The Laplace Transform

Here we give a very brief introduction to the Laplace transform, a useful device for solving certain kinds of differential equations.

Suppose \(f(t) \) is a piecewise continuous function defined for \(t \geq 0 \) which grows at most exponentially as \(t \to \infty \), that is, for which there exist constants \(C > 0 \) and \(a > 0 \) such that

\[
|f(t)| \leq Ce^{at}.
\]

The \textit{Laplace transform} of \(f \) is the function \(F(s) \) defined for \(s > a \) by

\[
F(s) = \int_0^\infty e^{-st} f(t) \, dt.
\]

(In view of (1), the integral converges for \(s > a \) by comparison to \(\int_0^\infty e^{(a-s)t} \, dt \).) The \textit{Laplace transform} itself is the operation that takes \(f \) to \(F \). When it is useful to indicate this operation explicitly, we denote it by \(\mathcal{L} \) and write

\[
F = \mathcal{L}[f] \quad \text{or} \quad F = \mathcal{L}[f(t)].
\]

Let’s compute a few examples to get started:

\[
\mathcal{L}[1] = \int_0^\infty e^{-st} \, dt = \left. -\frac{1}{s} e^{-st} \right|_0^\infty = \frac{1}{s} \quad (s > 0).
\]

\[
\mathcal{L}[\cos bt] = \int_0^\infty e^{-st} \cos bt \, dt = \left. \frac{-e^{-st}(s \sin bt + \cos bt)}{s^2 + b^2} \right|_0^\infty = \frac{b}{s^2 + b^2} \quad (s > 0).
\]

\[
\mathcal{L}[\sin bt] = \int_0^\infty e^{-st} \sin bt \, dt = \left. \frac{-e^{-st}(s \cos bt - \sin bt)}{s^2 + b^2} \right|_0^\infty = \frac{s}{s^2 + b^2} \quad (s > 0).
\]

The utility of the Laplace transform is due to some general facts about the way it operates. First, it is obvious that the Laplace transform is a \textit{linear} operation:

\[
\mathcal{L}[c_1 f_1 + c_2 f_2] = c_1 \mathcal{L}[f_1] + c_2 \mathcal{L}[f_2].
\]

More interestingly, the Laplace transform converts differentiation into a simple algebraic operation: Indeed, suppose \(f \) is differentiable, \(f' \) is continuous, and both satisfy the estimate (1), so that \(\mathcal{L}[f] \) and \(\mathcal{L}[f'] \) are both defined for \(s > a \). Then we have:

\[
\text{If } F = \mathcal{L}[f], \text{ then } \mathcal{L}[f'] = sF(s) - f(0).
\]

The proof is a simple integration by parts:

\[
\mathcal{L}[f'](s) = \int_0^\infty e^{-st} f'(t) \, dt = e^{-st} f(t) \big|_0^\infty - \int_0^\infty (-se^{-st}) f(t) \, dt = -f(0) + s \int_0^\infty e^{-st} f(t) \, dt = -f(0) + \mathcal{L}[f](s).
\]

\((e^{-st} f(t) \text{ vanishes at } t = \infty \text{ because } f \text{ satisfies (1)} \text{ and } s > a.\)
If \(f \) has more derivatives, we can apply this result repeatedly to get formulas for their Laplace transforms in terms of \(F = \mathcal{L}[f] \). For the second derivative, we have

\[
L[f''](s) = sL[f'](s) - f'(0) = sL[f](s) - f(0) - f'(0) = s^2F(s) - sf(0) - f'(0).
\] (8)

The pattern should now be clear: the formula for \(L[f^{(n)}] \) is

\[
L[f^{(n)}](s) = s^n F(s) - s^{n-1}f(0) - s^{n-2}f'(0) - \cdots - f^{(n-1)}(0).
\] (9)

The next general formula is, in a sense, dual to (7). Just as \(\mathcal{L} \) converts differentiation into multiplication by \(s \) (with an adjustment for the initial value \(f(0) \)), it converts multiplication by \(t \) into differentiation (with a minus sign):

\[
If \ F = \mathcal{L}[f], \ then \ \mathcal{L}[tf(t)] = -F'.
\] (10)

The proof is easy, if we take for granted the fact that differentiation with respect to \(s \) commutes with integration with respect to \(t \) (not completely obvious, but true):

\[
F'(s) = \frac{d}{ds} \int_0^\infty e^{-st}f(t) \, dt = \int_0^\infty \frac{d(e^{-st})}{ds}f(t) \, dt = -\int_0^\infty e^{-st}tf(t) \, dt = -\mathcal{L}[tf(t)](s).
\]

Here’s one more useful general formula:

\[
If \ F = \mathcal{L}[f], \ then \ \mathcal{L}[e^{at}f(t)] = F(s - a).
\] (11)

This is obvious:

\[
\mathcal{L}[e^{at}f(t)] = \int_0^\infty e^{-st}e^{at}f(t) \, dt = \int_0^\infty e^{(a-s)t}f(t) \, dt = F(s - a).
\]

This formula also has a dual, which I’ll let you figure out in a homework problem.

