
Thèse de doctorat en informatique
de Sorbonne Université

École Doctorale Informatique, Télécommunications et
Électronique

An Optimization Perspective on the
Construction of Low-Discrepancy Point

Sets

François Clément

présentée et soutenue publiquement
pour obtenir le grade de

Docteur en Sciences Informatique

Date provisoire de soutenance: 18 juillet 2024

Directeurs de thèse
Dr. Carola Doerr
CNRS, Sorbonne Université, LIP6, France

Dr. Luís Paquete
CISUC, DEI, University of Coimbra, Portugal

Rapporteurs
Pr. Dmitriy Bilyk
University of Minnesota, United States of America

Priv.-Doz. Mag. Dr. Peter Kritzer
Johann Radon Institute for Computational and Applied Mathe-
matics, Austrian Academy of Sciences, Austria

Examinateurs
Dr. Claire Mathieu
CNRS, Université Paris Cité, IRIF, France

Pr. Art B. Owen
Stanford University, United States of America

Dr. Julien Tierny
CNRS, Sorbonne Université, LIP6, France

0Abstract
Discrepancy measures are metrics designed to quantify how well spread a point

set is in a given space. Among these, the 𝐿∞ star discrepancy is arguably one of

the most popular. Indeed, by the Koksma-Hlawka inequality [Hla61; Kok43], when

replacing an integral by the average of function evaluations in specific points, the

error made is bounded by a product of two terms, one depending only on the

function and the other on the 𝐿∞ star discrepancy of the points. This leads to

a variety of applications, from computer vision to financial mathematics and to

design of experiments where well-spread points covering a space are essential.

Low-discrepancy sets used in such applications usually correspond to number

theoretic designs, with a wide variety of possible constructions. Despite the high

demand in practice, the design of these point sets remains largely the work of math-

ematicians, often more interested in finding asymptotic bounds than in adapting

the point sets to the desired applications. This results in point sets that, while

theoretically excellent, sometimes leave a lot to be desired for applications, in

particular high-dimensional ones. Indeed, the constructions are not tailored to the

many different settings found in applications and are thus suboptimal. Furthermore,

not only do we not know how low the discrepancy of point sets of a given size

in a fixed dimension can go, but often we do not even know the discrepancy of

existing constructions. This leaves essential questions unanswered in the design of

low-discrepancy sets and sequences.

In this thesis, we tackle the problem of constructing low-discrepancy sets from a

computational perspective. With optimization approaches applied in isolation or on

top of existing sets and sequences, we provide a diverse set of methods to generate

excellent low-discrepancy sets, largely outperforming the discrepancy of known

constructions in a wide variety of contexts. In particular, we describe a number

of examples such as provably optimal sets for very few points in dimension 2, or

improved sets of hundreds of points in moderate dimensions via subset selection.

Finally, we extend recent work on greedy one-dimensional sequence construction

to show that greedy 𝐿2 construction of point sets provides excellent empirical

results with respect to the 𝐿∞ star discrepancy.

iii

0Résumé

Les mesures de discrépance sont une famille de mesures quantifiant l’uniformité

d’un ensemble de points: sont-ils bien répartis dans l’espace (discrépance faible) ou

concentrés par endroits (discrépance élevée)? Parmi ces mesures, la discrépance

à l’origine 𝐿∞ joue un rôle primordial: elle permet de quantifier l’erreur faite lors

de l’approximation d’une intégrale par une somme finie composée d’évaluations

de la fonction en un ensemble de points. Ce résultat mène à de très nombreuses

applications dans des domaines variés allant de la vision en informatique à la finance,

sans oublier tout ce qui concerne le plan d’expérience (design of experiments), où

des points bien répartis sont essentiels.

Les points à faible discrépance utilisés dans ces applications sont issus

d’approches mathématiques en théorie des nombres, avec de nombreuses séquences

ou ensembles de points connus depuis plusieurs décennies. Malgré cela, ce sujet

reste surtout le domaine de mathématiciens, souvent plus intéressés par les proprié-

tés asymptotiques de ces points que leur utilisations en pratique. Il en résulte que

les ensembles à faible discrépance, bien que très bons théoriquement, sont parfois

moins bien que des points aléatoires pour certaines applications, particulièrement

lorsque la dimension augmente. D’un point de vue plus qualitatif, malgré certaines

bornes asymptotiques, nous ne savons pas précisemment quelle est la limite infé-

rieure pour la discrépance d’un ensemble de points d’une taille fixée. Or, ce type de

question a un impact immédiat sur la qualité des résultats lors d’applications.

Dans cette thèse, nous abordons le problème de la construction d’ensembles à

faible discrépance d’un point de vue informatique, tout en obtenant de nombreux

résultats empiriques sur la qualité de ces ensembles. Plutôt que de construire

mathématiquement ces séquences, nous utilisons un ensemble de méthodes issues

de l’optimisation, ainsi que les séquences existantes, pour obtenir de nouveaux

ensembles de points. Nous montrons qu’il est possible d’obtenir des ensembles de

points de bien meilleure discrépance à l’origine 𝐿∞ que ceux existant déjà, dans des

dimensions variées. Enfin, nous présentons également une approche basée sur la

discrépance à l’origine 𝐿2, pour montrer que son utilisation de manière gloutonne

permet la construction d’une séquence extrêmement régulière pour la discrépance

𝐿∞, ouvrant la voie vers de nombreuses approches novatrices.

iv

0Acknowledgments

I have immensely appreciated the three years at LIP6 working on this PhD. A large

part of this is thanks to all the wonderful people at the team, who have come and

gone in the last three years. It has been a pleasure coming to the office every day

thanks to them. This thesis would not have been possible without the support

and guidance of Carola Doerr and Luís Paquete. I am very grateful to them both

for the scientific help and, from a more human side, the great atmosphere they

created which has led me to enjoy so much this thesis. I would also like to extend

my thanks to all the people I have met, discussed and worked with, whether in

seminars, workshops or conferences. Large parts of this thesis would not exist

without their contribution. These thanks naturally extend to the jury members,

whether reviewers or examiners, who dedicated some of their valuable time to my

work. Finally, I am very grateful to my family, that has always supported me and

helped extensively on a myriad of non-scientific problems.

v

0Contents
Abstract iii

Résumé iv

Acknowledgments v

Contents vi

1 Introduction 1
1.1 Why Discrepancy? . 1

1.2 Objectives of the Thesis . 2

1.3 Outline of the Thesis . 3

1.4 Contributions of the Thesis . 4

1.4.1 Constructing Optimal Star Discrepancy Sets 5

1.4.2 Star Discrepancy Subset Selection: Problem Formulation

and Efficient Approaches for Low Dimensions 6

1.4.3 Heuristic Approaches to Obtain Low-Discrepancy Point

Sets via Subset Selection 7

1.4.4 Extending the Kritzinger Sequence: More Points andHigher

Dimensions . 7

1.4.5 Computing Star Discrepancies with Numerical Black-Box

Optimization Algorithms 8

1.4.6 Partitions for Stratified Sampling 9

I Background 10

2 Discrepancy Theory 11
2.1 The 𝐿∞ Star Discrepancy . 11

2.2 Theoretical Bounds . 13

2.2.1 Asymptotic Orders . 13

2.2.2 Optimal Sets and the Inverse Star Discrepancy 15

2.2.3 Upper-Bounding the Star Discrepancy 16

2.3 Well-Known Low-Discrepancy Sets and Sequences 17

vi

3 A Computational Perspective on Discrepancy 21
3.1 The Grid Structure of the 𝐿∞ Star Discrepancy 21

3.2 Complexity of Calculating the 𝐿∞ Star Discrepancy 24

3.3 The Dobkin, Eppstein, Mitchell Algorithm 25

3.4 Threshold Accepting . 26

3.5 Other Approximation Methods of the Star Discrepancy 27

3.5.1 Bracketing Covers . 28

3.5.2 Thiémard’s Optimization Method 28

3.6 Genetic Approaches . 29

4 Energy Approaches 31
4.1 The 𝐿2 Discrepancy . 31

4.2 One-Dimensional Greedy Constructions 32

4.3 The Kritzinger Sequence . 33

II Contributions 36

5 Optimal Set Construction 37
5.1 Summary of Results . 37

5.2 Problem Formulations in Two Dimensions 38

5.2.1 A Generalization of a Result in [Whi77] 39

5.2.2 A “Classical” Formulation 40

5.2.3 Minimal Point Spacing . 43

5.2.4 An Assignment Formulation 47

5.2.5 Experimental Results . 49

5.2.6 Structural Differences between Known and Optimal Point

Sets . 51

5.3 Extensions . 53

5.3.1 An Extension to Three Dimensions 53

5.3.2 Optimal Lattice Construction 56

5.3.3 Other Discrepancies . 58

5.3.3.1 Extreme Discrepancy 59

5.3.3.2 Periodic Discrepancy 60

5.3.3.3 Multiple-corner Discrepancy 62

5.4 Conclusion . 64

vii

6 Subset Selection: Exact approaches 66
6.1 Summary of Results . 66

6.1.1 Motivation . 66

6.1.2 Our Contribution . 67

6.2 The Star Discrepancy Subset Selection Problem 68

6.2.1 NP-Hardness of the Subset Selection Problem 69

6.2.2 Other Basic Properties of the Discrepancy Subset Selection

Problem . 71

6.3 Algorithmic Approaches to Solve the Discrepancy Subset Selection

Problem . 72

6.3.1 A Mixed Integer Linear Programming Formulation 73

6.3.2 A Combinatorial Branch-and-Bound Algorithm 74

6.3.2.1 Lower Bounds 76

6.3.2.2 Lower Bound Computation 77

6.3.3 Greedy Heuristic . 79

6.3.4 The Feasibility Approach 80

6.3.5 A Simple Case: Dominated Points 80

6.4 Comparison of the Different Algorithms 81

6.4.1 Experimental Setup . 81

6.4.2 Quality of Random Subset Sampling and the Greedy Heuristic 82

6.4.3 Comparison between MILPs and Branch-and-Bound . . . 86

6.5 Comparison of Star Discrepancy Values 89

6.5.1 The Two-Dimensional Case 89

6.5.2 The Three-Dimensional Case 93

6.6 Conclusions and Future Work . 94

6.7 The 𝐿2 Version of Subset Selection 95

7 Subset Selection: a Heuristic Algorithm 98
7.1 Summary of Results . 98

7.2 A Heuristic Approach for the Star Discrepancy Subset Selection

Problem . 99

7.2.1 Variants of the Algorithm 102

7.3 Experimental Study . 102

7.3.1 Experimental Setup . 103

7.3.2 Experiment Results . 104

7.3.3 Improvements for the Inverse Star Discrepancy 109

7.3.4 Comparison with the Energy Functional 110

7.4 Conclusion and Future Work . 113

7.5 Complement: Heuristic Proof . 115

viii

8 Greedy Sequence Constructions 118
8.1 Summary of Results . 118

8.2 Greedy Addition of Points: 𝐿∞ Approach 119

8.2.1 Boxes Without the New Point 120

8.2.2 Optimal Placement Inside a Box of 𝛤 (𝑃) 121

8.3 An Optimization Perspective . 124

8.4 Experimental Results . 126

8.5 The Kritzinger Sequence: Summary of Results 129

8.6 Competitiveness of the Kritzinger Sequence in Dimension 1 . . . 130

8.6.1 Generating More Points 130

8.6.2 Changing the Initialization Point(s) 132

8.7 Evaluating the Kritzinger Sequence in Higher Dimensions 133

8.7.1 Construction of the Kritzinger Sequence 133

8.7.1.1 Exact Construction 136

8.7.1.2 Approximate Methods 137

8.7.2 Results in Dimensions 2 and 3 139

8.8 Conclusion . 141

9 Black-Box Optimizers for 𝑳∞ Star Discrepancy Computation 143
9.1 Summary of Results . 143

9.2 Parallelizing DEM . 144

9.3 Numerical Black-Box Optimization Approaches 147

9.4 Results . 150

9.5 Conclusions . 152

10 Black-box Optimizers for Stratified Sampling Optimization 154
10.1 Summary of Results . 154

10.2 Stratified Sampling . 155

10.2.1 Jittered Sampling . 155

10.2.2 An Equivolume Construction in Dimension 2 155

10.2.3 Widening the Stratification Search Space 157

10.3 Three Common Optimizers . 158

10.4 Finding Minimal Sets . 160

10.4.1 Experiment Setup . 160

10.4.2 Experimental Results . 162

11 Future Work 167

ix

12 Appendix 172
12.1 Computational Results of Chapter 6 172

12.2 Computational Results for Chapter 7 182

12.3 Computational Results of Chapter 10 187

Bibliography 191

x

1 Introduction

1.1 Why Discrepancy?
Any first-year computer science student will have had the pleasure of being in-

troduced to Monte Carlo methods via the approximation of 𝜋 . The approximated

value is obtained by randomly sampling from [0, 1]2, finding how many lie in the

quarter-circle of radius 1 centered in the origin, and comparing this ratio to the

ratio of the area of the quarter circle, 𝜋/4, and the total area, one, to obtain the

value of 𝜋 . In this use of a Monte Carlo method, one replaces the calculation of an

integral by a finite sum over values of this function at specific points: the randomly

chosen points.

