
Math 425
Assignment 7

due Wednesday, March 3

Concerning the derivatives in problems 2–3, see the remarks on implicit differentiation
on the next page. Concerning problems 4–6, see the remarks on curves and surfaces there.

1. Investigate the possibility of solving the equation x2 − 4x + 2y2 − yz = 1 for each of
its variables as differentiable functions of the other two near the point (2,−1, 3). Do
this both by checking the hypotheses of the implicit function theorem and by explicitly
computing the solutions.

2. Let f(x, y, z) = xe−z + 5z + 2y.

a. Show that there is a differentiable function g defined in some neighborhood of
(2,−1) ∈ R2 such that g(2,−1) = 0 and f(x, y, g(x, y)) = 0.

b. Compute D1g(2,−1) and D2g(2,−1), and use the result to give an approximate
value of g(2.03,−1.06).

3. Consider the pair of equations xy + 2yz − 3xz = 0, xyz + x− y = 1.

a. Show that these equations can (in principle) be solved for y and z as functions of x
near (x, y, z) = (1, 1, 1), and compute dy/dx and dz/dx as functions of x, y, and z.

b. Can these equations be solved for x and y as functions of z near (1, 1, 1)? How
about x and z as functions of y?

4. Let f(x, y) = (y3 − x2)(y − 1), and let S = {(x, y) : f(x, y) = 0}.
a. Draw a sketch of S. (Hint: Keep in mind that a product is zero precisely when at

least one of its factors is zero.)
b. Find the critical points of f (points where ∇f = 0). There are four of them, three

of which lie in the set S. You should find that they are located precisely where the
sketch in (a) shows some peculiar behavior of the set S. (The approximate location
of the fourth one is also predictable from the sketch; do you see why?)

c. You’ll find that D2f is nonzero at (2, 1) and (2, 41/3) (both of which lie in S), so the
implicit function theorem says that the equation f = 0 determines y as a function
of x near each of these points. What are these functions? (Don’t work too hard;
use your sketch.)

5. Let f(u, v) = (au cos v, au sin v, u), where a and b are positive numbers. Think of f as
a parametric representation of the surface S = {f(u, v) : (u, v) ∈ R2} in R3.

a. Using the identity sin2 + cos2 = 1, find a smooth function g(x, y, z) so that S =
{(x, y, z) : g(x, y, z) = 0}.

b. Draw a sketch of the surface S. (It may be helpful to consider the curves obtained
by intersecting S with the horizontal planes z = constant.) You should find that
S is a smooth surface everywhere except at the origin (0, 0, 0).

c. The singularity of S at the origin should be reflected in the behavior of Df(0, v)
(since f(0, v) = (0, 0, 0)) and of ∇g(0, 0, 0). Verify this; precisely what happens?



6. Curves in R3 are usually best represented parametrically, that is, as the range of a map
f : R→ R3. As in the case of plane curves, the condition that guarantees that such a
map yields a smooth curve (locally) is that f be of class C1 and that f ′(t) 6= 0. However,
another way of producing curves is as the intersection of two surfaces. Let S1 and S2

be the smooth surfaces defined by the equations g1(x, y, z) = 0 and g2(x, y, z) = 0,
where we assume that ∇gj 6= 0 on Sj (j = 1, 2). Then S1 ∩ S2 is the set where
g1(x, y, z) = g2(x, y, z) = 0. Show that if ∇g1 and ∇g2 are linearly independent —
or, equivalently, that ∇g1 ×∇g2 6= 0 — at every point of S1 ∩ S2, then the equations
g1 = g2 = 0 can be solved (at least locally) to yield two of the variables x, y, and z
as C1 functions of the third, and hence a parametrization of (at least a small piece of)
S1 ∩ S2 using that third variable as the parameter. (Remarks: (1) Which one of x, y,
and z ends up as the independent variable may depend on the nature of ∇g1 and ∇g2.
(2) Geometrically, the condition that ∇g1 and ∇g2 be linearly independent on S1 ∩ S2

means that S1 and S2 are nowhere tangent to each other.)

Implicit Differentiation. In freshman calculus you learn that if two variables x and
y are related by an equation f(x, y) = 0, you can find dy/dx in terms of x and y by
differentiating this equation with respect to x, assuming y to be a function of x and using
the chain rule, to get (D1f) + (D2f)(dy/dx) = 0, then solving this for dy/dx. Similarly,
suppose f : Rn+k → Rn satisfies the conditions of the implicit function theorem so that the
equation f(x, t) = 0 can be solved (locally) to yield x = g(t). One can differentiate the
equation f(g(t), t) = 0 with respect to t to get Dxf(x, t) Dg(t) + Dtf(x, t) = 0 (where
x = g(t)), and then solve this system of (linear!) equations to find Dg(t) in terms of t and
x. Explicitly, Dg(t) = −[Dxf(x, t)]−1Dtf(x, t), but in specific examples it is usually easier
to solve the linear system directly rather than computing the inverse matrix [Dxf(x, t)]−1.

Curves and Surfaces (sketch of results to be discussed in class). There are 3 common
ways of representing a curve C in the plane: (i) as a graph y = f(x) or x = g(y); (ii) as the
set of (x, y) satisfying an equation F (x, y) = 0; (iii) as the range of a function f : R → R2.
Note that (i) is a special case of (ii) (with F (x, y) = y − f(x) or x − g(y)) and (iii) (with
f(t) = (t, f(t)) or (g(t), t)). Conversely, if F is of class C1 and ∇F 6= 0 on C, the implicit
function theorem implies that the equation F (x, y) = 0 can be solved (locally) for y as a
function of x or vice versa, so (ii) ⇒ (i). Also, of f is of class C1 and f ′(t) 6= 0, the inverse
function theorem implies that one of the equations x = f1(t), y = f2(t) can be solved (locally)
for t, which can then be substituted into the other to yield one of x and y as a function of
the other, so (iii) ⇒ (i) too. Analogous results hold for curves in R3; see Problem 6.

Similarly, a surface S in R3 can be represented (i) as a graph z = f(x, y) (maybe with
variables switched), (ii) as the set where F (x, y, z) = 0, or (iii) as the range of a function
f : R2 → R3. Again (i) is a special case of (ii) and (iii); the implicit function theorem implies
that if F is of class C1 and ∇F 6= 0 on S, then the equation F = 0 can be solved (locally)
to yield an equation z = f(x, y) (maybe with variables switched); and the inverse mapping
theorem implies that if f is of class C1 and Df(s, t) has rank 2 (i.e., if its columns D1f and
D2f are linearly independent), the parameters (s, t) can be eliminated (locally) to yield an
equation z = f(x, y) (maybe with variables switched).


