are two points in U such that the line segment joining x and y lies in U . Then there
is some point z on this line segment such that

f(y)− f(x) = ∇f(z) · (y − x).
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