This problem of approximating a continuous object by a discrete one lies at the

heart of discrepancy theory. Is it possible to select the points better than randomly?

It will come as no surprise to most readers that the answer is a resounding “yes”

in the vast majority of cases. Over the past century, starting with Weyl’s work

in [Wey16], mathematicians have focused extensively on finding answers to the

following questions:

1. By the central limit theorem, the error made when calculating an integral

such as our 𝜋 approximation is inversely proportional to the square root of

the number of points sampled. Can we obtain better bounds with new sets?

2. How regular can these point sets be? Is it possible, for a fixed finite number

of points, to get arbitrarily close to the uniform distribution?

3. How can one construct the most regular sets?

The second question is at the root of discrepancy theory. The different discrep-

ancy measures give ways of measuring what “close” is. While there exist many

different discrepancy measures to answer this, the key idea remains the same. For

a point set 𝑃 , its discrepancy is linked to the absolute difference between the mea-

sure of some subset 𝐵 ⊆ [0, 1)𝑑 and the proportion of points in 𝑃 that fall inside

𝐵. Depending on the discrepancy measure, one can then consider the supremum

or an integral over all possible subsets 𝐵. Some commonly considered families

of subsets 𝐵 are anchored boxes {[0, 𝑞) : 𝑞 ∈ [0, 1)𝑑}, axis-aligned rectangles

{[𝑎, 𝑏) : 𝑎, 𝑏 ∈ [0, 1)𝑑}, or simply convex or measurable sets.

1

Chapter 1 Introduction

An answer to the first question stated above reveals why these measures became

prevalent. Separate results by Koksma [Kok43] and Hlawka [Hla61] led to the

Koksma-Hlawka inequality: the bound on the error made when approximating

a continuous integral by a discrete sum of function values over a set of points 𝑃

directly depends on the discrepancy of 𝑃 . Indeed, regardless of the choice of the

function, the error will consist of the product of two separate terms, one based on

the 𝐿∞ star discrepancy of the points, and one determined by the function itself.

Minimizing the discrepancy of the points therefore becomes a key objective when

designing the sets used for numerical integration. In particular, we will see in

more detail in Chapter 2 that we have numerous constructions whose discrepancy

scales as𝑂 (log𝑑−1(𝑛)/𝑛),1 whereas the discrepancy of random points for traditional

Monte Carlo methods scales only in 𝑂 (
√︁
𝑑/𝑛). Apart from specific settings,

2
one is

thus better off using these regular constructions, low-discrepancy sets and sequences,
than the usual random points. Essentially, any application that requires numerically

computing an integral should use low-discrepancy point sets as long as 𝑑 is not too

large compared to 𝑛. This is the case for applications in computer vision [Pau+22]

or financial mathematics [GJ97], for example. The error bound provided by the

Koksma-Hlawka inequality results led to the development of a whole field called

Quasi-Monte Carlo integration [DP10].

Quasi-Monte Carlo integration is not the only use of low-discrepancy point sets.

Consider you are given a hidden function 𝑓 : [0, 1)𝑑 → ℝ and your goal is to find

the maximum of this function. How do you choose which values to try? While

random values or more methodical grid-based approaches could work, they will

not perform as well as picking as your set of search points a low-discrepancy set,

or sequence if you do not want a fixed budget. By being as uniformly distributed

as possible, these sets cover the search space very well. The second major use

of low-discrepancy sets is therefore simply when you want to find something

in a search space, and desire better results than with random points. This leads

to many applications, most of which can be grouped in the field of design of

experiments [SWN03], for example one-shot optimization [Bou+17; Cau+20] or

genetic algorithm initialization [MMM04].

1.2 Objectives of the Thesis
Despite their importance, there remain key practical and theoretical questions

around low-discrepancy sets and sequences. As will be described in more detail

1 𝑑 is the dimension and 𝑛 the number of points.

2 High dimension 𝑑 and low number of points 𝑛.

2

Outline of the Thesis Section 1.3

in Chapter 2, the optimal order of discrepancy is generally not known, whether

asymptotically for a sequence or for a fixed number of points. For a low number

of points, the best discrepancy value that can be obtained is also unknown, even

in dimension 2. Furthermore, from a practical perspective, while low-discrepancy

constructions give a theoretical guarantee, the design is not tailored to an experi-

ment. The gap between the mathematics community and those actively using the

point sets also leads to relatively natural questions, such as how to optimally add a

point to an existing set with respect to the discrepancy, to remain open.

While traditional approaches have relied on number-theoretical methods or

asymptotic studies, the aim of this thesis is to use computational approaches to

obtain excellent point sets for specific 𝑛 and 𝑑 . This is a much more user-focused
perspective: for applications, there is only a finite budget, and thus finite number of

points that can be used, making asymptotically good point sets a lot less valuable.

In this thesis, we tackle the following question : given a fixed number of points
and dimension, what is the minimal discrepancy value one can obtain for a
constructible point set 𝑷?
We are therefore interested both in the problem of designing new low-

discrepancy sets, and in that of minimizing their discrepancy.

While the focus will be on constructing low-discrepancy sets using optimization

tools, we will also provide solutions to questions that may interest practitioners

via methods such as subset selection, or greedily adding one or more points to an

existing set. The goal is for practitioners to be able to modify low-discrepancy sets

according to the needs of their applications while, hopefully, improving known

constructions.

1.3 Outline of the Thesis
The thesis is split into two parts. In Part I, we introduce all the notions necessary

to understand our work along with past results that either precede or help to

contextualize our work. Chapter 2 presents the 𝐿∞ star discrepancy and the key

questions in the field. This covers topics from asymptotic bounds to low-discrepancy

constructions, while highlighting where there are open questions relevant to our

work. Chapter 3 describes the 𝐿∞ star discrepancy from a computational perspective:

how can it be computed and what are the main obstacles for its calculation? We

also take the opportunity to describe a few very different approaches that were

designed to evaluate the 𝐿∞ star discrepancy. Finally, on a different note, Chapter 4

3

Chapter 1 Introduction

highlights some recent approaches based on greedy constructions, in particular in

one dimension. We use this as an opportunity to describe the 𝐿2 star discrepancy.

The contributions of this thesis are then found in Part II, going from the most

precise algorithms in low dimensions to heuristics in higher dimensions with more

points. We begin by describing methods to obtain point sets with provably optimal

𝐿∞ star discrepancy values in dimension 2 and 3 in Chapter 5. A subset selection

approach is introduced in Chapter 6, where we attempt to extract excellent low-

discrepancy sets from existing constructions for moderate 𝑛 in dimensions 2 and 3.

We complement this with a short description of how to tackle the problem for

the 𝐿2 discrepancy. This is generalized to higher 𝑛 in any dimension for which

we can compute the star discrepancy with a heuristic approach in Chapter 7. Our

last constructive approach in Chapter 8 describes how to greedily add a point to

an existing set, with respect to the 𝐿∞ star discrepancy or the 𝐿2 star discrepancy.

This last case corresponds to the so-called Kritzinger sequence [Kri22], which we

extend to higher dimensions and a higher number of points. Finally, Chapter 9

and Chapter 10 underline the potential use of black-box optimizers in discrepancy,

with two applications such as calculating the 𝐿∞ star discrepancy and evaluating

the periodic 𝐿2 discrepancy of specific orthogonal stratifications of the unit cube.

We conclude this thesis with a presentation of future lines of research in Chap-

ter 11 and some complementary numerical results in Chapter 12.

1.4 Contributions of the Thesis

The work presented in this thesis relies on the following publications and preprints,

listed in order of appearance in the thesis. The ordering of the authors is alphabetical,

except for the publication at GECCO 2023.

• François Clément, Carola Doerr, Kathrin Klamroth, Luís Paquete. Con-

structing Optimal Star Discrepancy Sets. A short version is under submission,

while the full version is available on arxiv [Clé+23a].

• François Clément, Carola Doerr, Luís Paquete. Star Discrepancy Subset Se-

lection: Problem Formulation and Efficient Approaches for Low Dimensions.

Journal of Complexity, volume 70, 2022 [CDP22].

• François Clément, Carola Doerr, Luís Paquete. Heuristic Approaches to Ob-
tain Low-Discrepancy Point Sets via Subset Selection. Journal of Complexity,
volume 83, 2024. [CDP24]

4

Contributions of the Thesis Section 1.4

• François Clément. Extending the Kritzinger Sequence: More Points and

Higher Dimensions. Preprint. [Clé23].

• François Clément, Diederick Vermetten, Jacob de Nobel, Alexandre D. Jesus

Carola Doerr, Luís Paquete. Computing Star Discrepancies with Numerical

Black-Box Optimization Algorithms. Proceedings of GECCO 2023, pages 1330-
1338, 2023 [Clé+23c].

• François Clément, Nathan Kirk, Florian Pausinger. Partitions for Stratified

Sampling. Monte Carlo Methods and Applications, 2024 [CKP24].

We give a brief overview of these works, in the order of appearance in this thesis.

1.4.1 Constructing Optimal Star Discrepancy Sets
Constructing optimal point sets for the 𝐿∞ star discrepancy is seen as a very hard

problem in the discrepancy community. Indeed, provably optimal point sets were

known only for 𝑛 ≤ 6 in dimension 2 and 𝑛 ≤ 2 for higher dimensions. In particular,

there has been no progress since the 1970’s and a paper by White [Whi77] for

dimension 2.

In this chapter, we introduce mathematical programming formulations to con-

struct point sets with as low 𝐿∞ star discrepancy as possible. Firstly, we present

two models to construct optimal sets and show that there always exist optimal

sets in dimension 2 with the property that no two points share a coordinate. We

then provide an extension of our models to higher dimensions, as well as to other

discrepancy measures, for example the extreme and periodic discrepancies. For

the 𝐿∞ star discrepancy, we are able to compute optimal point sets for up to 21

points in dimension 2 and for up to 8 points in dimension 3. For dimension 2

and 𝑛 ≥ 7 points, these point sets have around a 50% lower discrepancy than the

previously best known point sets. Furthermore, by plotting the local discrepancy

values induced by the optimal sets, we observe a clear structural difference with

that of known low-discrepancy sets, an example of which can be seen in Figure 1.1.

