ERRATA TO “ADVANCED CALCULUS”
(3rd and later printings)
G. B. Folland
Last updated January 12, 2018

Additional corrections will be gratefully received at folland@math.washington.edu.

“line −n” means “line n from the bottom.”

Page 15, line 12: $cx^3 \rightarrow cx^4$
Page 21, line −13: I → L
Page 21, line −12: $x_k \rightarrow x_k$
Page 22, Theorem 1.15b: \{x_k\} sequence → sequence \{x_k\}
Page 26, line 6: \((x_{k-1} - ax_{k-1}^{-1})^2 \rightarrow \frac{1}{4}(x_{k-1} - ax_{k-1}^{-1})^2$
Page 29, Exercise 7, line 1: a → x
Page 31, proof of Theorem 1.22, line 2, and proof of Corollary 1.23, line 3: V → S
Page 45, line 2: Add $f'(a)g'(a)h^2$ to the expression on the right.
Page 61, Example 4, line 2: direction → in the direction
Page 68, Figure 2.3: There should be a line joining y to s.
Page 68, line −9: in S → S
Page 73, line −1: so there → so
Page 74, line 6: going to going to → going to
Page 74, Example 1b, line 1: as as → as
Page 96, line 9: $\mathbb{R} \rightarrow \mathbb{R}^n$
Page 128, line 15: $\mathbb{R}^2 \rightarrow \mathbb{R}^3$
Page 103, line 3: may derived → may be derived
Page 109, proof of Theorem 2.86: The subscript k should be replaced by another letter (since k is already the dimension of the domain of g)
Page 124, Example 8, line 4: that does → whose closure does
Page 126, line −10: parametrically → parametrically by
Page 127: The comma at the end of (3.13) should be a period.
Page 129, line −12: $f(u, v)$, the vectors $\partial_u f(a)$ and $\partial_v f(a)$ → $f(u, v)$ and $a = f(b, c)$, the vectors $\partial_u f(b, c)$ and $\partial_v f(b, c)$
Page 141, line 6: $−x − 2y + z → −3x − 6y + 3z$
Page 150, proof of Lemma 4.5, line 5: $s_Q' f → s_Q' f$
Page 150, proof of Lemma 4.5, line 6: \(s_Q f \rightarrow S_Q f \)

Page 150, line before Theorem 4.6: are easy \(\rightarrow \) easy

Page 162, line -1: \(\int_Z \rightarrow \iint_Z \)

Page 163, line 1: \(R_m \rightarrow R_M \)

Page 163, Corollary 4.23: Replace \(\int \) by \(\iint \) throughout, and in part (a), assume \(g \) is bounded.

Page 166, line 12: \(d^n\delta x \rightarrow d^n x \)

Page 183, Theorem 4.41: Assume that \(\overline{T} \subset U \) (as in Theorem B.24, in order to avoid the possibility that the integral on the right of (4.42) might be improper because \(\det DG \) need not be bounded on \(U \)).

Page 186, line -4, and page 187, line 2: \(\iint_S \rightarrow \iint_R \)

Page 189, line -12: \(\partial_{y_j} \rightarrow \partial_{x_j} \) (two places)

Page 189, Theorem 4.47: Replace the hypothesis “If \(f \ldots \) for each \(y \in S \)” by “If \(f \) and \(\nabla_x f \) are continuous on \(T \times S \”.

Page 193, Exercise 4: To be clear, the integrand is \([\sin 2(x - y)][g(y)] \).

Page 203, line before (4.64): to define to define \(\rightarrow \) to define

Page 209, line 10: the set \(\rightarrow \) the Lebesgue measurable set

Page 223, lines after (5.15) and (5.16): \(\phi'_1 \) and \(\phi'_2 \) may be allowed to be infinite at the endpoints (so the curves \(y = \phi_j(x) \) may have vertical tangents). Similarly for \(\psi_1 \) and \(\psi_2 \).

