Math 425
 Assignment 8

due Wednesday, March 10

1. Let $f(x, y)=x y(3-x-y)$.
a. Draw a sketch of the set $\{(x, y): f(x, y)=0\}$ and indicate the regions where $f(x, y)>0$ and $f(x, y)<0$.
b. Find the critical points of f.
c. Tell whether each critical point is a local maximum, local minimum, or saddle point. You should be able to do this just by looking at your sketch for (a), without any second-derivative test.
2. Find the extreme values of $f(x, y)=2 x^{2}+y^{2}+2 x$ on the disc $\left\{(x, y): x^{2}+y^{2} \leq 1\right\}$. (There's more than one way to look for extrema on the boundary. For practice, you might try a couple of different methods.)
3. Show that $f(x, y)=\left(x^{2}-2 y^{2}\right) e^{-x^{2}-y^{2}}$ has an absolute minimum and maximum on \mathbb{R}^{2}, and find them.
4. Suppose f is differentiable on \mathbb{R}^{2} and $f(x, y) \rightarrow+\infty$ as $\|(x, y)\| \rightarrow \infty$. (That is, for every $A>0$ there is a $B>0$ such that $f(x, y)>A$ whenever $\sqrt{x^{2}+y^{2}}>B$.) Show that f has an absolute minimum on \mathbb{R}^{2} (but, of course, no absolute maximum).
5. Let $\left(x_{1}, y_{1}\right), \ldots,\left(x_{k}, y_{k}\right)$ be points in the plane whose x-coordinates are all distinct. The linear function $f(x)=a x+b$ such that the sum of the squares of the vertical distances from the given points to the line $y=a x+b$ (namely, $\left.\sum_{1}^{k}\left(y_{j}-a x_{j}-b\right)^{2}\right)$ is minimized is called the linear least-squares fit to the points $\left(x_{j}, y_{j}\right)$. Show that it is given by

$$
a=\frac{k^{-1} \sum_{1}^{k} x_{j} y_{j}-\bar{x} \bar{y}}{k^{-1} \sum_{1}^{k} x_{j}^{2}-\bar{x}^{2}}, \quad b=\bar{y}-a \bar{x},
$$

where $\bar{x}=k^{-1} \sum_{1}^{k} x_{j}$ and $\bar{y}=k^{-1} \sum_{1}^{k} y_{j}$ are the averages of the x 's and the y 's. (Don't get confused: the x 's and y 's are fixed; a and b are the variables here.)
6. Given a positive constant c, let $P=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}: x_{1}+\cdots+x_{n}=c\right\}$, and let $S=\left\{\left(x_{1}, \ldots, x_{n}\right) \in P: x_{j} \geq 0\right.$ for all $\left.j\right\}$.
a. Show that S is compact.
b. Let $f\left(x_{1}, \ldots, x_{n}\right)=x_{1} x_{2} \cdots x_{n}$. Use Lagrange's method to find the maximum value of f on S. (It exists, by part (a), and it doesn't occur on the boundary of S in P, since that set consists of points with at least one coordinate equal to 0 , so $f=0$ there.)
c. Deduce the arithmetic-geometric mean inequality: For any positive x_{1}, \ldots, x_{n},

$$
\left(x_{1} x_{2} \cdots x_{n}\right)^{1 / n} \leq \frac{x_{1}+x_{2}+\cdots+x_{n}}{n} .
$$

