ERRATA TO "ADVANCED CALCULUS"

(first two printings)

G. B. Folland

The errata listed below were corrected in the third printing. Additional errata found since these corrections were made are in a separate document.

"line -n" means "line n from the bottom."

Page 3, line 10: element some \rightarrow element of some

Page 4, Section 1.1, line 3: where points \rightarrow where ordered *n*-tuples of numbers can represent points

Page 7, line 5: Insert an equal sign after the 3×3 matrix.

Page 8, line 6: point point \rightarrow point

Page 9, Exercise 7b: $c \rightarrow c$

Page 9, line 7 of $\S 1.2$: notation and \rightarrow notation

Page 12, Exercise 8: is a \rightarrow is

Page 13, line 2 after (1.7): $\delta' = \delta \rightarrow \delta' = \delta/\sqrt{n}$

Page 13, line 3 after (1.7): $\delta = \delta'/\sqrt{n} \rightarrow \delta = \delta'$

Page 19, Exercise 2b: Insert "f(x,y) =" at the beginning.

Page 19, Exercise 7: Insert "and q > 0" at the end of the first line.

Page 23, Exercise 4, line 2: 115 \rightarrow 1.15

Page 23, Exercise 5: The f's should be \mathbf{f} 's.

Page 25, line 3 of proof of Theorem 1.16: all $n \rightarrow \text{all } k$

Page 38, Exercise 4: S and $T \rightarrow S_1$ and S_2

Page 38, Exercise 11b: On the first line, insert "is continuous and" before "satisfies." At the end, replace "conclude that f must be discontinuous at t_0 " by "derive a contradiction".

Page 47, line 2 of proof of Theorem 2.9: $g(a)[f(x) \rightarrow g(a)][f(x)$

Page 54, last line of Example 1: $\partial_1 f \rightarrow \partial_3 f$

Page 60, line 7: $\lim_{t\to 0} \rightarrow \lim_{t\to 0}$

Page 60, line -10: $f(\mathbf{a} + t\mathbf{u}) \rightarrow f(\mathbf{a} + t\mathbf{u})$

Page 77, Exercise 4: Replace "(x,y), (x,z), or (y,z)" by "(x,y) or (x,z)" and "all" by "both".

Page 78, line 4 of Example 1: $2e^{2y}\sin(x^3 + e^{2y}) \rightarrow 2e^{2y}\cos(x^3 + e^{2y})$

Page 82, line 5: The second $\sin^2 \theta$ should be $\cos^2 \theta$.

Page 82, line 6: $\partial^2 u/\partial r/\partial \theta \rightarrow \partial^2 u/\partial r\partial \theta$

```
Page 84, line 5: Sorry about the formula sticking out into the margin!
```

Page 89, line 1: $2.63 \rightarrow 2.62$

Page 90, line following (2.66): $k \rightarrow j$

Page 92, line -4: $P_j(t\mathbf{h}) \rightarrow P(t\mathbf{h})$

Page 94, Exercise 5b: $y^3 \rightarrow y^2$

Page 95, last line of Exercise 10: $\alpha \in S \rightarrow \mathbf{a} \in S$

Page 99, line 11: $12 - 6x \rightarrow 12 - 6x - 8y$

Page 99, lines 15 and -9: alternatively \rightarrow alternately

Page 108, lines -7 to -5: $T \rightarrow L$ (in several places)

Page 109, line -5: Exercises \rightarrow Exercise

Page 110, line 3: to to \rightarrow to

Page 114, lines -9, -8, and -6: $f \rightarrow F$ (5 places)

Page 118, line 3 of Theorem 3.9: $\partial F_i/\partial x_i \rightarrow \partial F_i/\partial y_i$

Page 120, Exercise 9: 3 \rightarrow 6

Page 122, 2nd line of proof of Theorem 3.11: $\mathbf{f}'(t_0) \neq 0 \rightarrow \mathbf{f}'(t_0) \neq \mathbf{0}$

