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The Complex Exponential and Trig Functions

Complex Numbers. For many, many purposes in advanced mathematics it is useful
to enlarge the real number system to include the square roots of —1, conventionally denoted
by +:. On combining these with the real numbers by addition and multiplication, one
obtains the system C of compler numbers, that is, the set of all quantities of the form
a + ib where a and b are real numbers. a and b are called the real and imaginary parts of
a + 2b.

The four operations of arithmetic extend easily to the complex numbers. Addition
and subtraction are child’s play:

(a+1b) £ (c+1id) = (a+c) £ i(b+d).
Multiplication is also easy, using the fact that 12 = —1:
(a+1b)(c + id) = ac + ibc + iad + i*bd = (ac — bd) + i(bc + ad).

Division is slightly less obvious, but it can be reduced to real division by a trick that is
familiar from manipulations with square roots of real numbers:

a+1ib a-l-ib.c—id_ ac+bd+ibc—ad
c+id c+id c—id A2+d® 2+d?

The complex numbers tend to be surrounded with an air of mystery that is totally
undeserved. There are two psychological barriers to using them: the fact that they don’t
fit on the real number line, and the name “imaginary” that is traditionally attached to
them. The solution to the first problem finally dawned on people about 200 years ago:
complex numbers should be represented not as points on a line but as points in a plane.
That is, we identify the complex number a+ib with the point (a, b) in the Cartesian plane.
Once this geometric picture is at hand, the word “imaginary” loses its sting: complex
numbers are no more (or less) imaginary than real numbers.

The complex conjugate of the complex number z = a+14b is the number a —ib (geomet-
rically, the reflection of a 4 ib in the z-axis). Mathematicians like to denote the conjugate
of z by Z; physicists tend to prefer z*. The absolute value or modulus of z = a + ib is

|z| = V2Zz = Va2 + b2,

which is geometrically the distance from z to the origin. It’s an important fact that for
any complex numbers z = a + b and w = ¢ + id we have

2w = |z] ],
which is just a restatement of the algebraic identity

(ac — bd)? + (bc + ad)? = (a® + b?)(c? + d?).



A series Y ¢x of complex numbers ¢ = ay, + ibg (ar and by real) is said to converge
if the corresponding series of real and imaginary parts, Y ax and ) b, both converge. In
this case the sum of the series is the obvious thing:

cx = ag + ibg - ch:Zak-l—iZbk.
Since |a] < va? 4+ b? and [b] < Va? + b2, we see that

Z |ck| converges —> Z lax| and Z |bx| converge
= Zak and Zbk converge —> ch converges.
Thus the fact that an absolutely convergent series converges continues to hold for complex
series.

The Complex Exponential Function. The series ), 2™ /n! converges absolutely
for any complex number z, by the ratio test (since |2™| = |z|™). This series equals e* when
z is real, and we use it to define e for z complex:

k

ezzz% (z € C). (1)

The main step in dispelling the mystery of this complex exponential function is showing
that it still obeys the basic law of exponents.

Proposition. For any complex numbers z and w,
efe? = e v, (2)

Proof: We have
2w Sl > wk . wk
T (ZF> (Zﬁ) = 2 T

j=0 " k=0 4,k=0

We sum the double series on the right by first adding up the terms where j + £ is a fixed
number n (that is, j runs from 0 to n and k¥ = n — j), and then summing over all possible
n (that is, n =0,1,2,...):

ee” = —_ = — — 2",

N — 1) 1 N — 1)

oy e jin—j)t i n! = Jl(n —j)!
By the binomial theorem, the sum over j gives (z + w)™, so

o
(z+w)" "
z W __ - ZTw
e‘e” = E T e . ]

n=0

(Actually, these manipulations with double series need some justification. I can give you
a reference for the full proof if you're interested.)
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Now, if z = z + iy, by (2) we have e* = e%e®¥. We know what e” is; what about e¥?
Well since

i2=-1, 3 =—i it=1,... " =1, i,

from (1) we obtain

LT y?2 y ¥y
= _(1 SRR >+’<y 31 T 5l )
0

or in other words, .
e = cosy + isiny. (3)