We also show that adding some regularity to our sets can be done at little cost.

We introduce the multiple-corner discrepancy, a discrepancy measure close to the

𝐿∞ star discrepancy that reduces the dependency on the corner in 0, by taking

the maximum over all the star discrepancies anchored in each corner of [0, 1)𝑑 .
We show that optimal sets for this measure are not much worse for the 𝐿∞ star

discrepancy than those for the traditional 𝐿∞ star discrepancy.

As mentioned in more detail in Chapter 11, all these elements combine to paint a

very promising picture for future steps, with a large variety of approaches possible

5

Chapter 1 Introduction

Figure 1.1: Fibonacci, Sobol’ and optimal sets’ local discrepancies for 𝑛 = 21 in dimension

2. The colors are scaled with the maximum discrepancy value separately in each image.

We observe that for the previous constructions, Fibonacci and Sobol’, the sets are not well

distributed because boxes very often contain too many points. The optimal set on the

right presents a much more regular structure, with boxes with too many or too few points

coming close to the worst discrepancy value.

to increase the number of points and the dimension, or to add multi-objective

approaches to optimize not only the 𝐿∞ star discrepancy but also other chosen

measures.
3
This should be seen as a first step towards new constructions, and not

simply better discrepancy values in specific cases.

1.4.2 Star Discrepancy Subset Selection: Problem Formulation
and Efficient Approaches for Low Dimensions

Motivated by a problem of choosing diverse instances for training ML-based meth-

ods [Neu+18], we introduce the star discrepancy subset selection problem, which

consists in finding a subset of 𝑘 out of 𝑛 points that minimizes the star discrepancy.

First, we show that this problem is NP-hard. Then, we introduce a mixed integer

linear formulation (MILP) and a combinatorial branch-and-bound (BB) algorithm

for the star discrepancy subset selection problem. Both approaches are evaluated

against random subset selection and a greedy construction on different use-cases

in dimensions two and three, as well as the original low-discrepancy sets of size 𝑘 .

We note that both of these methods heavily rely on the grid structure introduced

in Section 3.1 and apparent in Figure 1.1. Our results show that the MILP and BB

are efficient in dimension two for large and small 𝑘/𝑛 ratio, respectively, and for

not too large 𝑛. However, the performance of both approaches decays strongly for

larger dimensions and set sizes.

3 This could be anything, from other discrepancy measures to geometric aspects such as the

dispersion of the point set.

6

Contributions of the Thesis Section 1.4

The point sets generated by this method have a much lower discrepancy value

than nearly all previously known low-discrepancy sets and sequences of similar

size. In particular, we observe that removing 20 points is often sufficient to greatly

improve the discrepancy of the initial set. Though our results in this chapter

are limited to dimensions 2 and 3, this suggests that subset selection could be an

interesting approach for generating point sets of low dimension.

1.4.3 Heuristic Approaches to Obtain Low-Discrepancy Point
Sets via Subset Selection

Building upon the exact methods presented in the previous chapter, we introduce a

heuristic approach for the star discrepancy subset selection problem. The heuristic

gradually improves the current-best subset by replacing one of its elements at a

time, with a careful choice of the replaced point. While the heuristic does not

necessarily return an optimal solution, we obtain very promising results for all

tested dimensions. For example, for moderate sizes 30 ≤ 𝑛 ≤ 240, we obtain point

sets in dimension 6 with 𝐿∞ star discrepancy up to 35% better than that of the first

𝑛 points of the Sobol’ sequence. Our heuristic works in all dimensions, the main

limitation being the precision of the discrepancy calculation algorithms.

We provide a comparison with a recent energy functional introduced by Steiner-

berger [Ste19]
4
, showing that our heuristic performs better on all tested instances.

Finally, testing our heuristic led to numerous discrepancy evaluations, both for our

newly-generated sets and for the Sobol’ sequence. These give further empirical

information on conjectures about the inverse star discrepancy, which describes the

minimum number of points in a given dimension to reach a fixed discrepancy value.

1.4.4 Extending the Kritzinger Sequence: More Points and
Higher Dimensions

This chapter is split into two parts, the second of which corresponds to [Clé23].

In the first part, we describe exact methods to greedily add a point optimally to

a point set with respect to the 𝐿∞ star discrepancy and show that repeating this

method leads to a relatively poor sequence.

In the second part, we extend numerical experiments on the Kritzinger sequence
5
,

for which the greedy addition is done with respect to the 𝐿2 star discrepancy. This

4 See Chapter 4.

5 Introduced in Section 4.3.

7

Chapter 1 Introduction

sequence was recently introduced in [Kri22] and, perhaps surprisingly, seems to per-

form just as well as some of the best one-dimensional low-discrepancy sequences.

Though there are some upper bounds on its asymptotic discrepancy [Ste24], they

do not seem to match the sequence’s behaviour over the first few thousand points.

We present in this chapter a simplified algorithm to compute millions of points

in one dimension and show that the behaviour of the sequence not only stays

extremely regular but, more importantly, seems to improve compared to the Kro-

necker sequence with golden ratio and the Ostromoukhov sequence. Furthermore,

we introduce a set of exact and approximate methods to compute this sequence

in dimensions 2 and 3. We show that the exact methods are always competitive

with the Sobol’ sequence for the hundreds of points we can construct, while the

approximate methods give low-discrepancy sequences, even for thousands of points

in dimension 2.

This chapter highlights two important points. The first is to confirm the exis-

tence of a very different approach to construct low-discrepancy sets that has been

discovered recently (see Chapter 4). The second is that the 𝐿2 discrepancy may

be a very relevant tool for constructing low discrepancy 𝐿∞ sets, especially as it

answers two weaknesses of the 𝐿∞ star discrepancy: its computational cost and its

poor performance in greedy methods.

1.4.5 Computing Star Discrepancies with Numerical
Black-Box Optimization Algorithms

As mentioned above, evaluating the star discrepancy of a given set is an expensive

procedure. In order to find alternative algorithms, we apply a diverse set of off-the-

shelf black-box algorithms and evaluate their performance on this problem. This

approach has a secondary objective in that, should they perform badly, this problem

would be able to provide a very large test set of instances in both continuous and

discrete settings for black-box optimizers.

We compare eight popular numerical black-box optimization algorithms on

the 𝐿∞ star discrepancy computation problem, using a wide set of instances in

dimensions 2 to 15. We show that all used optimizers perform very badly on a large

majority of the instances and that in many cases random search outperforms even

the more sophisticated solvers. We suspect that state-of-the-art numerical black-

box optimization techniques fail to capture the global structure of the problem, an

important shortcoming that may guide their future development.

Finally, we also took this opportunity to reimplement the best exact algorithm

known to compute the discrepancy from [DEM96] to allow for parallelization. This

8

Contributions of the Thesis Section 1.4

new implementation provides a speedup of a factor between 7.4 and 17.4. This

enables us to get exact discrepancy values for both a higher number of points and

higher dimensions.

1.4.6 Partitions for Stratified Sampling
The final chapter describes our use of black-box optimizers for the problem of

computing optimal orthogonal stratifications of the unit cube with respect to the

expected 𝐿2 discrepancy. Classical jittered sampling partitions [0, 1]𝑑 into𝑚𝑑
cubes

for a positive integer𝑚 and randomly places a point inside each of them, providing

a point set of size 𝑁 = 𝑚𝑑
with small discrepancy. In the first part of the paper,

not presented in this thesis, Kirk and Pausinger come up with methods to compute

equivolume stratifications of the unit cube where each strata is bounded by two

hyperplanes orthogonal to the unit cube’s main diagonal. In relation to other papers

by Kiderlen and Pausinger [KP21; KP22], the question was then to find how well

this stratification performed compared to other jittered and stratified sampling

methods.

Since the construction can be narrowed down to a choice of hyperplanes inter-

secting orthogonally the diagonal, we use three different black-box optimizers to

attempt to place optimally those hyperplanes via their intersection points. Despite

a very noisy setting, all three optimizers are able to obtain optimal sets of similar

quality, better than the equivolume stratification for a low number of points. In

particular, the optimal structure is quite unexpected, with an alternance of clusters

of hyperplanes placed quite close together, and larger intervals with a single big

strata. The extremal strata, closer to 0 and 1, are also usually smaller than in the

equivolume case.

9

Part I

Background

2 Discrepancy Theory

Chapters 2 to 4 provide an introduction to discrepancy theory and, more importantly,

to the key results underpinning this thesis. Content in these chapters may come

from introductions in my papers, or be inspired by the books [Cha00; CST14;

DGW14; Mat10]. In this first chapter, we introduce more formally discrepancy

theory and in particular the 𝐿∞ star discrepancy, the central notion of this thesis. We

highlight known theoretical bounds and provide some well-known low-discrepancy

constructions.

Throughout the thesis, 𝑛 corresponds to the number of points in a point set

𝑃 := {𝑥 (𝑖)
: 𝑖 ∈ {1, . . . , 𝑛}}, 𝑑 is the dimension and we write 𝑥 (𝑖) = (𝑥 (𝑖)

1
, . . . , 𝑥

(𝑖)
𝑑
),

i.e., 𝑥
(𝑖)
𝑗

refers to the 𝑗-th coordinate of 𝑥 (𝑖)
. The only exception to this last notation

will be for some of the mathematical programming formulations, and will always

be explicitly mentioned.

2.1 The 𝑳∞ Star Discrepancy

While there exist a vast set of discrepancy measures, this thesis focuses on the 𝐿∞
star discrepancy. The 𝐿∞ star discrepancy of a finite point set 𝑃 ⊆ [0, 1)𝑑 measures

the worst absolute difference between the Lebesgue measure of a 𝑑-dimensional

box [0, 𝑞) anchored in (0, . . . , 0) and the proportion |𝑃 ∩ [0, 𝑞) |/|𝑃 | of points that
fall inside this box. More formally, it is defined by

𝑑∗∞(𝑃) := sup

𝑞∈[0,1)𝑑

���� |𝑃 ∩ [0, 𝑞) |
|𝑃 | − 𝜆(𝑞)

����. (2.1)

One can see that star refers to the boxes anchored in 0, while the 𝐿∞ comes from

the supremum over all boxes. We call the term on the right inside the supremum

local discrepancy, which we denote by 𝐷loc(𝑞, 𝑃). Unless specified otherwise, “dis-

crepancy”, or “star discrepancy”, refers to the 𝐿∞ star discrepancy. Figure 2.1 gives

an example of the local discrepancy for a specific box.

Star discrepancies defined with respect to the 𝐿𝑝 norm are also well-studied. For

11

Chapter 2 Discrepancy Theory

Figure 2.1: The local discrepancy in the box [(0, 0), (0.4, 0.4)) for a 60-point set. Here

𝐷loc(𝑞, 𝑃) = 0.04333 as the box contains 7 points and has volume 0.16. Shifting the top-right

corner all over [0, 1)2 and computing the local discrepancy values would give us 𝑑∗∞(𝑃),
the 𝐿∞ star discrepancy of 𝑃 .

a point set 𝑃 , the 𝐿𝑝 star discrepancy is defined by

𝑑∗𝑝 (𝑃) :=
(∫

[0,1)𝑑

(���� |𝑃 ∩ [0, 𝑞) |
|𝑃 | − 𝜆(𝑞)

����)𝑝𝑑𝑞)1/𝑝 . (2.2)

In this thesis, out of the different 𝐿𝑝 discrepancies, we only consider the 𝐿2
discrepancy. Its main advantage is the ease with which it can be computed, despite

some known drawbacks [Mat10]. It is described in more detail in Chapter 4.