Page 125, Exercise 3, line 1: the set \rightarrow the set S =

Page 125, Exercise 6b: $F \rightarrow F_3$

Page 126, line -8: nonegeneracy \rightarrow nondegeneracy

Page 130, line -14: potential \rightarrow potential

Page 135, caption of Figure 3.8: Insert comma after v^2

Page 137, 4th line of proof of Theorem 3.18: solvability \rightarrow solvability

Page 139, Exercise 3, line 1: $u = \rightarrow$ Let u =

Page 160, Theorem 4.17a: $c_1 f_+ c_2 f_2 \rightarrow c_1 f_1 + c_2 f_2$

Page 160, Theorem 4.17b: Then f is integrable on S_1 and S_2 if and only if f is integrable on $S_1 \cup S_2$, \rightarrow If f is integrable on S_1 and S_2 then f is integrable on $S_1 \cup S_2$,

Page 163, line -1: is \rightarrow in

Page 167, Exercise 4: A better hint: For any rectangle that does not intersect S, there are slightly smaller rectangles that do not intersect \overline{S} .

Page 168, line 2: $c \rightarrow C$ (two places; to avoid conflict with another use of "c" in the same exercise).

Page 174, last line of Example 4: $e^{-3} \rightarrow e^{-1}$

Page 184, line -4: $r^3 \rightarrow r^4$ and $12 \rightarrow 8$.

Page 184, line -2: $\frac{1}{12\pi}$ \rightarrow $\frac{1}{8\pi}$ and $\frac{1}{6} \rightarrow \frac{1}{4}$

Page 184, line -1: $\frac{1}{6}$ \rightarrow $\frac{1}{4}$ and $\frac{16}{9}$ \rightarrow $\frac{8}{3}$

Page 187, Exercise 5: center of mass \rightarrow mass

Page 190, second line after (4.49): $B(r, y_0) \rightarrow B(r, x_0)$

Page 192, last line before exercises: Exercise 7 \rightarrow Exercise 8

```
Page 195, display before Corollary 4.57: b^{p-1}
Page 201, Exercise 2c: x-1 \rightarrow 1-x
Page 207, line -10: earlier in this section,
                                                       \rightarrow
                                                                in \S 4.2,
Page 208, line 2: sup \rightarrow
                                     \inf
Page 208, line 4: inf \rightarrow
Page 219, line -4: L'_{P}(C) \rightarrow L_{P'}(C)
Page 227, line 3: regular \rightarrow regular region
Page 228, Exercise 3: Assume C is positively oriented with respect to the region inside it.
Page 233, line 7: furface \rightarrow
Page 235, line -9: S^3 \rightarrow S_3
Page 245, line -11: destoyed \rightarrow
                                                destroyed
Page 246, line -5: diasppeared \rightarrow
                                                  disappeared
Page 249, lines 4, -11, and -8: |\eta| \rightarrow |\mathbf{y}|
Page 252, Exercise 2, line 2: Delete "potential and" and replace "are" by "is".
Page 257, Exercise 7, last line: Replace the formula for curl F by 3\mathbf{j} + (z\mathbf{i} - x\mathbf{k})/(x^2 + z^2)^2.
Page 258, line 2: f and g are C^1 functions \rightarrow f is C^1 and g is C^2
Page 263, line 12: \int_0^z \longrightarrow \int_c^z
Page 273, line 3: Delete "gives"
Page 273, line 13: T \rightarrow
                                    \mathbf{T}
Page 282, line 2 of proof of Theorem 6.6: R_k \rightarrow
Page 285, line -1: \sum_{1}^{k} \rightarrow \sum_{2}^{k}
Page 288, line 13: negligibly \rightarrow negligibly
Page 289, line 2: r_n \rightarrow r^n
Page 289, line 12: a_{n+3} \rightarrow a_{N+3}
Page 292, line 5: n[1 - (a_{n+1}/a_n)] > q \rightarrow n[1 - (a_{n+1}/a_n)] < q
Page 295, Exercise 23: x \ge \frac{1}{2} \longrightarrow x \ge 1/\sqrt{3}
Page 305, Exercise 11: \sum_{0}^{\infty} \rightarrow \sum_{1}^{\infty}
Page 310, line 1: 7.4 \rightarrow
                                     7.3
Page 314, Theorem 7.5, line 1: squence \rightarrow
                                                              sequence
Page 315, line -14: (\delta, \infty) \rightarrow [\delta, \infty)
Page 317, Example 2, line 1: x_n \rightarrow x^n
Page 317, Example 2, line 6: is it \rightarrow it is
Page 318, line 2: Weirestrass \rightarrow Weierstrass
Page 322, Exercise 1: \sum_{1}^{\infty} (-1)^{n-1} n^{-3} \rightarrow \sum_{n=1,3,5,\dots} n^{-3} + 2 \sum_{n=2,6,10,\dots} n^{-3} Page 322, Exercise 5, line 2: \sum_{1}^{\infty} \rightarrow -\sum_{1}^{\infty}
```

