Math 425
 Assignment 3

due Wednesday, January 27

1. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be twice differentiable.
a. Suppose that $|f(x)| \leq 1$ and $\left|f^{\prime \prime}(x)\right| \leq 1$ for all x. Show that $\left|f^{\prime}(x)\right| \leq 2$ for all x. (Hint: Suppose to the contrary that $\left|f^{\prime}\left(x_{0}\right)\right|>2$ for some x_{0}. Use the bound on $f^{\prime \prime}$ to show that $\left|f^{\prime}(x)\right|>1$ on some reasonably large interval, and thence obtain a contradiction with the bound on f.)
b. More generally, show that if $|f(x)| \leq C_{0}$ and $\left|f^{\prime \prime}(x)\right| \leq C_{2}$ for all x, then $\left|f^{\prime}(x)\right| \leq$ $2 \sqrt{C_{0} C_{2}}$ for all x. (Hint: apply part (a) to $g(x)=\left(1 / C_{0}\right) f\left(\sqrt{C_{0} / C_{2}} x\right)$.)
2. Let $\mathbf{f}: \mathbb{R} \rightarrow \mathbb{R}^{n}$ be a differentiable vector-valued function. Show that $\|\mathbf{f}(t)\|$ is constant if and only if $\mathbf{f}(t) \cdot \mathbf{f}^{\prime}(t)=0$ for all t. (You should spend a couple of minutes thinking about the geometry here. Think of $\mathbf{f}(t)$ as the position of a particle at time t. What does the condition $\|\mathbf{f}(t)\|=C$ say about the motion? What about the condition $\mathbf{f}(t) \cdot \mathbf{f}^{\prime}(t)=0$?)

The next four problems have to do with Newton's method for solving equations. Recall the basic idea: to find a solution of $f(x)=0$, make an initial guess x_{1}. Replace f by its tangent line at $x_{1}, y=f\left(x_{1}\right)+f^{\prime}\left(x_{1}\right)\left(x-x_{1}\right)$, and find its zero, namely $x_{2}=x_{1}-f\left(x_{1}\right) / f^{\prime}\left(x_{1}\right)$. Take x_{2} as the next approximation and iterate, obtaining the sequence

$$
\begin{equation*}
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}, \tag{}
\end{equation*}
$$

which hopefully will converge to the zero of f. Obviously this doesn't always work - you can get in big trouble if f^{\prime} is ever zero in the range of x 's you're looking at, for example. But in favorable cases, where f is strictly increasing or decreasing and of constant convexity, it works like a charm.

More precisely, in problems 3-5 suppose that f is twice differentiable on $[a, b], f(a)<$ $0<f(b)$, and $f^{\prime}(x) \geq \delta>0$ and $0 \leq f^{\prime \prime}(x) \leq M$ on $[a, b]$. Thus f is strictly increasing, so there is a unique $c \in[a, b]$ such that $f(c)=0$, and for $x \in[a, b], f(x)>0$ precisely when $x>c$. The object is to compute c. To do this, set $x_{1}=b$ and define x_{n} recursively by $\left({ }^{*}\right)$.
3. Show that the sequence $\left\{x_{n}\right\}$ is decreasing and $f\left(x_{n}\right)>0$ for all n. (The latter inequality depends on the assumption that $f^{\prime \prime} \geq 0$, so the graph of f is concave up. Draw a picture to see how it works.)
4. Show that $\lim _{n \rightarrow \infty} x_{n}=c$. (Show that $\lim _{n \rightarrow \infty} x_{n}$ exists - call it $l-$ and then that $f(l)=0$.)
5. Show that $x_{n+1}-c=\left[f^{\prime \prime}\left(t_{n}\right) / 2 f^{\prime}\left(x_{n}\right)\right]\left(x_{n}-c\right)^{2}$ for some $t_{n} \in\left(c, x_{n}\right)$, so that $0 \leq$ $x_{n+1}-c \leq(M / 2 \delta)\left(x_{n}-c\right)^{2}$. (Hint: Expand $f(x)$ about $x=x_{n}$ and then set $x=c$.) This shows that once $x_{n}-c$ is small, the rate of convergence of x_{n} to c is extremely rapid: if $x_{N}-c<\delta / M$, for example, then $x_{N+j}-c<(\delta / M) 2^{1-2^{j}}$.

Under the above hypotheses, if you take x_{1} to be to the left of c, so that $f\left(x_{1}\right)<0$, you'll find that $x_{2}>c$ (again because f is concave up), so the preceding analysis applies starting with x_{2} provided that x_{2} is still in the interval $[a, b]$ where the hypotheses are valid. If we assume f is decreasing and/or concave down instead of increasing and concave up, the analysis is similar, with some inequalities reversed. But:
6. Let $f(x)=x^{3}-5 x,[a, b]=[-1,1]$. Take $x_{1}=1$ as the initial guess for the zero (which, of course, is $c=0$) and plug into $\left(^{*}\right)$ to compute x_{n} for $n>1$. (This is easier than you might expect.) Why doesn't Newton's method find the zero? What hypothesis fails?

