Math 425 Assignment 5

due Wednesday, February 10

Reminder: The Midterm Exam is on Friday, February 12. It will be taken from all the material we've covered through this assignment: essentially, Chapters 5 and 12 of Apostol (omitting the bits about complex-valued functions), together with my supplementary notes on l'Hôpital's rule, Taylor's theorem, and higher order partial derivatives. Some problems will be theoretical, some will be computational.

- 1. Problem 12.13 (page 364).
- 2. Suppose $w = f(s^2 t^2, 2st)$. Show that $\frac{\partial^2 w}{\partial s^2} + \frac{\partial^2 w}{\partial t^2} = 4(s^2 + t^2)(D_1^2 f + D_2^2 f)$. (The derivatives of f are evaluated at $(s^2 t^2, 2st)$.)
- 3. State and prove a version of Rolle's theorem for functions of several variables whose hypothesis is the following: Suppose f is a real-valued function that is differentiable on a bounded open set $U \subset \mathbb{R}^n$, continuous on the closure \overline{U} , and constant on the boundary ∂U . (The 1-dimensional Rolle's theorem is the case where U = (a, b), $\partial U = \{a, b\}$.)
- 4. Define $\mathbf{f} : \mathbb{R}^2 \to \mathbb{R}^3$ by $\mathbf{f}(u, v) = (u^2 5v, ve^{2u}, 2u \log(1 + v^2)).$
 - a. Compute the Jacobian matrix $\mathbf{Df}(u, v)$. What is $\mathbf{Df}(0, 0)$?
 - b. Suppose $\mathbf{g} : \mathbb{R}^2 \to \mathbb{R}^2$ is of class C^1 , $\mathbf{g}(1,2) = (0,0)$, and $\mathbf{Dg}(1,2) = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$. Compute $\mathbf{D}(\mathbf{f} \circ \mathbf{g})(1,2)$.
- 5. Suppose **f** and **g** are differentiable functions from \mathbb{R}^n to \mathbb{R}^m . Show that their dot product $h(\mathbf{x}) = \mathbf{f}(\mathbf{x}) \cdot \mathbf{g}(\mathbf{x})$ is a differentiable real-valued function on \mathbb{R}^n and that

$$abla h(\mathbf{x}) = [\mathbf{D}\mathbf{f}(\mathbf{x})]^T \mathbf{g}(\mathbf{x}) + [\mathbf{D}\mathbf{g}(\mathbf{x})]^T \mathbf{f}(\mathbf{x})$$

where A^T denotes the transpose of the matrix A and we think of $\nabla h(\mathbf{x})$, $\mathbf{f}(\mathbf{x})$, and $\mathbf{g}(\mathbf{x})$ as column vectors.

- 6. Use Taylor's formula to expand $x^2 + y^3 + xy^2$ in powers of x 1 and y 2. (Compute partial derivatives and plug in. You can check your answer by pure algebra.)
- 7. Let $f(x, y) = e^{xy} \cos(x + y^2)$.
 - a. Find the 4th-order Taylor polynomial of f about (0,0). Don't compute any derivatives, just work from the known Taylor series for e^t and $\cos t$. (You should find that there is a constant term, no linear term, two 2nd-order terms, one 3rd-order term, and four 4th-order terms.)
 - b. If you know the Taylor expansion of a function about a certain point, you can read off the derivatives of the function at that point from the coefficients of the expansion. For example, if $f(t) = t - 7t^2 + 3t^5$ + higher order, you know that $f^{(3)}(0) = 0$ (no cubic term) and $f^{(5)}(0) = 3 \cdot 5! = 360$. From your answer to part (a), read off $\partial^{(3,1)} f(0,0)$ and $\partial^{(0,4)}(0,0)$. I'm using multi-index notation here, as explained in the notes.