Other discrepancy measures generally change the set of boxes used in the defini-

tion. While we use boxes anchored in 0 for star discrepancies, this is not systemati-

cally the case. For example, the extreme discrepancy considers all boxes in [0, 1)𝑑
and the periodic discrepancy all boxes over [0, 1)𝑑 considered as a torus. These are

only mentioned in Chapter 5 and are therefore introduced in more detail there.

The previous setting with a fixed point set 𝑃 should be distinguished from that of

an infinite sequence of points 𝑃 ′ := (𝑝 (𝑖))𝑖∈ℕ. One should now study the discrepancy

depending on the number of points of the sequence one considers, given by the

following function

𝑑∗∞(𝑃 ′, 𝑘) := sup

𝑞∈[0,1)𝑑

���� |𝑃 ′𝑘 ∩ [0, 𝑞) |
𝑘

− 𝜆(𝑞)
����, (2.3)

where 𝑃 ′
𝑘
corresponds to the 𝑘 first elements of the infinite sequence 𝑃 ′. We are

12

Theoretical Bounds Section 2.2

interested in how this function evolves with 𝑘 . In other words, we are not focusing

on the discrepancy of a single set but in the worst discrepancy of an increasing

sequence of nested sets and how to bound it.

While the work in this thesis tackles the problem of constructing low-discrepancy

sets, the relationship between the two is close (see Section 2.2.1) and we use sets

extracted from sequences as a comparison baseline on multiple occasions.

2.2 Theoretical Bounds

2.2.1 Asymptotic Orders

There are a vast number of settings possible in which we can consider discrepancy,

depending on the dimension, set/sequence distinction, or type of point set. We

begin by the settings in which the optimal order for the 𝐿∞ star discrepancy is

known, that is dimension 1 and sets in dimension 2. The easiest setting, and the only

completely solved, corresponds to sets in dimension 1. The optimal discrepancy

for an 𝑛-point set in dimension 1 is 𝑑∗(𝑛, 1) = 1/(2𝑛) and is obtained by the set

𝑃 := {(2𝑖 + 1)/2𝑛 : 𝑖 ∈ {0, . . . , 𝑛 − 1}}. While it may have been known before, the

first reference to this result is by Niederreiter in [Nie72].

For sequences in dimension 1, the optimal asymptotic order is 𝛩 (log(𝑛)/𝑛).
Solving this problem corresponds exactly to the initial problem of discrepancy

theory: does there exist a sequence of points (𝑥𝑛)𝑛∈ℕ ∈ [0, 1)ℕ such that for any 𝑞

in [0, 1), the absolute difference between 𝑞 and the proportion of points that fall

inside [0, 𝑞) is bounded by a constant divided by 𝑛? This was answered negatively

by van Aardenne-Ehrenfest in [Aar49], and qualitatively by Roth in [Rot54]. Finding

the optimal constant 𝐶 in the 𝐶 log(𝑛)/𝑛 bound remains an open problem, the best

asymptotic constant for a known sequence corresponds to a permutation of the

van der Corput sequence by Ostromoukhov [Ost09] and is roughly equal to 0.22223.

The best theoretical lower bound was found by Larcher and Puchhammer in [LP16]

and is equal to 0.065.

For sets in dimension 2, a seminal result by Schmidt [Sch72] showed that the

best possible discrepancy is 𝑂 (log(𝑛)/𝑛). The fact that this matches the bound

for sequences in dimension 1 is no coincidence. Indeed, it was shown by Roth in

[Rot54] that the optimal order of discrepancy for a sequence in dimension 𝑑 is

the same as that of a set in dimension 𝑑 + 1, up to a constant factor. Of particular

interest to us is the relation allowing us to lift a sequence 𝑃 ′ in dimension 𝑑 to a

set 𝑃 in dimension 𝑑 + 1 by setting 𝑃 := {(𝑥 (𝑖), 𝑖/𝑛) : 𝑖 ∈ {1, . . . , 𝑛}} with the 𝑥 (𝑖)

13

Chapter 2 Discrepancy Theory

the first 𝑛 points of the sequence.
6
The optimal constants are also not known, but

this question for sets has attracted less interest than the closely related and more

natural one-dimensional sequence problem.

In higher dimensions, finding the optimal order for the 𝐿∞ star discrepancy is

a wide open question and is referred to as the Great Open Problem [BC87]. For a

sequence in dimension𝑑 , the upper bound is𝑂 (log(𝑛)𝑑/𝑛), and is reached by a large
variety of constructions, see [Nie92] for a detailed description. Sets and sequences

matching this bound are known as low-discrepancy sets and sequences. However, the
best lower bound is 𝛺 (log𝑑/2(𝑛)/𝑛) by Bilyk, Lacey and Vagharshakyan [BLV08],

and is the only progress made since Roth’s initial 𝛺 (log(𝑛) (𝑑−1)/2) bound on the 𝐿2
discrepancy in [Rot54], which is naturally a lower bound on the 𝐿∞ star discrepancy.

A separate class of questions concerns random points and constructions such

as Latin Hypercubes [MBC79]. The expected star discrepancy of a set 𝑃 of 𝑛

i.i.d. uniform random points in [0, 1]𝑑 is of order 𝛩 (
√︁
𝑑/𝑛); see [Hei+01] for the

first upper bound and [Ais11] for the first upper bound with explicit constant.

The lower bound was obtained in [Doe14] , showing that these cannot match the

optimal constructions.
7
Finally, [GPW20] gives the current state of the art results

for the associated constant for random points. Completely random methods can be

improved by adding some regularity to the construction, for example via jittered

sampling: [0, 1)𝑑 is decomposed into a 𝑑-dimensional grid with 𝑛 boxes, and exactly

one point per box will be placed. While this can only be defined for specific values

of 𝑛 =𝑚𝑑
, it does improve the expected discrepancy order to

𝐸 [𝑑∗∞(𝑃)] = 𝛩

(√
𝑑
√︁
1 + log(𝑛/𝑑)
𝑛

1

2
+ 1

2𝑑

)
, (2.4)

as shown in [Doe22]. A first practical limitation of the best low-discrepancy sets

and sequences is that while they have a better asymptotic order, as the dimension

grows we will require a number of points exponential in 𝑑 to keep the log
𝑑 (𝑛)/𝑛

bound below

√︁
𝑑/𝑛, and even below 1. There is therefore no guarantee that they

perform better than random points in such a context.

6 We note there exists a very distinct lifting method to go from a lower dimension set to a higher

dimension one by Hinrichs and Oettershagen [HO14], potentially skipping more than one

dimension. Despite its uniqueness and the many potential uses for such a method, it is not used

in this thesis.

7 The same bounds also apply to Latin Hypercubes with randomly placed points in the selected

boxes, provided that 𝑑 ≥ 2 and 𝑛 ≥ 1 600𝑑 [DDG18; GH21]. Note that in our experiments

in Chapter 6, we deal with much smaller sample sizes and we use the “improved LHS” suggested

in [BG02], for which the results do not immediately apply.

14

Theoretical Bounds Section 2.2

Finally, we note that finding the optimal order for the 𝐿2 star discrepancy problem

was solvedmuch earlier, equal to𝛩 (log(𝑛) (𝑑−1)/2). Davenport [Dav56] in dimension

2 and Roth [Rot79] in dimension 3 gave the first constructions before Chen and

Skriganov gave a construction with asymptotic order in any dimension in [SC02].

2.2.2 Optimal Sets and the Inverse Star Discrepancy
While results on sets were already largely mentioned in the previous section, a

major gap is visible: they only describe the asymptotic regime and not the best

possible values for a given 𝑛. There are two related notions. Given a fixed 𝑛 and 𝑑 ,

the best possible star discrepancy of a point set of size 𝑛 in dimension 𝑑 is written

as 𝑑∗∞(𝑛,𝑑). Given a desired discrepancy 𝜀 and a dimension 𝑑 , the smallest number

of points 𝑁 ∗
∞(𝜀, 𝑑) required to reach 𝑑∗∞(𝑛,𝑑) ≤ 𝜀 is the inverse star discrepancy. It

is known that min(𝜖0, 𝑐𝑑/𝑛) ≤ 𝑑∗∞(𝑛,𝑑) ≤ 𝐶
√︁
𝑑/𝑛, where 𝑐,𝐶 and 𝜖0 are constants,

thanks to work in [Hei+01] but, despite a variety of approaches in [DGS05; Doe+08;

Gne08], no constructive solution is known. The upper bound naturally translates

to the following bound on the inverse star discrepancy

𝑁 ∗
∞(𝜀, 𝑑) ≤ ⌈𝐶2𝑑𝜀−2⌉ .

Finding the relation between 𝜖 and 𝑑 required to keep the inverse star discrepancy

at a certain value is an open question [NW10],
8
as well as obtaining the best possible

constant 𝐶 [GPW20].

For fixed 𝑛 and 𝑑 such that 𝑛 is not much larger than 𝑑 , we have 𝑑∗∞(𝑃) ≥
min{𝑐0, 𝑐𝑑/𝑛}, where 𝑐0, 𝑐 ∈ (0, 1] are suitable constants [Hin04]. On the positive

side, there exist 𝑛-point sets 𝑃 such that 𝑑∗∞(𝑃) ≤ 𝐶
√︁
𝑑/𝑛, for some universal

constant 𝐶 > 0 [GH21; Hei+01].
9
Uniformly sampled i.i.d. points satisfy the upper

bound in expectation and also with high probability [Doe14; Hei+01].

Nevertheless, there is a clear lack of meaningful results for the setting where 𝑛

and 𝑑 are of a similar order, in particular when 𝑛 is very small. The only general

lower bound that holds for nearly all 𝑛 is by White [Whi77] in dimension 2 who

showed that 𝑑∗∞(𝑃) ≥ 1/𝑛 for any point set 𝑃 of size at least 6 in dimension 2.

A generalization of this result is shown in Chapter 5. Optimal constructions for

𝑛 ≤ 6 in dimension 2 were shown by White in that same paper. Pillard, Cools,

and Vandewoestyne [PVC06] proved the optimal 𝑛 = 1 sets for all dimensions

for the 𝐿∞ star discrepancy as well as the 𝐿2 and extreme discrepancies. Larcher

and Pillichshammer [LP07] then extended these results to 𝑛 = 2 points. For the 𝐿2

8 Or, equivalently, finding a better relation between 𝑛 and 𝑑 to bound 𝑑∗ (𝑛,𝑑).
9 This is clearly only required when 𝑙𝑜𝑔𝑑−1 (𝑛)/𝑛 is close to 1.

15

Chapter 2 Discrepancy Theory

periodic discrepancy, Hinrichs and Oettershagen [HO14] were able to use symmetry

groups to reduce the problem space and obtain optimal sets for up to 𝑛 = 16 points

in dimension 2. None of the methods used in these papers can be easily used for

higher 𝑛, or be generalized to other discrepancy measures in the last case.

This lack of results should not be seen as a lack of interest in the question,

but more a sign of its difficulty from a mathematical perspective. Indeed, Novak

and Wozniakowski [NW10] describe some open questions on the inverse star

discrepancy in Open Question 43. While these were partially solved by de Rainville

and Doerr in [DR13],
10
experimental results suggest much better is feasible.

This thesis provides a wide variety of numerical experiments to tackle
the following problems.

• Optimal values for very small sets in dimension 2 and 3 are investigated in

Chapter 5. This is complemented by possible directions for heuristics with

a larger number of points.

• Conjectures on the inverse star discrepancy are studied in Chapter 7 via

evaluations of the Sobol’ sequence and our subset selection results.

• The optimal constant for a one-dimensional sequence is examined via the

construction of millions of points of the Kritzinger sequence in Chapter 8.