Page 324, line 1 of Theorem 7.17: $\sum_{n=0}^{\infty} a_n \rightarrow \sum_{n=0}^{\infty} a_n x^n$

```
Page 329, lines 7 and 8: -a (in exponent) \rightarrow -\alpha
```

Page 332, Exercise 6c:
$$1+t \rightarrow 1+2t$$

Page 338, line
$$-1$$
: $n \rightarrow k$ (two places)

Page 339, line 2:
$$n \rightarrow k$$
 (two places)

Page 341, Exercise 5:
$$\frac{\log}{b}a \rightarrow \log \frac{a}{b}$$

Page 341, Exercise 13:
$$e^{xt^2} \rightarrow e^{-xt^2}$$

Page 357, line 1:
$$\cos \theta \pm i \sin \theta \rightarrow \cos n\theta \pm i \sin n\theta$$

Page 359, line 8:
$$\frac{\theta e^{-in\theta}}{in} \rightarrow \frac{\theta e^{-in\theta}}{-in}$$

Page 362, Exercise 9: integrable
$$\rightarrow$$
 piecewise continuous

Page 364, line
$$-5$$
: $|f(\theta)|^2 \rightarrow |f(\theta)|^2 d\theta$

Page 365, formula (8.14):
$$\frac{1}{2\pi} \int_{-\pi}^{\pi} \rightarrow \int_{-\pi}^{\pi}$$

Page 369, line 7:
$$\sin(2m-1)\theta \to (-1)^{m-1}\sin(2m-1)\theta$$

Page 376, line
$$-2$$
: $0 \le \theta \le \pi \longrightarrow 0 < \theta < \pi$

Page 377, line 4:
$$(2\pi)^{\infty} \rightarrow (2\pi)^{-1}$$

Page 377, Exercise 6a:
$$\sum_{-\infty}^{\infty} \rightarrow \sum_{n\neq 0}$$

Page 383, equation (8.35):
$$\exp(-n^2\pi^2ktl^2) \rightarrow \exp\left(\frac{-n^2\pi^2kt}{l^2}\right)$$

Page 386, line 5: the the
$$\rightarrow$$
 the

Page 386, formula (8.38):
$$\sin n\pi ctl \rightarrow \sin \frac{n\pi ct}{l}$$

Page 389, Exercise 1, line 3:
$$\text{cm/sec}^2 \rightarrow \text{cm}^2/\text{sec}$$

Page 390, Exercise 3, line 5: insulated
$$\rightarrow$$
 constant-temperature

Page 390, Exercise 3, line 6:
$$\partial_x u(0,t) = \partial_x u(l,t) = 0 \rightarrow u(0,t) = u(l,t) = 0$$

Page 390, Exercise 4, line 3: an
$$\rightarrow$$
 and

Page 391, Exercise 6b, line
$$-2$$
: $\sinh c(l-y) \rightarrow \sinh c(L-y)$

Page 399, line
$$-15$$
: Delete "turns"

Page 399, Exercise 1:
$$x \rightarrow nx$$
 (two places)

Page 409, line 5:
$$(BA)^* \rightarrow (AB)^*$$

Page 414, line 4: A35
$$\rightarrow$$
 A.35

Page 415: Formula
$$(A45)$$
 should be $(A.45)$

Page 417, line 6: from
$$B \rightarrow \text{from } A$$

Page 423, line
$$-4$$
: 4.1 \rightarrow 4.3

Page 425, line
$$-9$$
: 4.39 \rightarrow 4.37

Page 426, line 3: a the
$$\rightarrow$$
 the

```
Page 426, line -1: \mathbf{F}(\mathbf{y})| \to \mathbf{F}(\mathbf{y})|

Page 427, line 8: \|\mathbf{x} - \mathbf{y}\| \to \|\mathbf{x} - \mathbf{y}\|

Page 434, line -11: D(S,T) \to d(S,T)

Page 439, line -12: \widetilde{F}^1 \to \widetilde{F}_1

Page 441, Section 1.5, 1(b): 3 \to 2 and -\frac{1}{2} \to -1

Page 442, Section 2.5, 4: Delete "2yz^2 - 2y^2z^{-3} + 6y"
```

