
Determinants, Matrix Norms, Inverse Mapping Theorem
G. B. Folland

The purpose of this notes is to present some useful facts about matrices and determinants
and a proof of the inverse mapping theorem that is rather different from the one in Apostol.

Notation: Mn(R) denotes the set of all n× n real matrices.

Determinants: If A ∈ Mn(R), we can consider the rows of A: r1, . . . , rn. These are
elements of Rn, considered as row vectors. Conversely, given n row vectors r1, . . . , rn, we can
stack them up into an n× n matrix A. Thus we can think of a function f on matrix space
Mn(R) as a function of n Rn-valued variables or vice versa:

f(A)←→ f(r1, . . . , rn).

Basic Fact: There is a unique function det : Mn(R)→ R (the “determinant”) with the
following three properties:
i. det is a linear function of each row when the other rows are held fixed: that is,

det(αa + βb, r2, . . . , rn) = α det(a, r2, . . . , rn) + β det(b, r2, . . . , rn),

and likewise for the other rows.
ii. If two rows of A are interchanged, detA is multiplied by −1:

det(. . . , ri, . . . , rj, . . .) = − det(. . . , rj, . . . , ri, . . .).

iii. det(I) = 1, where I denotes the n× n identity matrix.

The uniqueness of the determinant follows from the discussion below; existence takes more
work to establish. We shall not present the proof here but give the formulas. For n = 2 and
n = 3 we have

det

(
a b
c d

)
= ad− bc, det

a b c
d e f
g h i

 = aei− afh+ bfg − bdi+ cdh− ceg.

For general n, detA =
∑

σ(sgnσ)A1σ(1)A2σ(2) · · ·Anσ(n), where the sum is over all permuta-
tions σ of {1, . . . , n}, and sgn σ is 1 or −1 depending on whether σ is obtained by an even
or odd number of interchanges of two numbers. (This formula is a computational nightmare
for large n, being a sum of n! terms, so it is of little use in practice. There are better ways
to compute determinants, as we shall see shortly.)

An important consequence of properties (i) and (ii) is

iv. If one row of A is the zero vector, or if two rows of A are equal, then detA = 0.

Properties (i), (ii), and (iv) tell how the determinant of a matrix behaves under the
elementary row operations:
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– Multiplying a row by a scalar multiplies the determinant by that scalar.
– Interchanging two rows multiplies the determinant by −1.
– Adding a multiple of one row to another row leaves the determinant unchanged, because

det(. . . , ri + αrj, . . . , rj, . . .) = det(. . . , ri, . . . , rj, . . .) + α det(. . . , rj, . . . , rj, . . .),

by (i), and the last term is zero by (iv).
This gives a reasonably efficient way to compute determinants. To wit, any n×n matrix

A can be row-reduced either to a matrix with an all-zero row (whose determinant is 0) or
to the identity matrix (whose determinant is 1). Just keep track of what happens to the
determinant as you perform these row operations, and you will have calculated detA. (There
are shortcuts for this procedure, but that’s another story. We’ll mostly be dealing with 2×2
and 3× 3 matrices, for which one can just use the explicit formulas above.)

This observation is also the key to the main theoretical significance of the determinant.
A matrix A is invertible — that is, the map f : Rn → Rn defined by f(x) = Ax is invertible,
where elements of Rn are considered as column vectors — if and only if A can be row-reduced
to the identity. Indeed, in this case, if one starts with the identity matrix I and performs the
same sequence of row operations on it that row-reduces A to I, the result is A−1. It follows
that A is invertible if and only if detA 6= 0.

If A is invertible, its inverse can be calculated in terms of determinants. Indeed, suppose
A ∈ Mn(R), and let Bij be the (n − 1) × (n − 1) matrix obtained by deleting the ith row
and jth column of A. Then the ijth entry of A−1 is given by

(A−1)ij = (−1)i+j
detBij

detA
.

This formula is computationally less efficient than calculating A−1 by row reduction, at
least when the size of A is large. However, it is theoretically important. In particular, it
shows explicitly how the condition detA 6= 0 comes into the picture, and since determinants
are polynomial functions of the entries of a matrix, it shows that the entries of A−1 are
continuous functions of the entries of A, as long as detA 6= 0.

By the way, there is nothing special about the real number system here. Everything
we have said works equally well if R is replaced by C, or indeed by any field (except that
the preceding remark about continuity only applies to fields where the notion of continuity
makes sense).

Matrix Norms: It is often desirable to have a notion of the “size” of a matrix, like the
norm or magnitude of a vector. One way to manufacture such a thing is simply to regard
the n2 entries of a matrix A ∈ Mn(R) as the components of a vector in Rn2

and take its
Euclidean norm. The resulting quantity is usually called the Hilbert-Schmidt norm of the
matrix; it can be denoted by ‖A‖HS:

‖A‖HS =

[ n∑
i,j=1

|Aij|2
]1/2

.
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However, if we think of a matrix as determining a linear transformation of Rn, namely
f(x) = Ax, it is often better to use a different norm that is more closely related to the action
of A on vectors. Namely, since the unit sphere {x : ‖x‖ = 1} in Rn is compact and the
function x 7→ ‖Ax‖ from Rn to R is continuous on it, it has a maximum value, which we
denote by ‖A‖op:

‖A‖op = max
‖x‖=1

‖Ax‖.

