
Math 425
Assignment 3

due Wednesday, January 27

1. Let f : R→ R be twice differentiable.

a. Suppose that |f(x)| ≤ 1 and |f ′′(x)| ≤ 1 for all x. Show that |f ′(x)| ≤ 2 for all x.
(Hint: Suppose to the contrary that |f ′(x0)| > 2 for some x0. Use the bound on
f ′′ to show that |f ′(x)| > 1 on some reasonably large interval, and thence obtain a
contradiction with the bound on f .)

b. More generally, show that if |f(x)| ≤ C0 and |f ′′(x)| ≤ C2 for all x, then |f ′(x)| ≤
2
√
C0C2 for all x. (Hint: apply part (a) to g(x) = (1/C0)f(

√
C0/C2 x).)

2. Let f : R→ Rn be a differentiable vector-valued function. Show that ‖f(t)‖ is constant
if and only if f(t) · f ′(t) = 0 for all t. (You should spend a couple of minutes thinking
about the geometry here. Think of f(t) as the position of a particle at time t. What
does the condition ‖f(t)‖ = C say about the motion? What about the condition
f(t) · f ′(t) = 0?)

The next four problems have to do with Newton’s method for solving equations. Recall
the basic idea: to find a solution of f(x) = 0, make an initial guess x1. Replace f by its
tangent line at x1, y = f(x1)+f ′(x1)(x−x1), and find its zero, namely x2 = x1−f(x1)/f

′(x1).
Take x2 as the next approximation and iterate, obtaining the sequence

xn+1 = xn −
f(xn)

f ′(xn)
, (*)

which hopefully will converge to the zero of f . Obviously this doesn’t always work — you
can get in big trouble if f ′ is ever zero in the range of x’s you’re looking at, for example. But
in favorable cases, where f is strictly increasing or decreasing and of constant convexity, it
works like a charm.

More precisely, in problems 3–5 suppose that f is twice differentiable on [a, b], f(a) <
0 < f(b), and f ′(x) ≥ δ > 0 and 0 ≤ f ′′(x) ≤ M on [a, b]. Thus f is strictly increasing, so
there is a unique c ∈ [a, b] such that f(c) = 0, and for x ∈ [a, b], f(x) > 0 precisely when
x > c. The object is to compute c. To do this, set x1 = b and define xn recursively by (*).

3. Show that the sequence {xn} is decreasing and f(xn) > 0 for all n. (The latter
inequality depends on the assumption that f ′′ ≥ 0, so the graph of f is concave up.
Draw a picture to see how it works.)

4. Show that limn→∞ xn = c. (Show that limn→∞ xn exists — call it l — and then that
f(l) = 0.)



5. Show that xn+1 − c = [f ′′(tn)/2f ′(xn)](xn − c)2 for some tn ∈ (c, xn), so that 0 ≤
xn+1 − c ≤ (M/2δ)(xn − c)2. (Hint: Expand f(x) about x = xn and then set x = c.)
This shows that once xn − c is small, the rate of convergence of xn to c is extremely
rapid: if xN − c < δ/M , for example, then xN+j − c < (δ/M)21−2j

.

Under the above hypotheses, if you take x1 to be to the left of c, so that f(x1) < 0, you’ll find
that x2 > c (again because f is concave up), so the preceding analysis applies starting with
x2 provided that x2 is still in the interval [a, b] where the hypotheses are valid. If we assume
f is decreasing and/or concave down instead of increasing and concave up, the analysis is
similar, with some inequalities reversed. But:

6. Let f(x) = x3−5x, [a, b] = [−1, 1]. Take x1 = 1 as the initial guess for the zero (which,
of course, is c = 0) and plug into (*) to compute xn for n > 1. (This is easier than you
might expect.) Why doesn’t Newton’s method find the zero? What hypothesis fails?


