Math 425 Assignment 8

due Wednesday, March 10

- 1. Let f(x, y) = xy(3 x y).
 - a. Draw a sketch of the set $\{(x, y) : f(x, y) = 0\}$ and indicate the regions where f(x, y) > 0 and f(x, y) < 0.
 - b. Find the critical points of f.
 - c. Tell whether each critical point is a local maximum, local minimum, or saddle point. You should be able to do this just by looking at your sketch for (a), without any second-derivative test.
- 2. Find the extreme values of $f(x, y) = 2x^2 + y^2 + 2x$ on the disc $\{(x, y) : x^2 + y^2 \le 1\}$. (There's more than one way to look for extrema on the boundary. For practice, you might try a couple of different methods.)
- 3. Show that $f(x, y) = (x^2 2y^2)e^{-x^2 y^2}$ has an absolute minimum and maximum on \mathbb{R}^2 , and find them.
- 4. Suppose f is differentiable on \mathbb{R}^2 and $f(x, y) \to +\infty$ as $||(x, y)|| \to \infty$. (That is, for every A > 0 there is a B > 0 such that f(x, y) > A whenever $\sqrt{x^2 + y^2} > B$.) Show that f has an absolute minimum on \mathbb{R}^2 (but, of course, no absolute maximum).
- 5. Let $(x_1, y_1), \ldots, (x_k, y_k)$ be points in the plane whose x-coordinates are all distinct. The linear function f(x) = ax + b such that the sum of the squares of the vertical distances from the given points to the line y = ax + b (namely, $\sum_{1}^{k} (y_j - ax_j - b)^2$) is minimized is called the *linear least-squares fit* to the points (x_j, y_j) . Show that it is given by

$$a = \frac{k^{-1} \sum_{j=1}^{k} x_j y_j - \overline{x} \,\overline{y}}{k^{-1} \sum_{j=1}^{k} x_j^2 - \overline{x}^2}, \qquad b = \overline{y} - a\overline{x}$$

where $\overline{x} = k^{-1} \sum_{j=1}^{k} x_j$ and $\overline{y} = k^{-1} \sum_{j=1}^{k} y_j$ are the averages of the x's and the y's. (Don't get confused: the x's and y's are fixed; a and b are the variables here.)

- 6. Given a positive constant c, let $P = \{(x_1, ..., x_n) \in \mathbb{R}^n : x_1 + \dots + x_n = c\}$, and let $S = \{(x_1, ..., x_n) \in P : x_j \ge 0 \text{ for all } j\}.$
 - a. Show that S is compact.
 - b. Let $f(x_1, \ldots, x_n) = x_1 x_2 \cdots x_n$. Use Lagrange's method to find the maximum value of f on S. (It exists, by part (a), and it doesn't occur on the boundary of S in P, since that set consists of points with at least one coordinate equal to 0, so f = 0 there.)
 - c. Deduce the arithmetic-geometric mean inequality: For any positive x_1, \ldots, x_n ,

$$(x_1 x_2 \cdots x_n)^{1/n} \le \frac{x_1 + x_2 + \cdots + x_n}{n}$$