2.2.3 Upper-Bounding the Star Discrepancy
We finish this theoretical section with a quick description of some upper bounds

on the star discrepancy. This is an especially important question for practitioners,

as obtaining a lower bound is comparatively easy since one only needs to evaluate

a local discrepancy. The main result is the Erdős-Turán-Koksma inequality [ET48a;

ET48b; Kok50], which upper-bounds the star discrepancy of a point set 𝑃 in any

dimension

𝑑∗∞(𝑃) ≲𝑑
1

𝑀 + 1

+
∑︁

| |𝑘 | |∞≤𝑀

1

𝑟 (𝑘)𝑛
�� 𝑛∑︁
𝑗=1

𝑒2𝜋𝑖 ⟨𝑘,𝑥
(𝑗) ⟩ ��, (2.5)

where, for 𝑘 ∈ ℤ𝑑
,

𝑟 (𝑘) =
𝑑∏
𝑗=1

max(1, |𝑘 𝑗 |),

10 Their discrepancy values were computed with the TA heuristic (see Section 3.4), and are therefore

not guaranteed to be exact.

16

Well-Known Low-Discrepancy Sets and Sequences Section 2.3

and 𝑎 ≲𝑑 𝑏 corresponds to 𝑎 ≤ 𝑐 (𝑑)𝑏 where 𝑐 (𝑑) is a constant depending on 𝑑 .

In one dimension, the Erdős-Turán inequality [ET48a; ET48b] provides a simpler

bound.

𝑑∗∞(𝑃) ≲ 1

𝑛
+

𝑛∑︁
𝑘=1

1

𝑘𝑛

�� 𝑛∑︁
𝑗=1

𝑒2𝜋𝑖𝑘𝑥
(𝑗) ��

(2.6)

These inequalities are representatives of a bigger class, described in [DP10; Nie92].

Section 10.3.4 in [DGW14] describes numerical experiments performed to evaluate

these bounds, as well as results from [Joe12; Nie92; SJ94]. In particular, results

from [Joe12] show that for dimensions where we cannot compute the discrepancy,

and would need these bounds, the obtained values are far greater than 1, a trivial

bound for the star discrepancy. We have therefore not considered using these

bounds, especially as their simpler forms for lattices cannot be used with our

unstructured sets. Nevertheless, they are useful as a starting point for an energy

formulation by Steinerberger in [Ste19]. A comparison with this method is done in

Chapter 7, while energy functionals more generally are described in Chapter 4.

2.3 Well-Known Low-Discrepancy Sets and
Sequences

We very briefly describe here some classic low-discrepancy constructions, whether

sets or sequences. The description is largely taken from [CDP22] and the longer

version of [Clé+23a] with some added explanations. Amore detailed description can

be found in the books by Niederreiter [Nie92] or Dick and Pillichshammer [DP10].

This should not be seen as an exhaustive list, but merely the sets that were used in

the following chapters of this thesis.

- Sobol’ sequences [Sob67], also called (𝑡, 𝑑)-sequences in base 2: For two in-

tegers 0 ≤ 𝑡 ≤ 𝑚, a (𝑡,𝑚,𝑑)-net in base 𝑏 is a set of points 𝑃 = {𝑥 (1), . . . , 𝑥 (𝑏𝑚)
}

such that for all “elementary” boxes 𝐼 of the form

∏𝑑
𝑗=1 [

𝑎 𝑗

𝑏
𝑑𝑗
,
𝑎 𝑗+1
𝑏
𝑑𝑗
), with

𝑎 𝑗 , 𝑏 ∈ N satisfying 0 < 𝑎 𝑗 < 𝑏𝑑 𝑗 , and volume 𝜆(𝐼) = 𝑏𝑡−𝑚 it holds

that |𝐼 ∩ 𝑃 | = 𝑏𝑡 . For 𝑡 ∈ N, a (𝑡, 𝑑)-sequence in base 𝑏 is a sequence

of points (𝑥 (𝑖))𝑖∈N such that for all integers 𝑘 > 0 and 𝑚 ≥ 𝑡 the set

{𝑥 (𝑘𝑏𝑚), . . . , 𝑥 ((𝑘+1)𝑏𝑚−1)} is a (𝑡,𝑚,𝑑)-net in base 𝑏. (𝑡,𝑚,𝑑)-nets are particu-
larly important as they guarantee precise discrepancy values when 𝑛 = 𝑏𝑚 .

These then allow us to bound the discrepancy for all other intervals using

(𝑡, 𝑑)-sequences’ properties. Various ways to construct Sobol’ sequences

exist. The most efficient techniques use Gray code representations of integers.

17

Chapter 2 Discrepancy Theory

Sobol’ sequences differ in the initialization numbers, and several works exist,

which list good initialization for different dimensions, see [JK08] for exam-

ples, references, and implementations. An example using the GNU Scientific

Library in dimension 2 is given in Figure 2.2 (left).

- Faure sequence [Fau82] is a (0, 𝑑)-sequence using as prime base the smallest

prime number 𝑏 satisfying 𝑏 ≥ 𝑑 .

- Halton sequence [Hal64]: Let 𝑏1, . . . , 𝑏𝑑 > 1 be co-prime numbers. De-

fine the sequence 𝑃 = (𝑥 (𝑖))𝑖∈N by setting, for each 𝑗 ∈ {1, . . . , 𝑑}, 𝑥 (𝑖)
𝑗

:=∑
𝑘≥0 𝑑 𝑗,𝑘 (𝑖)/𝑏𝑘+1𝑗 , where (𝑑 𝑗,𝑘 (𝑖))𝑘∈N is defined as the unique sequence of

integers 0 ≤ 𝑑 𝑗,𝑘 (𝑖) < 𝑏 𝑗 such that 𝑖 =
∑

𝑘≥0 𝑑 𝑗,𝑘 (𝑖)𝑏𝑘𝑗 . That is, (𝑑 𝑗,𝑘 (𝑖))𝑘∈N
is the 𝑏 𝑗 -ary representation (also known as 𝑏 𝑗 -adic expansion) of 𝑖 , and the

Halton points “inverses” this representation to obtain numbers in [0, 1]. The
first 128 points of the sequence in dimension 2 are given in Figure 2.2 (center).

This can be generalized by allowing for permutations of the elements for each

term of the sum. We then have 𝑥
(𝑖)
𝑗

:=
∑

𝑘≥0 𝜋𝑘 (𝑑 𝑗,𝑘 (𝑖))/𝑏𝑘+1𝑗 , where the 𝜋𝑘
are permutations of {0, . . . , 𝑏 − 1}. The Halton sequence is naturally obtained

with all the 𝜋𝑘 being the identity.

- The Halton sequence is a generalization of the older van der Corput se-
quence [Cor35], which is defined in dimension 1. Apart from the traditional

definition, finding good permutations of the elements in the generalized re-

verse binary sums has received much attention, well summarized in [Pau19].

The Ostromoukhov construction [Ost09] giving the to-this-day best upper

bound for the constant in the discrepancy order is one of these constructions.

We point out in particular that while this sequence is not competitive with

the Fibonacci sequence below for all 𝑛, it is excellent when 𝑛 is a power of 2.

- ReverseHalton sequence: It is known that Halton sequences show some un-

wanted correlations in the two-dimensional projections (unless the dimension

𝑑 is very small), see [DGW14] for an example. To address this shortcoming,

different scrambled versions have been suggested. In our experiments we

use the RevHal constructions suggested in [VC06].

Finally, a common construction for low-discrepancy sets is to build lattices

{𝑧𝑖/𝑛 : 𝑧 ∈ ℕ𝑑 , 𝑖 ∈ {0, . . . , 𝑛 − 1}}, separately introduced by Korobov and Hlawka

(see for example [Hla62; Kor59]). Choosing the parameter 𝑧 well is a difficult prob-

lem [Nie92, Section 5]. A typical choice is usually integers 𝑧 = (𝑧1, . . . , 𝑧𝑑) with no

factor in common with 𝑛. These sets are particularly important in practice as they

18

Well-Known Low-Discrepancy Sets and Sequences Section 2.3

Figure 2.2: The first 128 points of the Sobol’ sequence (left), Halton sequence (center) and

Fibonacci set (right). The discrepancy of the Sobol’ points is 0.024781, that of the Halton

points is 0.036169 and 0.020254 for the Fibonacci set. It should not be forgotten that for

sequences we expect worse discrepancy values as they need to be have low discrepancy for

all 𝑛, while the Fibonacci set would need to be recomputed for other 𝑛.

allow to exploit increasing smoothness of a function when trying to numerically

calculate an integral. They have been very extensively studied, both with integer

parameters or more generally with elements of ℝ𝑠/ℤ𝑠
(general lattice rules, which

is closer to what we obtain here). In particular, choosing rationals 𝑧 𝑗/𝑛 with small

continued fraction expansion leads to good lattices (we refer once again to the book

by Niederreiter [Nie92]). Setting aside integer parameters, this continued fraction

expansion property is reflected by the excellent performance of the Kronecker
sequence with golden ratio, which we will also refer to as the Fibonacci se-
quence. It is defined by ({𝑛𝜙})𝑛∈ℕ, where 𝜙 is the golden ratio

11
and {𝑛𝜙} is the

fractional part of 𝑛𝜙 . This can be extended to a 2-dimensional set of lattice form

also called Fibonacci set:
{
(𝑖/𝑛, {𝑖𝜙}) : 𝑖 ∈ {0, . . . , 𝑛 − 1}

}
. The Fibonacci set for

𝑛 = 128 is given in Figure 2.2 (right).

While general lattices do not appear much in this thesis, this set plays an impor-

tant role in Chapters 5 and 6, and as a sequence in Chapter 8 as it is the one with

lowest discrepancy in dimension 1.
12

In addition to these low-discrepancy sets and sequences, we also refer to two

random constructions in Chapter 6, uniform sampling and Latin Hypercubes. While

the former can be seen as a sequence, the latter is always a set.

11 𝜙 = (1 +
√
5)/2.

12 This is an empirical remark. The best theoretical constant is obtained by Ostromoukhov with a

van der Corput sequence permutation.

19

Chapter 2 Discrepancy Theory

- Uniform sampling: We simply select 𝑥 (𝑖) ∈ [0, 1]𝑑 uniformly at random,

and do this independently for each 𝑖 .

- Improved Latin Hypercube Sampling: Classical Latin Hypercube sam-

pling requires to sample 𝑑 permutations 𝜎1, . . . , 𝜎𝑑 of the set {1, . . . , 𝑛} and to
set 𝑥

(𝑖)
𝑗

:= (𝜎 𝑗 (𝑖) − 𝑢
(𝑖)
𝑗
)/𝑛, where 0 ≤ 𝑢

(𝑖)
𝑗

< 1 denotes a uniformly sampled

value. That is, we select the 𝑖-th point 𝑥 (𝑖)
by choosing it randomly in the

box [(𝜎 𝑗 (𝑖) − 1)/𝑛, 𝜎 𝑗 (𝑖)/𝑛]𝑑 . The advantage of LHS over uniformly selected

Monte Carlo points is that the one-dimensional projections are all well spread.

A disadvantage is that the points can nevertheless be close to each other, e.g.,

when 𝜎 𝑗 is the identity permutation for all 𝑗 ∈ {1, . . . , 𝑑} (in which case the 𝑛

points are all close to the diagonal). Various versions of LHS have been sug-

gested in the literature. We use the “improved” LHS construction suggested

in [BG02]. This variant constructs the set 𝑃 iteratively, by sampling at each

stage a few alternatives and then selecting the candidate that maximizes the

distance to the points that are already collected in the set 𝑃 .