Combining (10) and (11) with (3)–(5), we can enlarge our dictionary of Laplace transforms. For example,

\[
\mathcal{L}[e^{at}] = \frac{1}{s-a}
\] (12)

\[
\mathcal{L}[t^ne^{at}] = (-1)^n \frac{d^n}{ds^n} \frac{1}{s-a} = \frac{n!}{(s-a)^{n+1}}
\] (13)

\[
\mathcal{L}[e^{at}\cos bt] = \frac{s-a}{(s-a)^2 + b^2}
\] (14)

\[
\mathcal{L}[e^{at}\sin bt] = \frac{b}{(s-a)^2 + b^2}
\] (15)

One final, and absolutely crucial, general fact is that a function is completely determined by its Laplace transform. That is, if \(f \) and \(g \) are piecewise continuous functions that grow at most exponentially at infinity and \(\mathcal{L}[f] = \mathcal{L}[g] \), then \(f = g \). We shall not attempt to prove this here.
Let's see how the Laplace transform can be used to solve some differential equations.

Example 1. Let's start with a problem that we already know how to solve: the homogeneous second-order constant-coefficient equation with initial conditions

\[y'' + ay' + by = 0, \quad y(0) = y_0, \quad y'(0) = y'_0. \]

Applying the Laplace transform turns this into the *algebraic* equation

\[s^2 Y - y_0 s - y'_0 + a(sY - y_0) + bY = 0 \]

for \(Y = \mathcal{L}[y] \). The solution is

\[Y = \frac{y_0 s + y'_0 + ay_0}{s^2 + as + b}. \] \hspace{1cm} (16)

Note that the quadratic polynomial \(s^2 + as + b \) is the same one that enters into the method of solution in Section 18.4 of the text. If it has two real roots \(r_1, r_2 \), we can do a partial fraction decomposition of (16) to obtain

\[Y = \frac{c_1}{s - r_1} + \frac{c_2}{s - r_2}, \]

where \(c_1 \) and \(c_2 \) depend on the initial values \(y_0 \) and \(y'_0 \). Undoing the Laplace transform by (12), we obtain

\[y = c_1 e^{r_1 t} + c_2 e^{r_2 t}, \]

If the quadratic in (16) has complex roots \(\alpha \pm i\beta \), (16) can be rewritten in the form

\[Y = \frac{c_1(s - \alpha) + c_2\beta}{(s - \alpha)^2 + \beta^2} \quad (c_1 = y_0, \quad c_2 = (y'_0 + (\alpha + \alpha)y_0)/\beta), \]

and then from (14) and (15),

\[y = c_1 e^{\alpha t} \cos \beta t + c_2 e^{\alpha t} \sin \beta t. \]

Finally, if \(a^2 = 4b \) so that the quadratic is \((s - r)^2 \) with \(r = a/2 \), we rewrite (16) as

\[Y = \frac{c_1(s - r) + c_2}{(s - r)^2} = \frac{c_1}{s - r} + \frac{c_2}{(s - r)^2} \quad (c_1 = y_0, \quad c_2 = y'_0 + (a + r)y_0), \]

and then from (13),

\[y = c_1 e^{rt} + c_2 te^{rt}. \]

Thus we recover the results of Section 18.4; the nice thing is that the dependence of the constants \(c_1 \) and \(c_2 \) on the initial conditions comes out of the computation automatically.
Example 2. The same idea works for inhomogeneous constant-coefficient equations $L[y] = g$, provided that we can handle the Laplace transform of g. This is certainly the case when g is of one of the types for which the method of judicious guessing works, which are the same types whose Laplace transforms have been computed above. To be specific, let’s solve

$$y'' + 5y' + 6 = \sin 5t, \quad y(0) = y'(0) = 0.$$

Applying the Laplace transform, with these initial conditions, yields

$$(s^2 + 5s + 6)Y = \frac{5}{s^2 + 25},$$

so that

$$Y = \frac{5}{(s^2 + 25)(s + 2)(s + 3)}.$$

A rather gruesome partial-fractions calculation yields

$$Y = \frac{1}{986} \left[\frac{170}{s + 2} - \frac{145}{s + 3} - \frac{25s + 95}{s^2 + 25} \right],$$

so that, by (12), (14), and (15),

$$y = \frac{1}{986} \left[170e^{-2t} - 145e^{-3t} - 25\cos 5t - 19\sin 5t \right].$$