‖A‖op is called the operator norm of A (the term “linear operator” being a common synonym
for “linear transformation”). It is easy to check that both ‖A‖HS and ‖A‖op are indeed norms
on the vector space Mn(R) in the proper sense of the word; that is, they satisfy

‖cA‖ = |c| ‖A‖ (c ∈ R); ‖A+B‖ ≤ ‖A‖+ ‖B‖, ‖A‖ = 0 ⇐⇒ A = 0.

We observe that if x is any nonzero vector in Rn and u = x/‖x‖ is the corresponding
unit vector, then

‖Ax‖ =
∥∥A(‖x‖u)

∥∥ = ‖x‖‖Au‖ ≤ ‖x‖ ‖A‖op = ‖A‖op‖x‖,

with equality if x is the unit vector that achieves the maximum in the definition of ‖A‖op.
In other words, ‖A‖op is the smallest constant C such that ‖Ax‖ ≤ C‖x‖ for all x ∈ Rn.

This property of the operator norm makes it very handy for calculations involving the
magnitudes of vectors. On the other hand, it is often not easy to calculate ‖A‖op exactly in
terms of the entries of A. The Hilbert-Schmidt norm is easier to compute, so it is good to
know that the operator norm is no bigger than it:

‖A‖op ≤ ‖A‖HS.

(Equality is achieved for any matrix A with only one nonzero entry.) The reason is the
following: Let r1, . . . , rn be the rows of A; then the jth component of Ax is rj · x, so by the
Cauchy-Schwarz inequality,

‖Ax‖2 =
n∑
1

|(Ax)j|2 =
n∑
1

|(rj · x)|2 ≤
n∑
1

‖rj‖2‖x‖2 =
n∑
j=1

n∑
i=1

|Aij|2‖x‖2 = ‖A‖2HS‖x‖2.

There’s also an inequality going the other way. The jth column of A is Aej where ej is the
jth unit coordinate vector, so

‖A‖2HS =
n∑
j=1

‖Aej‖2 ≤
n∑
j=1

‖A‖2op‖ej‖2 = n‖A‖2op.

That is, ‖A‖HS ≤
√
n‖A‖op; equality is achieved when A is the identity matrix.

The operator and Hilbert-Schmidt norms both have the useful property that the norm
of a product is at most the product of the norms:

‖AB‖op ≤ ‖A‖op‖B‖op, ‖AB‖HS ≤ ‖A‖HS‖B‖HS.
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For the operator norm this follows from the simple calculation

‖ABx‖ ≤ ‖A‖op‖Bx‖ ≤ ‖Aop‖B‖op‖x‖,

and for the Hilbert-Schmidt norm it comes from the fact that the ijth entry of AB is the
dot product of the ith row of A with the jth column of B together with the Cauchy-Schwarz
inequality; details are left to the reader.

The Inverse Mapping Theorem (or Inverse Function Theorem): This is Theorem
13.6 in Apostol. Rather than going through the proof there, which depends on a series of
preliminary results (Theorems 13.2–13.5), I’m going to present the proof in Rudin’s Princi-
ples of Mathematical Analysis, which is perhaps more elegant and certainly shorter. It uses
the following three lemmas. In them, and throughout this proof, the norm of a matrix is
always understood to be the operator norm.

Lemma 1 (The Mean Value Inequality). Let U be an open convex set in Rn, and let f : U →
Rm be differentiable everywhere on U . If ‖Df(z)‖ ≤ C for all z ∈ U , then ‖f(y)− f(x)‖ ≤
C‖y − x‖ for all x,y ∈ U .

This follows from Theorem 12.9 of Apostol by taking a to be the unit vector in the
direction of f(y)− f(x):

‖f(y)− f(x)‖ = a · [f(y)− f(x)] = a · [(Df(z))(y− x)] ≤ ‖a‖ ‖Df(z)‖ ‖y− x‖ ≤ C‖y− x‖.

Lemma 2 (The Fixed Point Theorem for Contractions). Let (M,d) be a complete met-
ric space, and let φ : M → M be a map such that for some constant c < 1 we have
d(φ(x), φ(y)) ≤ cd(x, y) for all x, y ∈M . Then there is a unique x ∈M such that φ(x) = x.

This is Theorem 4.48 in Apostol.

Lemma 3. Suppose A ∈Mn(R) is invertible. If ‖B − A‖ < 1/‖A−1‖, then B is invertible.

Proof. Observe that B = A+ (B − A) = A[I + A−1(B − A)]. If x 6= 0, we have

‖A−1(B − A)x‖ ≤ ‖A−1‖ ‖B − A‖ ‖x‖ < ‖x‖;

hence A−1(B−A)x 6= −x; hence [I+A−1(B−A)]x 6= 0; hence Bx 6= 0 since A is invertible.
But for square matrices, invertibility is equivalent to the condition that {x : Bx = 0} = {0},
so B is invertible.