20

3 A Computational Per-
spective on Discrepancy

After this brief discovery of discrepancy theory, we turn our attention to compu-

tational aspects related to it. We first describe the grid structure of the 𝐿∞ star

discrepancy in Section 3.1, arguably the result on which this thesis relies the most.

We then give a summarized explanation of the two main algorithms to compute the

star discrepancy in Sections 3.3 and 3.4, before mentioning some past uses of opti-

mization methods for discrepancy questions such as its computation in Sections 3.5

and 3.6.

3.1 The Grid Structure of the 𝑳∞ Star Discrepancy

Despite being defined as a continuous problem over all possible anchored boxes,

calculating the star discrepancy can be treated as a discrete problem [Nie72]. First,

we notice that any closed anchored box in [0, 1]𝑑 can be obtained as the limit of a

sequence of bigger open boxes that contain the same number of points. The only

exception is [1, . . . , 1] and this closed box cannot give the worst discrepancy value

as its local discrepancy is 0. We define 𝐷 (𝑞, 𝑃) to be the number of points of 𝑃 that

fall inside the open anchored box [0, 𝑞) and 𝐷 (𝑞, 𝑃) the number of points of P that

fall inside the closed anchored box [0, 𝑞]. We define the two following functions:

𝛿 (𝑞, 𝑃) := 𝜆(𝑞) − 1

𝑛
𝐷 (𝑞, 𝑃) and 𝛿 (𝑞, 𝑃) := 1

𝑛
𝐷 (𝑞, 𝑃) − 𝜆(𝑞). (3.1)

The local discrepancy 𝐷loc(𝑞, 𝑃) in a point 𝑞 ∈ [0, 1]𝑑 is given by the maximum of

𝛿 (𝑞, 𝑃) and 𝛿 (𝑞, 𝑃). It is not necessary to consider all possible values for 𝑞. Indeed,

we can define for all 𝑗 ∈ {1, . . . , 𝑑} the grid

𝛤 (𝑃) := 𝛤1(𝑃) × . . . × 𝛤𝑑 (𝑃) and 𝛤 (𝑃) := 𝛤 1(𝑃) × . . . × 𝛤𝑑 (𝑃), (3.2)

with

𝛤𝑗 (𝑃) := {𝑥 (𝑖)
𝑗
|𝑖 ∈ 1, . . . , 𝑛} and 𝛤 𝑗 (𝑃) := 𝛤𝑗 (𝑃) ∪ {1}, (3.3)

As shown in more detail in [DGW14], the star discrepancy computation reduces

21

Chapter 3 A Computational Perspective on Discrepancy

Figure 3.1: An illustration of the grid boxes defined by equation (3.4). The value indicated

in a box corresponds to the discrepancy value in the top-right corner of this box. Blue

boxes contain too many points and are closed, while red boxes contain too few and are

open. This figure is taken from [CDP22].

to the following discrete problem

𝑑∗∞(𝑃) = max

{
max

𝑞∈𝛤 (𝑃)
𝛿 (𝑞, 𝑃), max

𝑞∈𝛤 (𝑃)
𝛿 (𝑞, 𝑃)

}
. (3.4)

An illustration of the grid in this formula is provided in Figure 3.1.

Equation (3.4) allows us to ignore the absolute value in the definition of the star

discrepancy in equation (2.1). If the sign of |𝑃 ∩ [0, 𝑞) |/𝑛 − 𝜆([0, 𝑞)) is positive,
this corresponds to a box with too many points compared to its volume. This can

be associated with the closed boxes in the second term of equation (3.4). If it is

negative, this corresponds to an open box with too few points, the first term in

equation (3.4). The distinction between open and closed is important: while a

closed box can also have too few points, one would always obtain a worse value by

considering the open box with the same top-right corner, and a similar comment

is true when swapping the roles. One can safely assume in this thesis that an

overfilled box is considered closed while an underfilled one is open.

The key argument behind this formula is that, for a box [0, 𝑞) (or [0, 𝑞]), if the
top-right corner is not in a grid position then it is always possible to shift 𝑞 slightly

to make the discrepancy worse. This argument can be used to reduce the set

22

The Grid Structure of the 𝐿∞ Star Discrepancy Section 3.2

Figure 3.2: An illustration of critical boxes for a random set. One can see that each point

defines a line going upwards and one to the right, where all grid points are located. The

1/𝑛 jumps in local discrepancy values when crossing these axes are also visible.

of candidate boxes even further. A box [0, 𝑞) (or [0, 𝑞]) can obtain the maximal

discrepancy value only if for all 𝑖 ∈ {1, . . . , 𝑑} there exists a point 𝑝 ∈ 𝑃 such that

𝑝 ∈ [0, 𝑞] and 𝑝𝑖 = 𝑞𝑖 (where we write 𝑞 = (𝑞1, . . . , 𝑞𝑑)). These specific boxes [0, 𝑞)
and [0, 𝑞] are called critical boxes. In Figure 3.2, the critical boxes are visible as the

intersection points of the grid lines, and the points themselves. Critical boxes are

defined for both open and closed boxes, the difference being that for open boxes

the points defining its edges will not be inside the box. An explicit formulation of

the discrepancy formula induced by these critical boxes in dimension 3 is given by

Bundschuh and Zhu in [BZ93]. The lack of publications describing this formula

should not be seen as a theoretical difficulty, but simply because notations would

become cumbersome, without gaining theoretical insights or practical uses.

With equation (3.4), computing the star discrepancy becomes a discrete problem.

A naïve enumeration of all possible solutions can be done in time𝑂 (𝑛𝑑). Restricting
this search to critical boxes reduces the complexity to 𝑂 (𝑛𝑑/𝑑!). This is clearly
too large to be done in any setting, in particular in higher dimensions. To our

knowledge, this method has been used only up to around dimension 6 [WF97] and,

as we will see in Section 3.3, it is not advisable to use it in dimensions higher than 2.

Nevertheless, we heavily rely on the grid 𝛤 (𝑃) for our exact methods in Chapters 5

and 6, as we will do more than just compute the discrepancy.

23

Chapter 3 A Computational Perspective on Discrepancy

3.2 Complexity of Calculating the 𝑳∞ Star
Discrepancy

Is there any hope in greatly improving the complexity given by the critical box

enumeration? The short answer is no: any exact algorithm has a complexity such

that a term of the shape 𝑛 𝑓 (𝑑)
appears. It is impossible to eliminate this exponential

dependency on 𝑑 . Two main results lead to this conclusion.

The first is the proof of NP-hardness, and even NP-completeness, of calculating

the 𝐿∞ star discrepancy by Gnewuch, Srivastav and Winzen in [GSW09]. Their

proof is based on a two-step reduction from Dominating Set. They first show it is

possible to reduce Dominating Set to the problem of finding if there exists a box

with volume at least 𝜀 that contains at most 𝑘 points, and similarly to the problem

of finding if there exists a box with volume at most 𝜀 containing at least 𝑘 points. A

second reduction is then made to obtain the NP-hardness of the 𝐿∞ star discrepancy

calculation. NP-completeness is a natural consequence as Dominating Set is an

NP-complete problem and calculating the discrepancy is clearly in NP.
13

The second, more important, result is an elegant proof by Giannopoulos, Knauer,

Wahlström and Werner of the W[1]-hardness of calculating the 𝐿∞ star discrep-

ancy in [Gia+12]. Without going into the details of W-complexity classes,
14
they

represent a growing set of complexity classes in parametrized complexity. “Eas-

ier” problems are fixed-parameter tractable and their complexity can be written in

𝑓 (𝑑)𝑛𝑂 (1)
. For these, it is possible to separate the dependency between a parameter

𝑑 in the problem and the problem’s size 𝑛. This class includes all problems in 𝑃 , as

well as some in NP, such as optimization problems with an efficient polynomial time

approximation scheme. The W[]-hierarchy represents a set of problems growing in

difficulty, the “easiest” being in W[1]. A W[1]-hard problem has a complexity in

𝑛𝑂 (𝑑)
, for example finding if a graph has a clique of size 𝑑 . For the W[1]-hardness

of the star discrepancy, the proof is done via a reduction of clique. 2𝑑 dimensions

are considered, divided into pairs and in each a parabolic staircase of points will

be built. These points alternate between points that can be selected and represent

an element of the problem, and forbidden points that will prevent the selection of

specific pairs of points at the same time. It is quite complicated and we defer to

their paper for a thorough explanation.

One key element visible in both the NP-hardness and theW[1]-hardness proofs is

that the point sets built are very specific: the worst discrepancy value is always very

large, close to 1, and reached for the largest empty box or the smallest closed box. To

13 Given a box corner, one can check its local discrepancy naïvely in𝛩 (𝑑𝑛).
14 We refer an interested reader to [Cyg+15].

24

The Dobkin, Eppstein, Mitchell Algorithm Section 3.3

our knowledge, there are no complexity proofs that add some regularity conditions

on the point set to make it more realistic. It is theoretically possible, though in our

opinion very unlikely, that finding the discrepancy of low-discrepancy sets is an

easier problem.

3.3 The Dobkin, Eppstein, Mitchell Algorithm
The best exact algorithm to compute the star discrepancy was introduced by Dobkin,

Eppstein and Mitchell in [DEM96]. We will refer to it as DEM algorithm throughout

this thesis, as we will rely on it consistently for all discrepancy calculations in low

dimensions. It involves building a decomposition of [0, 1]𝑑 in𝑂 (𝑛𝑑/2) disjoint boxes
𝐵𝑖 , such that we can find the maximum local discrepancy for a top-right corner in

𝐵𝑖 in linear time. This leads to a total complexity of𝑂 (𝑛1+𝑑/2). The algorithm can be

used up to dimension 8 for a few hundred points or dimension 10 for a few dozens.

While the initial algorithm in [DEM96] was based on a point-box dualization, our

description in this subsection follows a more direct approach, as in Chapter 10 of

[DGW14] and in the original implementation by the authors of [GWW12]. Some

border cases are ignored for the clarity of the proof, as they do not change the

general idea of the implementation, or the stated complexity.
15

Firstly, a point 𝑥 is said to be internal in dimension 𝑗 for a box [𝑎, 𝑏] if𝑎 𝑗 < 𝑥 𝑗 < 𝑏 𝑗 .

Starting from [0, 1]𝑑 , we build dimension-by-dimension boxes [𝑎, 𝑏] such that the

two following properties are verified:

1. Any 𝑥 ∈ [0, 𝑏) is internal in at most one dimension;

2. For each box built up to dimension 𝑗 in {1, . . . , 𝑑}, there are at most 𝑂 (
√
𝑛)

points internal in dimension 𝑗 - for a fully-built box [𝑎, 𝑏] this holds for all
dimensions.

The decomposition is built recursively in the following manner. We consider

[0, 1]𝑑 and start the decomposition in the first dimension. We find the smallest

coordinate 𝑐1,1 such that [0, 𝑐1,1] × [0, 1]𝑑−1 contains

√
𝑛 points, then 𝑐1,2 such

that [𝑐1,1, 𝑐1,2] × [0, 1]𝑑−1 contains
√
𝑛 points and continue until we obtain a set

(𝑐1,𝑖)𝑖∈{0,...,⌈√𝑛⌉} where 𝑐1,0 = 0 and the last non-zero 𝑐1, 𝑗 = 1. For each of these boxes

[𝑐1,𝑖, 𝑐1,𝑖+1] × [0, 1]𝑑−1, we track which points are internal in dimension 1 (at most√
𝑛) and which points are inside the box [0, 𝑐1,𝑖+1) × [0, 1]𝑑−1.

15 The following description is necessary only for a reader interested in our parallelized implemen-

tation in Chapter 9. Understanding the algorithm is by no means necessary to read the rest of

the thesis.

