ERRATA to “INTRODUCTION TO PARTIAL DIFFERENTIAL EQUATIONS” (2nd ed.)
G. B. Folland
Last updated September 6, 2017

Additional corrections will be gratefully received at folland@math.washington.edu.

Page 2, line −7: $a_n \rightarrow \alpha_n$
Page 3, line 1 after “Function Spaces”: dente \(\rightarrow\) denote
Page 12, line 14: $e^{1/(1-t^2)} \rightarrow e^{1/(t^2-1)}$
Page 16, line 5: reamins \(\rightarrow\) remains
Page 18, line −6: graddaddy \(\rightarrow\) granddaddy
Page 43, second-to-last displayed equation: $\partial_j^t \rightarrow \partial_t^j$
Page 43, last displayed equation: $|\alpha_j| \rightarrow |\alpha_j|$
Page 61, Lemma 1.53: You can replace $(d/2)^k$ by d^k, and the proof is trivial. (Exercise!)
Page 67, 3rd line of proof of Theorem 2.1: $\hat{f} \rightarrow \hat{u}$
Page 69, line 2: $C^1 \rightarrow C^2$
Page 77, line −7: Insert “the final paragraph of” before “§4B.”
Page 84, line 12: (2.31) \(\rightarrow\) (2.32)
Page 87, line 7: $\delta(x,y) \rightarrow \delta(x-y)$
Page 87, first line after Claim (2.38): calleed \(\rightarrow\) called
Page 91, line 1: (2.37) \(\rightarrow\) (2.40)
Page 97, second display in proof of Theorem 2.48: $\omega_{n-1} \rightarrow \omega_n$
Page 97, next line after preceding item: (2.44) \(\rightarrow\) (2.46)
Page 99, line −10: $P_k \Delta P_j \rightarrow \overline{P_k \Delta P_j}$
Page 100, line −10: ser \(\rightarrow\) set
Page 100, line −1: proerties \(\rightarrow\) properties
Page 105, lines 9 and 14: $\frac{n-1}{r} \rightarrow \frac{n-1}{r} f'(r)$
Page 109, Exercise 5, Hint: $e^{i\theta} \rightarrow e^{ik\theta}$
Page 112, line −5: corvilinear \(\rightarrow\) curvilinear
Page 118, Remark, line 2: $C^1(\overline{\Omega}) \rightarrow C^2(\overline{\Omega})$
Page 119, last line of proof of Prop. 3.6: right \(\rightarrow\) left
Page 121, line −3: (3.11) \(\rightarrow\) (3.10)
Page 133, Exercise 1: The asserted formula for $u(x)$ should be multiplied by R^{n-1} (including the case $n = 2$).
Page 134, Exercise 2: The integrand of the second integral should be $f(y)N(y)$.
Page 145, line 4: \(K(x, t) \rightarrow K(x - x_0, t_0 - t) \) (two places)

Page 150, lines 1 and 2: \(k_\psi \rightarrow \kappa_\psi \)

Page 173, formula (5.22): \(\frac{1}{1 \cdot 3 \cdot \ldots (n-1)} \rightarrow \frac{2}{1 \cdot 3 \cdot \ldots (n-1)} \) and \(\int_{|y|=1} \rightarrow \int_{|y|\leq1} \)

Page 174, formula (5.24): \(\partial_t u - \Delta u \rightarrow \partial^2_t u - \Delta u \)

Page 175, line -3: \(\partial_t v - \Delta v \rightarrow \partial^2_t v - \Delta v \)

Page 177, formula (5.22): \(\frac{1}{1 \cdot 3 \cdot \ldots (n-1)} \rightarrow \frac{2}{1 \cdot 3 \cdot \ldots (n-1)} \) and \(\int |y| = 1 \rightarrow \int |y| \leq 1 \)

Page 178, formula (5.24): \(\partial_t u - \Delta u \rightarrow \partial^2_t u - \Delta u \)

Page 192, line 9: if \(\rightarrow \) of

Page 194, line 3 of Proof: \(\|f\|_s \rightarrow C\|f\|_s \)

Page 195, next-to-last line of Remark 1: Example 1 \(\rightarrow \) Example 2

Page 201, lines 9 and 11: \(f_{k,j} \rightarrow \hat{f}_{k,j} \)

Page 203, line -8: \((1 + t^2)^{(s-1)/2} \rightarrow (1 + t^2)^{(s-1)/2} \)

Page 204, line -4: \(u \rightarrow f \)

Page 207, lines 5, 7, and 8: \(u \rightarrow f \)

Page 208, line 2: \(\|\phi\|_{s-x} \rightarrow \|\phi\|_{s+x} \)

Page 208, line 6: There should be no restriction on the support of \(g \) in this formula. However, let \(\phi \) be a function in \(C_c^\infty(\Theta^{-1}(\Omega_0')) \) with \(\phi = 1 \) on \(\Theta^{-1}(\Omega_0') \); then \(\int (f \circ \Theta)g = \int (f \circ \Theta)\phi g \), so one can replace \(g \) by \(\phi g \) in the subsequent argument. Since the map \(g \rightarrow \phi g \) is bounded on \(H_s \) for all \(s \), this yields the desired estimate in the end.

Page 208, line 5: ony \(\rightarrow \) any

Page 210, formula (6.27): \(|\alpha| \leq k \rightarrow |\alpha| = k \)

Page 212, lines 9 and 10: \(|\alpha| \leq k \rightarrow |\alpha| = k \)

Page 218, lines 9 and 10: \(|\alpha| \leq k \rightarrow |\alpha| = k \)

Page 224, line 8: \(\int_{\mathcal{N}} (r) \rightarrow \int_{\mathcal{N}(r)} \)

Page 225, line 1: if \(\rightarrow \) of

Page 225, Theorem (6.47): \(S \rightarrow \partial \Omega \) (two places)

Page 274, line 2: \(\phi = 1 \) on sing supp \(u \rightarrow \phi = 1 \) on a neighborhood of sing supp \(u \)
Page 280, line 7: $D^\beta_\xi \to D^\alpha_\xi$
Page 287, line 9: $d\eta \to dy$
Page 289, next-to-last line of proof of Corollary (8.32): $\Psi^{-\infty} \to S^{-\infty}$
Page 290, line 3 of proof: $u(x)v(y) \to u(y)v(x)$
Page 293, line 4: then then \to then
Page 305, line 3: and and \to and