Differential Calculus of Real-Valued Functions: A Brief Guide G. B. Folland

Since Apostol talks about vector-valued functions right away, whereas I prefer to work with scalar-valued functions for a while and proceed to the vector-valued case later, there are some places where the way he says things is at variance with the way I do. This is a little guide to help you with translating one into the other. In what follows, all functions are real-valued, defined on \mathbb{R}^n or an open subset of \mathbb{R}^n , unless explicitly described otherwise.

Directional Derivatives (Definition 12.1): The derivative of f at \mathbf{c} in the direction \mathbf{u} is

$$f'(\mathbf{c};\mathbf{u}) = \lim_{h \to 0} \frac{f(\mathbf{c} + h\mathbf{u}) - f(\mathbf{c})}{h} = \frac{d}{dt} f(\mathbf{c} + t\mathbf{u}) \bigg|_{t=0}.$$

Partial derivatives: The partial derivatives of f are the directional derivatives in the directions of the unit coordinate vectors:

$$D_j f(\mathbf{c}) = \partial_j f(\mathbf{c}) = \frac{\partial f}{\partial x_j}(\mathbf{c}) = f'(\mathbf{c}, \mathbf{e}_j),$$

where \mathbf{e}_j is the vector whose *j*th component is 1 and whose other components are 0. (When $n = 3, \mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$ are often called $\mathbf{i}, \mathbf{j}, \mathbf{k}$.)

Differentiability, Total Derivatives, Gradients (Definition 12.2): The function f is differentiable at **c** if there is a vector **a** such that

$$f(\mathbf{c} + \mathbf{v}) = f(\mathbf{c}) + \mathbf{a} \cdot \mathbf{v} + o(\|\mathbf{v}\|),$$

in which case the vector **a** is called the *gradient* of f at **c** and is denoted by $\nabla f(\mathbf{c})$. The *total* derivative of f at **c** is the linear function that maps the vector **v** to the number $\nabla f(\mathbf{c}) \cdot \mathbf{v}$. Apostol denotes it by $f'(\mathbf{c})$; thus, $f'(\mathbf{c})(\mathbf{v}) = \nabla f(\mathbf{c}) \cdot \mathbf{v}$. (Other people have different notations for the total derivative, and it's also called the *differential* or *Fréchet derivative* of f.)

Theorems 12.3 and 12.5: If f is differentiable at \mathbf{c} , its directional derivatives at \mathbf{c} all exist and are given by $f'(\mathbf{c}, \mathbf{u}) = \nabla f(\mathbf{c}) \cdot \mathbf{u}$. In particular, taking $\mathbf{u} = \mathbf{e}_j$, we see that the partial derivative $D_j f(\mathbf{c})$ is the *j*th component of $\nabla f(\mathbf{c})$; that is, $\nabla f(\mathbf{c})$ is the vector whose components are the partial derivatives of f at \mathbf{c} .

These results are not reversible: the existence of the partial derivatives $D_j f(\mathbf{c})$ does not guarantee the differentiability (or even continuity) of f at \mathbf{c} . But:

Theorem 12.11: If the partial derivatives $D_j f$ $(1 \le j \le n)$ exist and are continuous on some open set containing **c**, then f is differentiable at **c**. (Apostol notes that it's enough for all but one of the partial derivatives to be continuous, but that is a minor technicality. The statement just given is easier to remember and much more important in practice.)

If the partial derivatives $D_j f$ exist and are continuous on some open set U, we say that f is of class C^1 on U, or that f is a C^1 function on U, or that $f \in C^1(U)$. Thus, if f is of class C^1 on U then f is differentiable at every point of U.

Next we come to the chain rule, for which we do have to consider vector-valued functions. But for the basic version we need only vector-valued functions of a scalar variable, which were introduced back in Chapter 5.

Chain Rule, first version (special case of Theorem 12.7): Suppose $\mathbf{g} : \mathbb{R} \to \mathbb{R}^n$ is differentiable at a and $f : \mathbb{R}^n \to \mathbb{R}$ is differentiable at $\mathbf{b} = \mathbf{g}(a)$. Then $h = f \circ \mathbf{g}$ is differentiable at a, and

$$h'(a) = \nabla f(\mathbf{b}) \cdot \mathbf{g}'(a).$$

If we now make \mathbf{g} a function of several variables, we can apply this result to the function of one of the variables obtained by fixing all the others, and thereby get a result about partial derivatives:

Chain Rule, second version (another corollary of Theorem 12.7): Suppose $\mathbf{g} : \mathbb{R}^k \to \mathbb{R}^n$ is differentiable at \mathbf{a} and $f : \mathbb{R}^n \to \mathbb{R}$ is differentiable at $\mathbf{b} = \mathbf{g}(\mathbf{a})$. Then the partial derivatives of $h = f \circ \mathbf{g}$ at \mathbf{a} exist and are given by

$$D_j h(\mathbf{a}) = \nabla f(\mathbf{b}) \cdot D_j \mathbf{g}(\mathbf{a}).$$

In particular, if **g** is of class C^1 on an open set U and f is of class C^1 on an open set V that includes $\mathbf{g}(U)$, then h is of class C^1 (and hence is differentiable) on U.

We'll get the chain rule in its full glory when we consider vector-valued functions more systematically. For now, here's one more important result:

Mean Value Theorem (Theorem 12.9): Suppose f is differentiable on an open set U, and \mathbf{x} and \mathbf{y} are two points in U such that the line segment joining \mathbf{x} and \mathbf{y} lies in U. Then there is some point \mathbf{z} on this line segment such that

$$f(\mathbf{y}) - f(\mathbf{x}) = \nabla f(\mathbf{z}) \cdot (\mathbf{y} - \mathbf{x}).$$