1. Let \(f : \mathbb{R} \to \mathbb{R} \) be twice differentiable.
 a. Suppose that \(|f(x)| \leq 1\) and \(|f''(x)| \leq 1\) for all \(x \). Show that \(|f'(x)| \leq 2\) for all \(x \).
 (Hint: Suppose to the contrary that \(|f'(x_0)| > 2\) for some \(x_0 \). Use the bound on \(f'' \) to show that \(|f'(x)| > 1\) on some reasonably large interval, and thence obtain a contradiction with the bound on \(f \).)
 b. More generally, show that if \(|f(x)| \leq C_0\) and \(|f''(x)| \leq C_2\) for all \(x \), then \(|f'(x)| \leq 2\sqrt{C_0C_2}\) for all \(x \).
 (Hint: apply part (a) to \(g(x) = (1/C_0) f(\sqrt{C_0/C_2} x) \).)

2. Let \(f : \mathbb{R} \to \mathbb{R}^n \) be a differentiable vector-valued function. Show that \(\|f(t)\| \) is constant if and only if \(f(t) \cdot f'(t) = 0 \) for all \(t \). (You should spend a couple of minutes thinking about the geometry here. Think of \(f(t) \) as the position of a particle at time \(t \). What does the condition \(\|f(t)\| = C \) say about the motion? What about the condition \(f(t) \cdot f'(t) = 0 \)?)

The next four problems have to do with Newton’s method for solving equations. Recall the basic idea: to find a solution of \(f(x) = 0 \), make an initial guess \(x_1 \). Replace \(f \) by its tangent line at \(x_1 \), \(y = f(x_1) + f'(x_1)(x-x_1) \), and find its zero, namely \(x_2 = x_1 - f(x_1)/f'(x_1) \). Take \(x_2 \) as the next approximation and iterate, obtaining the sequence

\[
x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)},
\]

which hopefully will converge to the zero of \(f \). Obviously this doesn’t always work — you can get in big trouble if \(f' \) is ever zero in the range of \(x \)’s you’re looking at, for example. But in favorable cases, where \(f \) is strictly increasing or decreasing and of constant convexity, it works like a charm.

More precisely, in problems 3–5 suppose that \(f \) is twice differentiable on \([a,b]\), \(f(a) < 0 < f(b) \), and \(f'(x) \geq \delta > 0 \) and \(0 \leq f''(x) \leq M \) on \([a,b]\). Thus \(f \) is strictly increasing, so there is a unique \(c \in [a,b] \) such that \(f(c) = 0 \), and for \(x \in [a,b] \), \(f(x) > 0 \) precisely when \(x > c \). The object is to compute \(c \). To do this, set \(x_1 = b \) and define \(x_n \) recursively by (*)

3. Show that the sequence \(\{x_n\} \) is decreasing and \(f(x_n) > 0 \) for all \(n \). (The latter inequality depends on the assumption that \(f'' \geq 0 \), so the graph of \(f \) is concave up. Draw a picture to see how it works.)

4. Show that \(\lim_{n \to \infty} x_n = c \). (Show that \(\lim_{n \to \infty} x_n \) exists — call it \(l \) — and then that \(f(l) = 0 \).)
5. Show that $x_{n+1} - c = \frac{f''(t_n)}{f'(x_n)}(x_n - c)^2$ for some $t_n \in (c, x_n)$, so that $0 \leq x_{n+1} - c \leq (M/2\delta)(x_n - c)^2$. (Hint: Expand $f(x)$ about $x = x_n$ and then set $x = c$.)

This shows that once $x_n - c$ is small, the rate of convergence of x_n to c is extremely rapid: if $x_N - c < \delta/M$, for example, then $x_{N+j} - c < (\delta/M)^{2^{1-2^j}}$.

Under the above hypotheses, if you take x_1 to be to the left of c, so that $f(x_1) < 0$, you’ll find that $x_2 > c$ (again because f is concave up), so the preceding analysis applies starting with x_2 provided that x_2 is still in the interval $[a, b]$ where the hypotheses are valid. If we assume f is decreasing and/or concave down instead of increasing and concave up, the analysis is similar, with some inequalities reversed. But:

6. Let $f(x) = x^3 - 5x$, $[a, b] = [-1, 1]$. Take $x_1 = 1$ as the initial guess for the zero (which, of course, is $c = 0$) and plug into (*) to compute x_n for $n > 1$. (This is easier than you might expect.) Why doesn’t Newton’s method find the zero? What hypothesis fails?