Theorem 1 (Inverse Mapping Theorem). Let f be a mapping of class C1 from an open
set S ⊂ Rn into Rn. Suppose that a is a point in S such that Df(a) is invertible, and let
b = f(a). Then there are open sets U and V in Rn with a ∈ U and b ∈ V such that f maps
U one-to-one onto V . Moreover, the inverse mapping g : V → U , defined by the condition
f(g(y)) = y for y ∈ V , is of class C1 on V , and Dg(y) = [Df(g(y))]−1.
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Proof. To simplify the notation, set A = Df(a); thus A is invertible. Given y ∈ Rn, define
a function φ : S → Rn by

φ(x) = x + A−1(y − f(x)). (1)

(We really should write φy instead of φ to indicate the dependence on y, but we won’t.)
The point of φ is that y = f(x) if and only if φ(x) = x, so solving f(x) = y amounts to
finding a fixed point of φ.

Since Df is continuous, there is an open ball U ⊂ S centered at a such that

‖Df(x)− A‖ ≤ 1

2‖A−1‖
for x ∈ U. (2)

Let V = f(U). To prove the first assertion of the theorem, we need to show that f is
one-to-one on U and that V is open. Since

Dφ(x) = I − A−1Df(x) = A−1(A−Df(x)),

we have ‖Dφ(x)‖ ≤ ‖A−1‖ ‖A−Df(x))‖ < 1
2
, and hence, by Lemma 1,

‖φ(x1)− φ(x2)‖ ≤ 1
2
‖x1 − x2‖ for x1,x2 ∈ U. (3)

It follows that f is one-to-one on U , for if f(x1) = y = f(x2) then x1 and x2 are both fixed
points of φ, so ‖x1 − x2‖ ≤ 1

2
‖x1 − x2‖, which is possible only if x1 = x2.

Now, to show that V is open, suppose y0 = f(x0) ∈ V , and let B be an open ball of
radius r centered at x0, where r is small enough so that B ⊂ U . We will show that y ∈ V
provided that ‖y − y0‖ < r/2‖A−1‖. Taking such a y as the y in (1), we have

‖φ(x0)− x0‖ = ‖A−1(y − y0)‖ ≤ ‖A−1‖ ‖y − y0‖ < 1
2
r.

Hence, by (3), if x ∈ B,

‖φ(x)− x0‖ ≤ ‖φ(x)− φ(x0)‖+ ‖φ(x0)− x0‖ < 1
2
‖x− x0‖+ 1

2
r ≤ r,

that is, φ(x) ∈ B. Thus φ maps B into itself, and by (3) it is a contraction on B since
B ⊂ U . Moreover, B is compact and hence complete. Hence, by Lemma 2, φ has a fixed
point x ∈ B. That is, there is an x ∈ B ⊂ U such that f(x) = y, and hence y ∈ f(U) = V ,
as claimed.

We have shown that f : U → V is invertible; we denote its inverse by g : V → U .
To prove the last assertion of the theorem, suppose y ∈ V and y + k ∈ V , and set

x = g(y) and h = g(y + k)− g(y); thus y = f(x) and y + k = f(x + h). Taking this y as
the y in (1), we have

φ(x + h)− φ(x) = h + A−1[f(x)− f(x + h)] = h− A−1k.

It follows from (3) that ‖h− A−1k‖ ≤ 1
2
‖h‖, so ‖A−1k‖ ≥ 1

2
‖h‖ and hence

‖h‖ ≤ 2‖A−1‖ ‖k‖. (4)
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By (2) and Lemma 3, Df(x) is invertible; let us denote its inverse by B. Since

g(y + k)− g(y)−Bk = (x + h)− x−Bk = −Bk + h = −B[f(x + h)− f(x)−Df(x)h],

(4) shows that

‖g(y + k)− g(y)−Bk‖
‖k‖

≤ 2‖B‖ ‖A−1‖‖f(x + h)− f(x)−Df(x)h‖
‖h‖

.

Now let k→ 0; then by (4), h→ 0 too. The numerator on the right is the error term in the
definition of differentiability of f at x, so the quantity on the right tends to 0. Hence the
quantity on the left does so too, and by definition of differentiability again, this means that
g is differentiable at y and Dg(y) = B = [Df(x)]−1 = [Df(g(y))]−1 as claimed. Finally,
g is continuous (since g is differentiable), Df is continuous (since f is of class C1), and the
inversion map is continuous on matrix space. Therefore Dg is continuous and hence g is of
class C1.

Note that the formula for Dg(y) is in accordance with the chain rule: since f ◦ g is the
identity mapping, the chain rule says that

I = D(f ◦ g)(y) = Df(g(y)) ·Dg(y) (matrix multiplication),

i.e., Dg(y) = [Df(g(y))]−1.
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