Math 425A

Assignment 1

due Wednesday, January 13
The following exercises were inspired by problems 5.5, 5.6, 5.14, 5.16, 5.19, and 5.22 in Apostol, but I found that I wanted to modify or reword them. Note: "Differentiable" $=$ "having a finite derivative".

1. Let $f(x)=x^{2} \sin (1 / x)$ for $x \neq 0$ and $f(0)=0$.
a. Calculate $f^{\prime}(x)$ for $x \neq 0$.
b. Show that $f^{\prime}(0)$ exists and equals 0 . (You'll need to work directly from the definition of $f^{\prime}(0)$.) Conclude that f is a function whose derivative exists everywhere but is not everywhere continuous. By the way, this provides a nice illustration of Theorem 5.16: f^{\prime} has the intermediate value property even thought it isn't continuous.
2. Let $f(x)$ be as in Problem 1 and let $g(x)=f(x)+\frac{1}{2} x$. Thus $g^{\prime}(x)=f^{\prime}(x)+\frac{1}{2}$, and in particular, $g^{\prime}(0)=\frac{1}{2}>0$. Show, nonetheless, that g is not increasing in any neighborhood of 0 ; more precisely, every interval containing 0 has subintervals on which g is decreasing. (Compare this with Theorem 5.7!)
3. Prove the product rule for nth order derivatives (also called Leibniz's formula): If $h(x)=f(x) g(x)$, then

$$
h^{(n)}(x)=\sum_{k=0}^{n}\binom{n}{k} f^{(k)}(x) g^{(n-k)}(x), \quad \text { where } \quad\binom{n}{k}=\frac{n!}{k!(n-k)!}
$$

(Use induction on n. You can take for granted the identity $\binom{n}{k}+\binom{n}{k-1}=\binom{n+1}{k}$.)
4. Suppose that f is differentiable in the interval $(0,1)$ and that f^{\prime} is bounded there (i.e., $\left|f^{\prime}(x)\right| \leq C$ for some $\left.C>0\right)$. Show that $\lim _{n \rightarrow \infty} f(1 / n)$ exists. (Hint: Show that this sequence is Cauchy.)
5. Suppose f is continuous on the interval (a, b) and differentiable everywhere in (a, b) except possibly at the point $c \in(a, b)$. Show that if $\lim _{x \rightarrow c} f^{\prime}(x)=L$, then $f^{\prime}(c)$ exists and equals L. (Apply the mean value theorem to the difference quotients defining $\left.f^{\prime}(c).\right)$
6. Suppose that f is continuous on $[a, b]$ and twice differentiable on (a, b), and suppose that the line segment joining the points $(a, f(a))$ and $(b, f(b))$ intersects the graph of f at a third point $(c, f(c))$. Prove that there is at least one point $z \in(a, b)$ such that $f^{\prime \prime}(z)=0$.
7. Suppose that f is differentiable on the interval (a, ∞), and that $f(x) \rightarrow 1$ and $f^{\prime}(x) \rightarrow c$ as $x \rightarrow \infty$. Show that $c=0$.

