Differential Calculus of Real-Valued Functions: A Brief Guide G. B. Folland

Since Apostol talks about vector-valued functions right away, whereas I prefer to work with scalar-valued functions for a while and proceed to the vector-valued case later, there are some places where the way he says things is at variance with the way I do. This is a little guide to help you with translating one into the other. In what follows, all functions are real-valued, defined on \mathbb{R}^{n} or an open subset of \mathbb{R}^{n}, unless explicitly described otherwise.

Directional Derivatives (Definition 12.1): The derivative of f at \mathbf{c} in the direction \mathbf{u} is

$$
f^{\prime}(\mathbf{c} ; \mathbf{u})=\lim _{h \rightarrow 0} \frac{f(\mathbf{c}+h \mathbf{u})-f(\mathbf{c})}{h}=\left.\frac{d}{d t} f(\mathbf{c}+t \mathbf{u})\right|_{t=0}
$$

Partial derivatives: The partial derivatives of f are the directional derivatives in the directions of the unit coordinate vectors:

$$
D_{j} f(\mathbf{c})=\partial_{j} f(\mathbf{c})=\frac{\partial f}{\partial x_{j}}(\mathbf{c})=f^{\prime}\left(\mathbf{c}, \mathbf{e}_{j}\right)
$$

where \mathbf{e}_{j} is the vector whose j th component is 1 and whose other components are 0 . (When $n=3, \mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$ are often called $\mathbf{i}, \mathbf{j}, \mathbf{k}$.)

Differentiability, Total Derivatives, Gradients (Definition 12.2): The function f is differentiable at \mathbf{c} if there is a vector a such that

$$
f(\mathbf{c}+\mathbf{v})=f(\mathbf{c})+\mathbf{a} \cdot \mathbf{v}+o(\|\mathbf{v}\|)
$$

in which case the vector \mathbf{a} is called the gradient of f at \mathbf{c} and is denoted by $\nabla f(\mathbf{c})$. The total derivative of f at \mathbf{c} is the linear function that maps the vector \mathbf{v} to the number $\nabla f(\mathbf{c}) \cdot \mathbf{v}$. Apostol denotes it by $f^{\prime}(\mathbf{c})$; thus, $f^{\prime}(\mathbf{c})(\mathbf{v})=\nabla f(\mathbf{c}) \cdot \mathbf{v}$. (Other people have different notations for the total derivative, and it's also called the differential or Fréchet derivative of f.)

Theorems 12.3 and 12.5: If f is differentiable at \mathbf{c}, its directional derivatives at \mathbf{c} all exist and are given by $f^{\prime}(\mathbf{c}, \mathbf{u})=\nabla f(\mathbf{c}) \cdot \mathbf{u}$. In particular, taking $\mathbf{u}=\mathbf{e}_{j}$, we see that the partial derivative $D_{j} f(\mathbf{c})$ is the j th component of $\nabla f(\mathbf{c})$; that is, $\nabla f(\mathbf{c})$ is the vector whose components are the partial derivatives of f at \mathbf{c}.

These results are not reversible: the existence of the partial derivatives $D_{j} f(\mathbf{c})$ does not guarantee the differentiability (or even continuity) of f at \mathbf{c}. But:

Theorem 12.11: If the partial derivatives $D_{j} f(1 \leq j \leq n)$ exist and are continuous on some open set containing \mathbf{c}, then f is differentiable at \mathbf{c}. (Apostol notes that it's enough for all but one of the partial derivatives to be continuous, but that is a minor technicality. The statement just given is easier to remember and much more important in practice.)

If the partial derivatives $D_{j} f$ exist and are continuous on some open set U, we say that f is of class C^{1} on U, or that f is a C^{1} function on U, or that $f \in C^{1}(U)$. Thus, if f is of class C^{1} on U then f is differentiable at every point of U.

Next we come to the chain rule, for which we do have to consider vector-valued functions. But for the basic version we need only vector-valued functions of a scalar variable, which were introduced back in Chapter 5.

Chain Rule, first version (special case of Theorem 12.7): Suppose $\mathbf{g}: \mathbb{R} \rightarrow \mathbb{R}^{n}$ is differentiable at a and $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is differentiable at $\mathbf{b}=\mathbf{g}(a)$. Then $h=f \circ \mathbf{g}$ is differentiable at a, and

$$
h^{\prime}(a)=\nabla f(\mathbf{b}) \cdot \mathbf{g}^{\prime}(a) .
$$

If we now make \mathbf{g} a function of several variables, we can apply this result to the function of one of the variables obtained by fixing all the others, and thereby get a result about partial derivatives:

Chain Rule, second version (another corollary of Theorem 12.7): Suppose $\mathbf{g}: \mathbb{R}^{k} \rightarrow \mathbb{R}^{n}$ is differentiable at a and $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is differentiable at $\mathbf{b}=\mathbf{g}(\mathbf{a})$. Then the partial derivatives of $h=f \circ \mathbf{g}$ at \mathbf{a} exist and are given by

$$
D_{j} h(\mathbf{a})=\nabla f(\mathbf{b}) \cdot D_{j} \mathbf{g}(\mathbf{a}) .
$$

In particular, if \mathbf{g} is of class C^{1} on an open set U and f is of class C^{1} on an open set V that includes $\mathbf{g}(U)$, then h is of class C^{1} (and hence is differentiable) on U.

We'll get the chain rule in its full glory when we consider vector-valued functions more systematically. For now, here's one more important result:

Mean Value Theorem (Theorem 12.9): Suppose f is differentiable on an open set U, and \mathbf{x} and \mathbf{y} are two points in U such that the line segment joining \mathbf{x} and \mathbf{y} lies in U. Then there is some point \mathbf{z} on this line segment such that

$$
f(\mathbf{y})-f(\mathbf{x})=\nabla f(\mathbf{z}) \cdot(\mathbf{y}-\mathbf{x})
$$

