Math 425A
Assignment 2
due Wednesday, January 20

These problems involve I’Hopital’s rule and Taylor polynomials; see the notes linked to
the class web site.

. Show that if f is of class C?

fle+h) = f(c)
h
on an open interval I containing ¢, then

lim flc+2h)—=2f(c+h)+ f(c)
h—0 h2

1. Recall that f’(c) can be defined as lim

—0

= 1" (o)

and if f is of class C® on I, then

lim f(C+3h) _Sf(c_’_ZhZ) +3f(c+h) —f(C) _ f”l(C>.

h—0

Can you guess what the corresponding formula for f%*)(c) is? (I'm not asking for the
proof.)

2. Let f(z) = e"¥/* for # > 0 and f(z) = 0 for z < 0, noting that f is continuous at
0.

a. Show that lim, o4 f(z)/2™ = 0 for all n > 0. (You'll find that a simple-minded
application of 'Hopital doesn’t work. Try setting y = 1/x.)

b. Show by induction on k that for z > 0, f*)(2) = P(1/x)f(x) where P is a polyno-
mial of degree 2k.

c. Deduce that lim,_q, f*)(x) = 0 for all k.

d. Conclude that f is of class C*° (that is, of class C* for all k), even at x = 0, and
that f*)(0) = 0 for all k. (Hint: Problem 5 of last week’s assignment.)

Remarks: (1) The Taylor series > o f*)(0)2*/k! of this function vanishes identically,
so this is an example of a C'* function that is not the sum of its Taylor series. (2) The
function g(x) = f(z)f(1 — z) is of class C*°, positive on the interval (0, 1), and zero
elsewhere. Such “smooth bump functions” are important technical tools in advanced
analysis.

3. Let f(x) = />,

a. Find the 2nd order Taylor polynomial P 3s(z) of f(x) about z = 32 (i.e., expand
2/ in powers of x — 32).

b. Show that if x > 32, the remainder Ry 35(z) satisfies | Ry 39(x)| < (3% 1079)(z—32)3.

c. Use the results of (a) and (b) to calculate 36'/° approximately and estimate the
error. Compare these results with the value of 36'/° obtained on a calculator. How
does the predicted error compare with the actual error?



4. Find the 3rd order Taylor polynomial of e~ " without computing derivatives, and

hence evaluate lim, (e~ " — 1 — z)/x(cos 1z — 1) without using 'Hopital.

5. You can form Taylor polynomials for a vector-valued function f just as for scalar-
valued functions. (They are also vector-valued, the vectorial nature coming from the
coefficients £/)(¢).) What about the remainder? The Lagrange form (Theorem 3 of
the notes) doesn’t quite work; you can apply Theorem 3 to each component separately,
but the intermediate points x; will probably be different for each different component,
so you probably can’t use the same z; for all of them at once. (The special case
k = 0 of Theorem 3 is just the mean value theorem, and there’s a counterexample
for the vector-valued mean value theorem at the top of p.115 of Apostol.) Convince
yourself, however, that the integral form of the remainder (Theorem 4) works just fine
for vector-valued functions. (You don’t have to hand this in.) Hence state and prove
an analogue of Corollary 1 for vector-valued functions.

6. Suppose f is of class C? on [a,b] and that |f”(x)| < C for all z € [a, b].

a. Show that if [c — (§/2), ¢+ (§/2)] C [a,b], then fci((;(s/g) f(z)dx = df(c) plus an
error that is at most C'03/24 in absolute value. (Hint: Taylor expansion of order 1
[i.e., tangent line approximation| about z = ¢, with remainder estimate.)

b. Now take § = (b — a)/n and conclude that the integral f; f(x) dzx is equal to the
“midpoint Riemann sum” corresponding to n equal subdivisions of [a, b], namely
o1 f(z;)Az with Az =§ = (b—a)/n and 2; = a+ (j — 3)J, plus an error that is
at most C'(b — a)3/24n? in absolute value.

(In contrast, the error in the left- or right-endpoint Riemann sum obtained by taking
zj —a = (j —1)é or jd instead of (j — )0 is usually no better than K (b — a)?/2n
where K is an upper bound for |f’(z)|, as the example of a linear function shows.
The improvement from 1/n decay to 1/n? decay as m increases is computationally
significant! The error estimates for the trapezoidal rule and Simpson’s rule can also be
obtained by similar uses of Taylor’s theorem.)

k+(1/2

k—(1/2)
log k + ¢, where |cx| < 1/2k%. (The coefficient 1/2 isn’t very sharp when k is large,

but that’s OK.) Summing from k£ = 1 to k& = n and evaluating the integral by calculus,
deduce that

7. Use part (a) of the preceding problem to show that for k = 1,2,3, .. ., ) logzdr =

n+(1/2) n
log(n!):/ log:z:dx+ch:(n+%)logn—n+Cn
1/2 T
where the constant C), approaches a finite limit L as n — oco. On exponentiating, this
gives Stirling’s formula
n! ~ eLnn+(1/2)€fn

where A,, ~ B, means that A,/B, — 1 as n — oo. The constant el turns out to be
V21 — a pretty fact, but not needed to extract most of the power of Stirling’s formula.