This marvelous formula, due to Euler, reveals the deep connection between exponential
and trigonometric functions.
Replacing y by —y, we see that

e = cos(—y) + isin(—y) = cosy — isiny. (4)

Adding and subtracting (3) and (4), we obtain formulas for the trig functions in terms of

exponentials:

e + e~ e e

N siny = ———.
2 Y 2i

These equations explain the formal similarity between trig and hyperbolic functions:

(5)

cosy =

cosh(iy) = cosy, sinh(iy) = isiny.
They also lead to an easy derivation of the addition formulas for sine and cosine:

cos(a + b) = (cosa)(cosb) F (sina)(sinb),

sin(a £ b) = (sina)(cosb) £ (cos a)(sinb). (6)

Namely, use (5) to express the factors on the right in terms of e*%® and e*®

according to (2), and simplify to obtain the expressions on the left.

, multiply out

Trig Functions Done Right. The high-school definitions of sine and cosine are
unacceptably vague because they involve measuring of an angle without giving a precise
algorithm for doing so. We are now in a position to remedy this defect. Namely, we take
the Taylor expansions

= (~1)ka?* = (CDkah

cosx:ZTk)!, sinmzzozm, (7)

0

or equivalently the formulas (5), as a definition of sine and cosine. This leads immediately
to the differentiation formulas

cos’ = —sin, sin’ = cos (8)
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and also to the addition formulas (6), as explained above. From these identities, all the
other properties of trig functions are easy to derive, for example,

cos® z 4 sin® z = cos(x — x) = cos 0 = 1. 9)

The one thing that is not so obvious is the connections of cos and sin with the number
m, and in particular their periodicity properties. These can be derived as follows. First,
observe that the series Y " (—1)*22%/(2k)! for cos2 is an alternating series whose terms
decrease in size beginning with £ = 1; so by the alternating series test,
2 4 )
cos2=1-— o = —1 with error less than TREE
and in particular cos2 < 0. Since cos0 =1 > 0, by the intermediate value theorem there
is at least one number a € (0,2) such that cosa = 0. Call the smallest such number [of
course it turns out that there is only one] im. (This is to be taken as a definition of m,
from which the usual one as the ratio of the circumference to the diameter of a circle can

then be derived by calculus.) Now cosz > 0 for = € (0, 1x), so by (8) sinz is increasing

for z € (0, 27). Also sin0 = 0, so sin(27) > 0, and by (9), sin*(37) = 1 — cos?(37) = 1.

Conclusion: sin(27) = 1. Now use the addition formulas:

cos(z + 3m) = (cosz)(cos 3m) — (sinz)(sinim) =0-cosz —1-sinz = —sinz,
sin(z + 3m) = (sinz)(cos 3m) + (cos z)(sin

DN D=

m)=0-sinz +1-cosz = cos .

Iterating these identities gives

cos(z + ) = cos(z + 37 + 3m) = —sin(z + 37) = — cos z,
sin(z + ) = sin(z + 37 + 37) = cos(z + 37) = —sinz,
and hence
cos(z + 2m) = cos(x + 7+ 7) = cos x, sin(z + 2r) = sin(z + 7 + m) = sin z.

Logarithms and Powers of Complex Numbers. If z is a nonzero complex
number, a logarithm of z is a complex number w such that e” = z. Logarithms can easily
be found by writing z = z + iy in polar coordinates (z = rcos, y = rsinf):

z =r(cosf + isin @) = re?? = elosT+i0

so logr + 146 is a logarithm of z. We say a logarithm rather than the logarithm because the

angle @ is only determined up to multiples of 27, so each z has infinitely many logarithms.
If we fix a logarithm of z, call it log z, we can then define complex powers of z by

20 — 0 logz’
the quantity on the right being defined by (1). Different choices of log z will usually yield
different answers. If a is an integer there is no ambiguity; if a = p/q with p, g integers then
there are g possibilities (each nonzero complex number has ¢ distinct gth roots); and if a
is irrational there are infinitely many. But how to sort this all out sensibly is a subject for
another course . ..