Page 223, line after (5.16): \([a, b] \rightarrow [c, d]\)

Page 226, line 7 of Example 2: \(-6\pi \rightarrow -3\pi\)

Page 226, 2nd line after Example 3: as at \(\rightarrow \) as a

Page 227, 4th line before the exercises: (29) \(\rightarrow \) (5.18)

Page 230, line 5: \(G(v) \rightarrow G(u, v) \)

Page 232, line 2: on \(\rightarrow \) in

Page 233, line -3: suface \(\rightarrow \) surface

Page 234, line 3: \(n \cdot dA \rightarrow n dA \)

Page 239, line -3: The piecewise smoothness of \(\phi_1 \) and \(\phi_2 \) can be relaxed so that the surfaces \(z = \phi_j(x, y) \) can have vertical tangent planes.

Page 251, line 10: (5.30) \(\rightarrow \) (5.31)

Page 259, line 8: \(F_j \rightarrow G_j \)

Page 259, first display: \(x + t \rightarrow x_1 + t \)

Page 260, first display: \(\int_{L(a,x)} \) and \(\int_{L(a,x+h)} \) should be switched.

Page 261, line -1: \(2x + x^2 y \rightarrow 2y + xy^2 \)

Page 263, bottom half: \(+\partial_y \psi(x, y) \rightarrow -\partial_y \psi(x, y) \) (4 places)

Page 265, Proposition 5.65 and the following 2 lines: \(F \rightarrow H \) (6 places)

Page 267, line -8: \(\partial_1 G_{n-1} \rightarrow \partial_{n-1} G_1 \)
Page 269, from (5.67) to line −6: all A’s should be F’s.
Page 272, lines 7 and 13: T(u) → T(u)
Page 272, line 8: x → x and dx_j → dx_m
Page 272, line 12: C_lm(x) → C_lm(x)
Page 272, line −2: C^{(1)} → C^1
Page 273, line 8 R^3 → R^n
Page 277, line 9: Delete the factor of c.
Page 280, line 1: an → to an
Page 289, line 13: m ≥ 0 → m > 0
Page 292, line 5 of Example 7: 5n^3 + 9n^2 + 3 → 5n^3 + 9n^2 + 3n
Page 296, line −3: 1/k → 1/k + 1
Page 304, line −2: 1/2k → 1/√3 k and 16k/25 → 9k/8√3
Page 305, line 7: k > 1/2δ → k > 1/√3 δ
Page 313, line 10: k > 1/2δ → k > 1/√3 δ
Page 327, line 9: f(k) → f^{(k)}
Page 330, line −7: x^{n+1} → x^{n+1}
Page 352, line 6: 7.61 → 7.60
Page 352, line 7: 7.62 → 7.61
Page 363, sketch for Exercise 7: π is the midpoint of the interval where f is negative, not the right endpoint.
Page 368, last line of Exercise 1: 5 → 7
Page 376, line 7: hence f → hence its sum (which is f, assuming f is standardized)
Page 388, line 3: exp → b_n exp
Page 398, Corollary 8.45: L^2(π, π) → L^2(−π, π)
Page 405, line 4 of Section A.1: c x_1 → c_1 x_1
Page 429, line 6: B.9 → B.13
Page 437, first line of last paragraph: region → a region
Page 438: piecewise smooth → C^1
Page 439, line 9: w − φ(u, v) → w + φ(u, v)
Page 441, Section 1.2, 1c: x ≥ 1 → x ≥ 0 and y ≥ 1 → y ≥ 0
Page 442, Section 2.5, 3: 2yz → 2yzt and −4z^4 e^{yz} → +2z^4 e^{yz}
Page 442, Section 2.6, 3a, line 3: 3x cos 3y → 6x cos 3y
Page 445, Section 4.3, 5a: 3/8 → 17/8
Page 446, Section 5.1, 4: $\frac{1}{3} \rightarrow \frac{2}{3}$

Page 447, Section 5.4, 1(a): $y - y^2 \rightarrow y - 2xy$

Page 448, Section 5.8, Problem 2b: $xyz - \frac{1}{2}x^2 - \frac{1}{2}z^2 \rightarrow xyz + \frac{1}{2}x^2 + \frac{1}{2}z^2$

Page 458: Insert entry “inverse mapping theorem, 137”.