25

Chapter 3 A Computational Perspective on Discrepancy

Given a box 𝐵 𝑗 = [𝑐1,𝑖1, 𝑐1,𝑖1+1] × . . . × [𝑐 𝑗,𝑖 𝑗 , 𝑐 𝑗,𝑖 𝑗+1] × [0, 1]𝑑− 𝑗 , we recursively

perform a similar decomposition in dimension 𝑗 + 1. Let 𝑛 𝑗 be the number of points

inside 𝐵 𝑗 := [0, 𝑐1,𝑖1+1) × . . . × [0, 𝑐 𝑗,𝑖 𝑗+1] × [0, 1]𝑑− 𝑗 . The new 𝑐 𝑗+1,𝑖 need to verify

the two following properties. Firstly, for any point 𝑥 in 𝐵 𝑗 that is internal in one

of the first 𝑗 dimensions, there needs to be some 𝑐 𝑗+1,𝑖 = 𝑥 𝑗+1. Secondly, for any

𝑖 ∈ {0, . . . , ⌈
√
𝑛⌉ − 1}, there are at most

√
𝑛 points 𝑦 in 𝐵 𝑗 such that 𝑐 𝑗+1,𝑖 < 𝑦 𝑗+1 <

𝑐 𝑗+1,𝑖+1. The first property guarantees that a point will never be internal in multiple

dimensions, and the second that not too many points are in the boxes obtained

from 𝐵 𝑗 .

After 𝑑 steps, we obtain boxes [𝑎, 𝑏] verifying the two desired properties: a point
is internal in at most one dimension and there are at most 𝑂 (

√
𝑛) points internal

in each dimension. We can now find the worst local discrepancy for a box whose

top-right corner is in [𝑎, 𝑏) with the following dynamic programming approach.

Let𝑚(ℎ, 𝑗) (respectively 𝑟 (ℎ, 𝑗)) be the maximum (respectively minimum) value

of

∏ 𝑗

𝑖=1
𝑦𝑖 such that the box [0, 𝑦1) × . . . × [0, 𝑦 𝑗) × [0, 𝑏 𝑗+1) × . . . × [0, 𝑏𝑑) contains

exactly ℎ points. By ordering the points in [0, 𝑏] according to their first dimension,

we can easily obtain𝑚(·, 1) and 𝑟 (·, 1). Since points can only be internal in a single

dimension, taking an internal point in dimension 1 guarantees it will be contained in

the box regardless of the other choices. From the𝑚(·, 𝑗) and 𝑟 (·, 𝑗), we can therefore
calculate𝑚(·, 𝑗 + 1) and 𝑟 (·, 𝑗 + 1). Calculating each𝑚(·, 𝑗 + 1) takes 𝑂 (

√
𝑛) time

as there are 𝑂 (
√
𝑛) internal points and therefore potential different choices for

the coordinate 𝑦 𝑗+1. In total, there are at most 𝑑
√
𝑛 internal points, 𝑚(·, 𝑗 + 1)

needs to be computed for 𝑂 (𝑑
√
𝑛) different values. The dynamic programming

takes 𝑂 (𝑑𝑛) time (the 𝑑 factor is usually ignored). All that remains to be done is

to find max0≤ℎ≤𝑛 (𝑚(ℎ,𝑑) − ℎ/𝑛,ℎ/𝑛 − 𝑟 (ℎ,𝑑)), in other words which (number of

points inside a box, box volume) combination gives the worst discrepancy. This

will directly give the worst discrepancy value for a box whose top-right corner is

in [𝑎, 𝑏). Iterating over all boxes gives the stated complexity.

An improved parallelized version of this algorithm implemented during this

thesis with A.D. Jesus can be found in Chapter 9.

3.4 Threshold Accepting
Several applications of point sets with low star discrepancy value concern settings

that are not efficiently tractable by the exact algorithms described in the previous

two sections. For these applications, we therefore need to resort to heuristic

approaches to evaluate the discrepancy of a given point set. To date, the best-

known heuristic is a Threshold Accepting algorithm proposed in [GWW12]. It

26

Other Approximation Methods of the Star Discrepancy Section 3.5

will be referred to as the TA algorithm or TA heuristic in this thesis. This approach

exploits the grid structure introduced in Section 3.1 and operates on the search

space [1, . . . , 𝑛 + 1]𝑑 , with each point encoding one of the grid points in 𝛤 (𝑃). We

will rely on it for all discrepancy calculations that cannot be done with the DEM

algorithm.
16

The TA algorithm from [GWW12] builds on an earlier approach by Winker and

Fang suggested in [WF97] and extends it by adding various problem-specific com-

ponents. Threshold Accepting [DS90] is similar to Simulated Annealing [KGV83]

but replaces its probabilistic selection criterion with a deterministic one. That is,

at each step, the current incumbent solution is compared to a randomly sampled

neighboring solution. The neighbor is selected as the new center if its quality is

not much worse than that of the previous incumbent. More precisely, neighbor 𝑦

replaces incumbent 𝑥 if 𝑓 (𝑦) − 𝑓 (𝑥) ≥ 𝜏 (𝑡), where 𝜏 (𝑡) ≤ 0 is the threshold chosen

at iteration 𝑡 . The sequence (𝜏 (𝑡))𝑡 is monotonically increasing so that the further

advanced the optimization process is, the harder the selective pressure.

The TA algorithm from [GWW12] uses a dynamic choice of the neighborhood

structure, increasing the number of coordinates { 𝑗 | 𝑥 𝑗 ≠ 𝑦 𝑗 } that may change in

each iteration while at the same time decreasing the absolute difference |𝑥 𝑗 − 𝑦 𝑗 |.
The more important problem-specific component, however, is a “snapping” routine,

which rounds a selected grid point to a so-called critical box; see [GWW12] for

details.

Using the DEM solver from Section 3.3 as a baseline, it was shown in [GWW12]

that the TA algorithm successfully found the optimum on all instances for which

DEM could provide exact values. Based on the results presented in [GWW12],

the TA algorithm seems reliable for point sets up to dimensions 12 to 20 for a few

hundred points. This imprecision should be kept in mind for Chapter 7 where some

discrepancy values are computed in high dimensions.

3.5 Other Approximation Methods of the Star
Discrepancy

While not directly used in this thesis, the methods presented in this section are

structurally close to our work, whether it is via similar optimization methods in

Thiémard’s work or improving the grid 𝛤 (𝑃) for bracketing covers. These have

appeared regularly in our discussions during the thesis, and we hope that their

16 We only use the algorithm without modifying it in the thesis, as such the following description

is not essential to understand our results from Chapter 5 onwards.

27

Chapter 3 A Computational Perspective on Discrepancy

description here inspires future ideas. A reader interested solely in understanding

the chapters covering our work may skip this section safely.

3.5.1 Bracketing Covers

Firstly, it is possible to approximate additively the 𝐿∞ star discrepancy, via the

use of bracketing covers. For our purpose, we define a bracketing 𝛿-cover B as

a set of boxes anchored in 0 such that, for any box [0, 𝑞), there exist two boxes

𝑙, 𝑢 ∈ B such that 𝑞 ∈ [𝑢, 𝑙] and | |𝑢 − 𝑙 | | ≤ 𝛿 . In our context, bracketing covers

were introduced by Dudley in [Dud78] and have been extensively studied, see for

example the survey paper [Gne12]. The most recent improvement in the field is

by Gnewuch in [Gne24], giving a new upper bound for the best possible size of a

bracketing cover.

One can notice that with a fine enough bracketing cover
17
(i.e. for a point set

𝑃 , no two parallel grid lines of 𝛤 (𝑃) pass through [𝑢, 𝑙] if | |𝑢 − 𝑙 | | ≤ 𝛿 and [𝑢, 𝑙]
does not contain another point of the bracketing cover), for any box [0, 𝑞), there
exist two boxes 𝑢 and 𝑙 such that one contains as many points as [0, 𝑞) and the

other as many as [0, 𝑞], while meeting the conditions of the 𝛿-bracketing cover.

Supposing 𝑢 ≤ 𝑙 , the local discrepancy for [0, 𝑞) is at most 𝛿 away from that of

[0, 𝑢] as it contains the same number of points and its volume is at most different

by 𝛿 . A similar argument holds for [0, 𝑙] and [0, 𝑞]. Therefore, computing the

local discrepancy values over all elements of the bracketing cover guarantees an

error of at most 𝛿 on the 𝐿∞ star discrepancy computation. This result was first

shown in [DGS05]. While bracketing covers could be useful to obtain a smaller

grid than 𝛤 (𝑃), they were not used in our work. The main reason for this is their

size, that grows exponentially in the dimension: 𝑑𝑑𝛿−𝑑/𝑑! in dimension greater or

equal than 3 based on the most recent result in [Gne24], which improves the upper

bound in the number of boxes created in a decomposition by Thiémard in [Thi01a].

Finally, there is no known multiplicative approximation algorithm for the 𝐿∞ star

discrepancy.

3.5.2 Thiémard’s Optimization Method

Thiémard’s papers [Thi01a; Thi01b] and thesis [Thi00] are one of two examples

of the use of optimization methods in discrepancy, the other being by de Rainville

and Doerr in [DR13] in the next section.

17 This is only for ease of exposition. Having a 𝛿-cover suffices.

28

Genetic Approaches Section 3.6

Foreshadowing the NP-hardness proof in [GSW09], Thiémard splits the discrep-

ancy calculation problem into 2𝑛 different problems in [Thi00; Thi01b]: what is the

largest/smallest volume a box with 𝑘 points can have, with 𝑘 ∈ {1, . . . , 𝑛}? Each of

these problems can be formulated as an Integer Linear Problem (ILP) as all the point

coordinates are known beforehand, and the product term induced by the volume

can be replaced by a sum of logarithms.
18

For each problem, the worst possible

volume is obtained by finding which coordinates lead to the worst box containing

𝑘 points via binary variables.

Thiémard’s method does not solve all of these to optimality, but instead relies

on upper and lower bounds. An upper bound and a lower bound for each of the

problems is initially found greedily, then the problem returning the worst value is

considered. Its linear relaxation is solved, where the integer variables are replaced

with continuous ones, to update the bounds. It then considers the next problem

giving the worst value, and continues until the final value is found or the solution

is within a desired range. Should a problem be considered a second time, it will

be solved exactly. Interestingly, Thiémard finds that the initial heuristic upper

bounds are very good while the lower bounds are lackluster. This corresponds

exactly to our experience with a different discrepancy optimization problem in

Chapter 5, suggesting that, while obtaining a provably correct solution is difficult,

obtaining a satisfactory approximation should be much cheaper when dealing with

star discrepancies.

3.6 Genetic Approaches
Finally, we mention two very different approaches using genetic algorithms. The

first is by Shah in [Sha10], in which genetic algorithms are used to compute the star

discrepancy of a point set. Without going into details, the main idea behind genetic

algorithms is to keep a diverse population of solutions and making it evolve via

perturbations on its elements (mutations and crossovers) and selection procedures

to attempt to find the best solution. In this case, an element of the population is

a point 𝑞 defining a box [0, 𝑞). Crossover is done by taking two box corners and

swapping exactly one coordinate. Mutation is done by considering an existing point

and randomly modifying its coordinates. The results described by Shah suggest

this method appears competitive with Thiémard’s algorithm. Nevertheless, it is

far from comparing to the TA-algorithm performance-wise. The relatively poor

performance of generic black-box algorithms in Chapter 9 suggests that any such

18 We immediately point out that this trick cannot be used in our optimization constructions in

Chapter 5 as we do not know the coordinates initially.

