Math 425 Assignment 6

due Wednesday, February 24

- 1. Problem 13.2.
- 2. Problem 13.3.
- 3. This is a continuation of Problem 2, Assignment 1. Let $f(x) = x^2 \sin(1/x) + \frac{1}{2}x$. From the results of that problem, show that $f'(0) \neq 0$ but that f is not invertible in any neighborhood of 0. Why does this not contradict the inverse function theorem?
- 4. Let $(u, v) = \mathbf{f}(x, y) = (x^2, y/x)$. (The domain of **f** is $\{(x, y) \in \mathbb{R}^2 : x \neq 0\}$.)
 - a. What is the range of **f**? Sketch some of the inverse images of the lines u = constant and v = constant in the xy-plane (i.e., the curves $x^2 = \text{constant}$ and y/x = constant). Also sketch the images of some of the lines x = constant and y = constant in the uv-plane.
 - b. Compute the Jacobian matrix $\mathbf{Df}(x, y)$ and its determinant $J_{\mathbf{f}}(x, y)$.
 - c. Compute the local inverses of **f**. What are their domains?
- 5. Let $(u, v) = \mathbf{f}(x, y) = (x^2 + 2xy + y^2, 2x + 2y).$
 - a. Compute the Jacobian matrix $\mathbf{Df}(x, y)$ and its determinant $J_{\mathbf{f}}(x, y)$.
 - b. Your answer to (a) should suggest that **f** is highly noninvertible. What is the range of **f**? What is the inverse image of a point (u, v) in this range?
- 6. Let $(u, v) = \mathbf{f}(x, y) = (x y, xy)$.
 - a. Compute the Jacobian matrix $\mathbf{Df}(x, y)$ and its determinant $J_{\mathbf{f}}(x, y)$.
 - b. Sketch the inverse images of some of the lines u = constant and v = constant in the xy-plane (i.e., the curves x y = constant and xy = constant). There's something unusual about the relation between these curves at the points where $J_{\mathbf{f}} = 0$: what is it?
 - c. Observe that $\mathbf{f}(2,-3) = (5,-6)$. Compute explicitly the local inverse \mathbf{g} of \mathbf{f} such that $\mathbf{g}(5,-6) = (2,-3)$. Also compute \mathbf{Dg} .
 - d. Show by explicit calculation that the matrices $\mathbf{Df}(2, -3)$ and $\mathbf{Dg}(5, -6)$ are inverses of each other.