Instructor: Gerald Folland.
Email: folland@math.washington.edu
Office Hours: Monday 2–3 and Tuesday 1:30–3:30, or by appointment, in Padelford C436.

Grader: Jie Chen. His email address is chenjie@uw.edu

Text: Mathematical Analysis (2nd ed.) by T. M. Apostol. We’ll cover Chapters 1–4 this quarter. There are also some other books on reserve in the Math Research Library (Padelford C306) that you might want to look at:
 A Companion to Analysis by T. W. Körner
 Principles of Mathematical Analysis by W. Rudin
 An Introduction to Mathematical Analysis by S. A. Douglass
 Analysis, with an Introduction to Proof, by S. R. Lay

Körner is written in a more engaging conversational style than most math books, and Rudin is an old classic written in a terse, efficient style. I will make use of these in preparing my lectures. The other two are at a somewhat more elementary level; you might consult them if you’re feeling lost.

Homework: There will be weekly homework assignments that will be posted on the class web site as pdf files. It is your responsibility to get the assignments from the web. They will be handed in on Wednesdays, and the graded assignments will usually be handed back on the following Mondays. Your lowest homework score (including any 0’s for missed assignments) will be dropped. Late homework will usually not be accepted; if you have to miss more than one assignment for some compelling reason, talk to me (Folland) about it.

Exams: There will be a Midterm Exam on Friday, November 6. The Final Exam will be on Wednesday, December 16, 2:30-4:20 p.m.

Grades: The homework will count as 30% of your course grade, the Midterm will count as 25%, and the Final Exam will count as 45%.

What Is the Course About? The 424-5-6 sequence is concerned with the theoretical foundations of calculus (and more advanced parts of mathematical analysis). In 424 we start by reviewing the properties of the real number system and discussing the language of set theory, then move on to the study of the topological properties of sets in Euclidean space and the theory of limits and continuity.