
Math 425A
Assignment 2

due Wednesday, January 20

These problems involve l’Hôpital’s rule and Taylor polynomials; see the notes linked to
the class web site.

1. Recall that f ′(c) can be defined as lim
h→0

f(c+ h)− f(c)

h
. Show that if f is of class C2

on an open interval I containing c, then

lim
h→0

f(c+ 2h)− 2f(c+ h) + f(c)

h2
= f ′′(c),

and if f is of class C3 on I, then

lim
h→0

f(c+ 3h)− 3f(c+ 2h) + 3f(c+ h)− f(c)

h3
= f ′′′(c).

Can you guess what the corresponding formula for f (k)(c) is? (I’m not asking for the
proof.)

2. Let f(x) = e−1/x for x > 0 and f(x) = 0 for x ≤ 0, noting that f is continuous at
0.

a. Show that limx→0+ f(x)/xn = 0 for all n > 0. (You’ll find that a simple-minded
application of l’Hôpital doesn’t work. Try setting y = 1/x.)

b. Show by induction on k that for x > 0, f (k)(x) = P (1/x)f(x) where P is a polyno-
mial of degree 2k.

c. Deduce that limx→0+ f
(k)(x) = 0 for all k.

d. Conclude that f is of class C∞ (that is, of class Ck for all k), even at x = 0, and
that f (k)(0) = 0 for all k. (Hint: Problem 5 of last week’s assignment.)

Remarks: (1) The Taylor series
∑∞

0 f (k)(0)xk/k! of this function vanishes identically,
so this is an example of a C∞ function that is not the sum of its Taylor series. (2) The
function g(x) = f(x)f(1 − x) is of class C∞, positive on the interval (0, 1), and zero
elsewhere. Such “smooth bump functions” are important technical tools in advanced
analysis.

3. Let f(x) = x1/5.

a. Find the 2nd order Taylor polynomial P2,32(x) of f(x) about x = 32 (i.e., expand
x1/5 in powers of x− 32).

b. Show that if x ≥ 32, the remainder R2,32(x) satisfies |R2,32(x)| ≤ (3×10−6)(x−32)3.
c. Use the results of (a) and (b) to calculate 361/5 approximately and estimate the

error. Compare these results with the value of 361/5 obtained on a calculator. How
does the predicted error compare with the actual error?



4. Find the 3rd order Taylor polynomial of e1−e
−x

without computing derivatives, and
hence evaluate limx→0(e

1−e−x − 1− x)/x(cos 1
2
x− 1) without using l’Hôpital.

5. You can form Taylor polynomials for a vector-valued function f just as for scalar-
valued functions. (They are also vector-valued, the vectorial nature coming from the
coefficients f (j)(c).) What about the remainder? The Lagrange form (Theorem 3 of
the notes) doesn’t quite work; you can apply Theorem 3 to each component separately,
but the intermediate points x1 will probably be different for each different component,
so you probably can’t use the same x1 for all of them at once. (The special case
k = 0 of Theorem 3 is just the mean value theorem, and there’s a counterexample
for the vector-valued mean value theorem at the top of p.115 of Apostol.) Convince
yourself, however, that the integral form of the remainder (Theorem 4) works just fine
for vector-valued functions. (You don’t have to hand this in.) Hence state and prove
an analogue of Corollary 1 for vector-valued functions.

6. Suppose f is of class C2 on [a, b] and that |f ′′(x)| ≤ C for all x ∈ [a, b].

a. Show that if [c − (δ/2), c + (δ/2)] ⊆ [a, b], then
∫ c+(δ/2)

c−(δ/2)
f(x) dx = δf(c) plus an

error that is at most Cδ3/24 in absolute value. (Hint: Taylor expansion of order 1
[i.e., tangent line approximation] about x = c, with remainder estimate.)

b. Now take δ = (b − a)/n and conclude that the integral
∫ b

a
f(x) dx is equal to the

“midpoint Riemann sum” corresponding to n equal subdivisions of [a, b], namely∑n
1 f(xj)∆x with ∆x = δ = (b− a)/n and xj = a+ (j − 1

2
)δ, plus an error that is

at most C(b− a)3/24n2 in absolute value.

(In contrast, the error in the left- or right-endpoint Riemann sum obtained by taking
xj − a = (j − 1)δ or jδ instead of (j − 1

2
)δ is usually no better than K(b − a)2/2n

where K is an upper bound for |f ′(x)|, as the example of a linear function shows.
The improvement from 1/n decay to 1/n2 decay as n increases is computationally
significant! The error estimates for the trapezoidal rule and Simpson’s rule can also be
obtained by similar uses of Taylor’s theorem.)

7. Use part (a) of the preceding problem to show that for k = 1, 2, 3, . . .,
∫ k+(1/2)

k−(1/2)
log x dx =

log k + ck where |ck| ≤ 1/2k2. (The coefficient 1/2 isn’t very sharp when k is large,
but that’s OK.) Summing from k = 1 to k = n and evaluating the integral by calculus,
deduce that

log(n!) =

∫ n+(1/2)

1/2

log x dx+
n∑
1

ck = (n+ 1
2
) log n− n+ Cn

where the constant Cn approaches a finite limit L as n→∞. On exponentiating, this
gives Stirling’s formula

n! ∼ eLnn+(1/2)e−n,

where An ∼ Bn means that An/Bn → 1 as n → ∞. The constant eL turns out to be√
2π — a pretty fact, but not needed to extract most of the power of Stirling’s formula.