Page 442, Section 2.6, 3a: $8x^3f_{13} \rightarrow 16x^3f_{13}$

Page 442, Section 2.0, 3a: $8x^2 J_{13} \rightarrow 103$

Page 442, Section 2.7, 1: (a) \rightarrow (b)

Page 442, Section 2.7, 2(a): $C = \frac{2}{3} \rightarrow C = 4$

Page 443, Section 2.7, 6: $\frac{3}{2}hk^2$ \rightarrow $\frac{1}{2}hk^2$

Page 443, Section 2.9, 1: $\frac{1}{4} \rightarrow \frac{1}{2}$

Page 443, Section 2.9, 3: $\min = (308 - 62\sqrt{31})/27$, $\max = 2/3\sqrt{3}$

Page 443, Sectioni 2.9, 15: $(\frac{22}{9}, \frac{4}{3}, \frac{14}{9}) \rightarrow (2, 0, 2)$

Page 443, Section 2.10, 1: $-y^2z^2 = 6xy^3z \rightarrow -y^2z^2 - 6xy^3z$

Page 444, Section 3.3, 2(a): should be 2x - y - z = 3

Page 444, Section 3.3, 3(a): $\mathbf{f}(u, v)$ should be $(u \cos v, u \sin v, f(u))$

Page 444, Section 3.4, 1(a): $Df \rightarrow Df$

Page 444, Section 3.4, 2(a): $(v - 2u, 2v - u) \rightarrow (2v - u, v - 2u)$

Page 445, Section 4.3, 3(b): Delete comma after dy.

Page 445, Section 4.3, 5(a): $\frac{9}{8}$ \rightarrow $\frac{17}{8}$

Page 445, Section 4.3, 5(b): $\sin 1 - \sin 2 \rightarrow \sin 2 - \sin 1$

Page 445, Section 4.3, 12: 123 \rightarrow 126

Page 446, Section 4.4, 15: $\frac{1}{2}\pi^2 \rightarrow \frac{1}{2}\pi^2 R^4$.

Page 446, Section 4.5, 2(b): $2\cos x^4 \rightarrow 2x^{-1}\cos x^5$

Page 446, Section 4.5, 2(c): 4 \rightarrow 2

Page 446, Section 4.7, 2(d) $\frac{1}{4}$ \rightarrow $\frac{1}{2}$

Page 446, Section 5.1, 4: $\frac{2}{3} \rightarrow \frac{1}{3}$

Page 446, Section 5.1, 5: (c) should be -2π , (d) should be $\frac{9856}{45}$.

Page 447, Section 5.3, 4: The numerator of the coefficients of log and arcsin should be $2\pi ab^2$ rather than b.

Page 447, Section 5.3, 8(c): $\frac{14}{3} \rightarrow 2$

Page 447, Section 5.4, 1(c): The + after i should be -.

Page 447, Section 5.7, 2: $\pi a^2/\sqrt{2} \rightarrow -\pi a^2/\sqrt{2}$

Page 448, Section 6.1, 1(c): $x + x^{-1} \rightarrow 1 + x^{-1}$

Page 448, Section 6.2, 11: Converges \rightarrow Diverges

Page 449, Section 6.4, 18: |x| = 1 \rightarrow x = 1

Page 449, Section 7.1, 2: Parts (e), (f), (g) should be (d), (e), (f).

Page 450, Section 7.6, 7: Replace n by k throughout.

Page 451, Section 8.2, 2: Should be $\frac{\pi^2}{3} + 4 \sum_{1}^{\infty} \frac{(-1)^n}{n^2} [\cos \frac{1}{4} n \pi \cos n\theta + \sin \frac{1}{4} n \pi \sin n\theta].$

Page 452, Section 8.4, 1(d): $(-1)^{n+1} \rightarrow (-1)^{m+1}$ Page 452, Section 8.4, 2(b): $(-1)^{n+1} \rightarrow (-1)^{m+1}$

Page 452, Section 8.5, 2: $2\pi i n \theta \rightarrow i n \theta$ (two places) and $(2\pi n)^2 \rightarrow n^2$

Page 452, Section 8.5, 4(a): $2l^2 \rightarrow 2l^2m$