Math 425
 Assignment 6

due Wednesday, February 24

1. Problem 13.2.
2. Problem 13.3.
3. This is a continuation of Problem 2, Assignment 1. Let $f(x)=x^{2} \sin (1 / x)+\frac{1}{2} x$. From the results of that problem, show that $f^{\prime}(0) \neq 0$ but that f is not invertible in any neighborhood of 0 . Why does this not contradict the inverse function theorem?
4. Let $(u, v)=\mathbf{f}(x, y)=\left(x^{2}, y / x\right)$. (The domain of \mathbf{f} is $\left\{(x, y) \in \mathbb{R}^{2}: x \neq 0\right\}$.)
a. What is the range of \mathbf{f} ? Sketch some of the inverse images of the lines $u=$ constant and $v=$ constant in the $x y$-plane (i.e., the curves $x^{2}=$ constant and $y / x=$ constant). Also sketch the images of some of the lines $x=$ constant and $y=$ constant in the $u v$-plane.
b. Compute the Jacobian matrix $\mathbf{D f}(x, y)$ and its determinant $J_{\mathbf{f}}(x, y)$.
c. Compute the local inverses of \mathbf{f}. What are their domains?
5. Let $(u, v)=\mathbf{f}(x, y)=\left(x^{2}+2 x y+y^{2}, 2 x+2 y\right)$.
a. Compute the Jacobian matrix $\mathbf{D f}(x, y)$ and its determinant $J_{\mathbf{f}}(x, y)$.
b. Your answer to (a) should suggest that \mathbf{f} is highly noninvertible. What is the range of \mathbf{f} ? What is the inverse image of a point (u, v) in this range?
6. Let $(u, v)=\mathbf{f}(x, y)=(x-y, x y)$.
a. Compute the Jacobian matrix $\mathbf{D f}(x, y)$ and its determinant $J_{\mathbf{f}}(x, y)$.
b. Sketch the inverse images of some of the lines $u=$ constant and $v=$ constant in the $x y$-plane (i.e., the curves $x-y=$ constant and $x y=$ constant). There's something unusual about the relation between these curves at the points where $J_{\mathbf{f}}=0$: what is it?
c. Observe that $\mathbf{f}(2,-3)=(5,-6)$. Compute explicitly the local inverse \mathbf{g} of \mathbf{f} such that $\mathbf{g}(5,-6)=(2,-3)$. Also compute $\mathbf{D g}$.
d. Show by explicit calculation that the matrices $\mathbf{D f}(2,-3)$ and $\mathbf{D g}(5,-6)$ are inverses of each other.