Example 3. The Laplace transform is also an efficient tool for solving systems of simultaneous differential equations. For example, here is a system of two equations in two unknown functions y_1 and y_2, with initial conditions:

$$y_1' = -8y_1 - 9y_2, \quad y_2' = 4y_1 + 4y_2; \quad y_1(0) = c_1, \quad y_2(0) = c_2.$$

Applying the Laplace transform yields a system of two linear algebraic equations for $Y_1 = \mathcal{L}[y_1]$ and $Y_2 = \mathcal{L}[y_2]$:

$$sY_1 - c_1 = -8Y_1 - 9Y_2, \quad sY_2 - c_2 = 4Y_1 + 4Y_2,$$

or

$$(s + 8)Y_1 + 9Y_2 = c_1, \quad -4Y_1 + (s - 4)Y_2 = c_2.$$

Solving these together yields

$$Y_1 = \frac{(s - 4)c_1 - 9c_2}{(s + 2)^2} = \frac{c_1}{s + 2} - \frac{6c_1 + 9c_2}{(s + 2)^2}, \quad Y_2 = \frac{4c_1 + (s + 8)c_2}{(s + 2)^2} = \frac{c_2}{s + 2} + \frac{4c_1 + 6c_2}{(s + 2)^2}.$$

Therefore, by (12) and (13),

$$y_1 = c_1e^{-2t} - (6c_1 + 9c_2)te^{-2t}, \quad y_2 = c_2e^{-2t} + (4c_1 + 6c_2)te^{-2t}.$$
Example 4. The Laplace transform is less effective in dealing with variable-coefficient equations, but sometimes it can be used there too. As an example, let us derive the fundamental set of solutions of the equation

\[ty'' - (t + 2)y' + 2y = 0 \]

(17)

that were used in Problem 2, Assignment 6 (with \(t \) relabeled as \(x \)). Applying the Laplace transform and setting \(Y = \mathcal{L}[y] \), \(y_0 = y(0) \), and \(y'_0 = y'(0) \), we have

\[-\frac{d}{ds}[s^2Y - sy_0 - y'_0] + \frac{d}{ds}[sY - y_0] - 2[sY - y_0] + 2Y = 0. \]

The first term is \(-2sY - s^2Y' + y_0\) and the second one is \(Y + sY'\), so

\[(s - s^2)Y' + (3 - 4s)Y = -3y_0, \quad \text{or} \quad Y' + \frac{4s - 3}{s^2 - s}Y = \frac{3y_0}{s^2 - s}.\]

(Note that \(y'_0\) has dropped out! The point \(t = 0 \) is a singular point for equation (17), so we cannot specify initial conditions in the usual way.) This is a first-order linear equation for \(Y \). Since

\[\frac{4s - 3}{s^2 - s} = \frac{s + 3(s - 1)}{s(s - 1)} = \frac{1}{s - 1} + \frac{3}{s}, \]

its integrating factor is \(\exp[\ln(s - 1) + 3 \ln s] = s^3(s - 1) \). Multiplying through by this yields

\[[s^3(s - 1)Y]' = 3y_0s^2, \]

so

\[Y = \frac{y_0s^3 + C}{s^3(s - 1)} = \frac{y_0}{s - 1} + \frac{C}{s^3(s - 1)} = \frac{y_0}{s - 1} + C \left[\frac{1}{s - 1} - \frac{1}{s} - \frac{1}{s^2} - \frac{1}{s^3} \right]. \]

(Some partial-fractions algebra has been skipped here.) Inverting the Laplace transform now gives

\[y = (y_0 + C)e^t - C(1 + t + \frac{1}{2}t^2). \]

Taking \(y_0 = 1, C = 0 \) gives the solution \(e^t \), and taking \(y_0 = 2, C = -2 \) gives the solution \(t^2 + 2t + 2 \), as claimed in the homework problem.

To harness the full power of the Laplace transform, one needs a way of inverting it that is more systematic than merely compiling a table of functions \(f \) and their Laplace transforms \(\mathcal{L}[f] \) and reading it from right to left, which is essentially what we have done. However, the general formula for the inverse Laplace transform involves the theory of functions of a complex variable, which is beyond the scope of this course. (It is this general inversion formula that establishes the fact that if \(\mathcal{L}[f] = \mathcal{L}[g] \) then \(f = g \), stated before Example 1.) If you’re interested, though, one reference is *Fourier Analysis and its Applications* by Folland.