29

Chapter 3 A Computational Perspective on Discrepancy

algorithm would need to be carefully adapted to the discrepancy problem structure,

for example by only considering critical boxes as with the TA snapping procedure

or by considering solvers efficient for multi-modal problems.

The second use of genetic algorithms was by de Rainville and Doerr in [DR13],

and is an aside in this section on discrepancy computations. Their goal was very

similar to ours in Chapter 6: use computational approaches to build better low-

discrepancy sets. Their work focused on finding good permutations of the gen-

eralized Halton sequence. As mentioned in Section 2.3, the Halton sequence is

defined by reverse 𝑏-ary decompositions, where 𝑏 is prime. In the generalized

sequence, rather than having 𝑥
(𝑖)
𝑗

=
∑𝑙

𝑘=1
𝑑 𝑗,𝑙 (𝑖)𝑏−𝑙 as the reverse 𝑏-ary decompo-

sitions we have 𝑥 (𝑖) =
∑𝑙

𝑘=1
𝜋𝑏 (𝑑 𝑗,𝑙 (𝑖))𝑏−𝑙 where 𝜋𝑏 is a fixed permutation. Their

optimization focuses on finding the optimal permutations. Without going into

detail on their rather normal genetic algorithm, they obtained excellent results, pro-

viding solutions for three open problems on the inverse star discrepancy described

in [NW10][Open Problem 42].
19

Once again, we point out that their discrepancy

values were computed with the TA heuristic introduced in Section 3.4, and therefore

are not guaranteed to be exact.

19 They used Hinrichs’ lifting procedure [Hin13] for the higher dimensional results.

30

4 Energy Approaches

This short chapter describes some very recent results on the use of energies to

construct low-discrepancy sequences in dimension 1. While especially relevant

for Chapter 8, this also sets the background for recent developments that led to a

more general energy formulation which we compare with the sets obtained via

subset selection in Section 7.3.4. A brief introduction to the 𝐿2 discrepancy is given

as a prelude to the description of the Kritzinger sequence. This measure will be

especially relevant in Section 6.7 and Chapter 8, as well as being ubiquitous in our

future research in Chapter 11.

4.1 The 𝑳2 Discrepancy

As seen in the previous chapter, a major drawback of the 𝐿∞ star discrepancy is how

difficult it is to evaluate. While not all 𝐿𝑝 measures for 𝑝 ∈ [2, +∞(are convenient,
the case 𝑝 = 2 proves very easy to work with.

Replacing 𝑝 by 2 in equation (2.2) gives us the following formula

𝑑∗
2
(𝑃) :=

√︄∫
[0,1)𝑑

(
|𝑃𝑘 ∩ [0, 𝑞) |

𝑘
− 𝜆(𝑞)

)
2

𝑑𝑞.

Explicitly writing out the left fraction and splitting the integral into three, Warnock

gives an explicit formula that depends only on the points’ coordinates and the size

of 𝑃 in [War72]

𝑑∗
2
(𝑃) := 1

3
𝑑
− 2

1−𝑑

𝑛

𝑛∑︁
𝑖=1

𝑑∏
𝑘=1

(1 − (𝑥 (𝑖)
𝑘
)2) +

𝑛∑︁
𝑖, 𝑗=1

𝑑∏
𝑘=1

(1 −max(𝑥 (𝑖)
𝑘
, 𝑥

(𝑗)
𝑘

)) . (4.1)

From a computational perspective, this is much easier to work with than the 𝐿∞
star discrepancy as it requires only 𝑂 (𝑑𝑛2) time to compute. A better algorithm

for low dimensions was suggested in [Hei96], that requires only 𝑂 (𝑛 log(𝑛)𝑑)
operations. This is generally better, except for high𝑑 and low𝑛. Ease of computation

31

Chapter 4 Energy Approaches

has led to the 𝐿2 star discrepancy’s prevalence, its main role being a surrogate of

the 𝐿∞ star discrepancy.
20

The 𝐿2 discrepancy does have a major known drawback in that, for low 𝑛 in

higher dimensions, it is practically optimal to place all the points in (1, . . . , 1).
This was shown by Matoušek in [Mat98]. Nevertheless, this should not be seen as

a blocking point towards its use, and personal discussion with N. Kirk suggests

that using a smoothed 𝐿2 discrepancy optimization via machine learning can lead

to excellent sets for the 𝐿∞ star discrepancy. The Kritzinger sequence [Kri22] in

Section 4.3, as well as our own work in Chapter 8, will provide further evidence of

this.

4.2 One-Dimensional Greedy Constructions
As mentioned in Section 2.2, there is still a gap between the lower bound and the

best constant known so far for the optimal discrepancy order for a one-dimensional

sequence. More importantly, in higher dimensions even the logarithm exponent is

unknown. While the log
𝑑 (𝑛)/𝑛 conjecture would match current constructions and

satisfy number theoreticians, the log
𝑑/2(𝑛)/𝑛 would correspondmore to conjectures

from Harmonic Analysis and Probability Theory.

In a bid to find new approaches to tackle this problem, Steinerberger proposed

new greedy methods of constructing point sets in [Ste19; Ste20]. The goal is to

dynamically construct a sequence (𝑥𝑛)𝑛∈ℕ, by defining the newest point in the

sequence 𝑥𝑛+1 as

𝑥𝑛+1 := argmin

𝑥∈[0,1)

∑︁
1≤𝑖≤𝑛

𝑓 (|𝑥 − 𝑥𝑖 |),

where 𝑓 is an appropriately chosen function.
21

In the one-dimensional case

in [Ste20], the function 𝑓 is obtained via the Erdős-Turán inequality, equation (2.6),

to obtain the following equation.

𝑥𝑛+1 := argmin

𝑥 s.t.min𝑘 |𝑥−𝑥𝑘 |>𝑛−10

𝑛∑︁
𝑖=1

(1 − log(2𝜋 sin(𝑥 − 𝑥𝑖)))

He shows that it is always possible to pick the next point such that the resulting

20 This should not be seen too reductively. There is a very large demand for such a surrogate and,

like many other discrepancies, it does appear in certain Koksma-Hlawka type inequalities for

specific classes of functions [DP14, Chapter 9].

21 Finding the function 𝑓 that minimizes the discrepancy of the resulting sequence is in itself a

fascinating question which will not be tackled in this thesis.

32

The Kritzinger Sequence Section 4.3

sequence has discrepancy at most 𝑂 (log(𝑛)/
√
𝑛). More importantly, numerical

experiments suggest it performs comparably to, if not better than, traditional

low-discrepancy sequences. This leads to his conjecture that the sequence has dis-

crepancy of order 𝑂 (log(𝑛)/𝑛), the traditional order of low-discrepancy sequences

in one dimension. Furthermore he noticed two very interesting properties. The first

is that the sequence obtained seems to be robust relative to the starting set. Even

beginning with a few points very close together leads to a good sequence after a

few hundred points. This will be further discussed in Chapter 8. The second is that

with specific starting points, the greedy energy approach gives exactly elements of

the van der Corput sequence.

It was shown very quickly afterwards by Pausinger [Pau21] that this last property

is not limited to Steinerberger’s functional, but is obtained as long as the functional

𝑓 verifies three properties:

• 𝑓 is symmetric, 𝑓 (𝑥) = 𝑓 (1 − 𝑥),

• 𝑓 is twice differentiable,

• 𝑓 ′′(𝑥) > 0 for all 𝑥 ∈ [0, 1).

Should 𝑓 verify these three properties, starting the sequence with 𝑥0 = 0 leads

to the sequence being a permutation of the van der Corput sequence. With an

added condition, Pausinger obtains a 𝑂 (𝑛−1/3) bound on the discrepancy of the

resulting sequence. While this bound is relatively weak, it is interesting that we

are able to obtain a bound for a very general class of functionals when our bounds

on specific functionals are still far from the 𝑂 (log(𝑛)/𝑛) target. In any case, the

connection to the van der Corput sequence, which is well understood and has a

discrepancy in 𝑂 (log(𝑛)/𝑛), brings better guarantees on the discrepancy of the

generated sequence.

This should not be seen as a purely one-dimensional focus. Steinerberger’s

greedy construction can be adapted to obtain a functional that shifts point sets in
any dimension [Ste19]. As in the one-dimensional case, this method both provides

seemingly low-discrepancy sets and allows the correction of badly distributed sets.

4.3 The Kritzinger Sequence

Building on these papers, Kritzinger introduced a new functional in [Kri22], based

on the 𝐿2 discrepancy. Unlike for the 𝐿∞ star discrepancy, the contribution 𝐹 (𝑦, 𝑃) of

33

Chapter 4 Energy Approaches

0 200 400 600 800 1000 1200 1400
Number of points

0.2

0.3

0.4

0.5

0.6

Sc
al

ed
 st

ar
 d

isc
re

pa
nc

y

Fibonacci
Kritzinger

Figure 4.1: The Kritzinger sequence compared to the Fibonacci sequence over the first 1500

points. 𝑥-axis is the number of points, while the 𝑦-axis represents the 𝐿∞ star discrepancy

of the set, scaled by 𝑛/log(𝑛). The Fibonacci sequence is one of the most regular one-

dimensional sequences, and yet the Kritzinger sequence is comparable over the whole

range of values tested.

a new point𝑦 added to 𝑃 is easy to express usingWarnock’s formula (equation (4.1)),

𝐹 (𝑦, 𝑃) := −21−𝑑
𝑑∏

𝑘=1

(1 −𝑦2
𝑘
) + 1

𝑛 + 1

𝑑∏
𝑘=1

(1 −𝑦𝑘) +
2

𝑛 + 1

𝑛∑︁
𝑗=1

𝑑∏
𝑘=1

(1 −max(𝑦𝑘 , 𝑥 (𝑗)
𝑘

)).

(4.2)

Kritzinger thus defines his sequence by choosing as the next point the point that

minimizes the 𝐿2 discrepancy of the new set,

𝑥𝑛+1 := argmin

𝑦∈[0,1)𝑑
𝐹 (𝑦, 𝑃).

This sequence can be defined in any dimension, and calculating the contribution

of a single point can be done in𝑂 (𝑛𝑑) time. Kritzinger limited his study to dimension

1 and showed promising empirical performance of the sequence. Importantly, he

showed that the next point generated, say the (𝑛 + 1)-th, could only take specific

values, (2𝑖 + 1)/2(𝑛 + 1) where 𝑖 ∈ {0, . . . , 𝑛 − 1}. This can be easily shown by

noticing that the one-dimensional version of 𝐹 (𝑦, 𝑃) is a degree-two polynomial

with positive second order coefficient. Kritzinger showed that the sequence had a

𝐿∞ star discrepancy of order at most 𝑂 (𝑛−1/2) in any dimension. This is close to

the bounds for random points described in Section 2.2.

Numerical experiments by Kritzinger and Steinerberger show that the sequence

34

The Kritzinger Sequence Section 4.3

is comparable to the Fibonacci sequence at least up to roughly 1500 points, as can

be seen in Figure 4.1. This suggests that, once again, we do not have the appropriate

bounds and Kritzinger conjectures that the correct order is 𝑂 (log(𝑛)/𝑛). The only
improvement to Kritzinger’s result was by Steinerberger, who showed in [Ste24] that

a quantity slightly weaker than the discrepancy is at most𝑂 (𝑛−2/3).22 This was done
by showing that greedy Wasserstein𝑊2-distance minimization leads a Kritzinger

sequence, and this sequence has the stated bound for the 𝐿∞ star discrepancy for

infinitely many 𝑛. It is somewhat surprising that greedy 𝐿2 minimization would lead

to such good results for the 𝐿∞ star discrepancy, especially in light of the weakness

mentioned in the previous section and the fact that greedy 𝐿∞ minimization does

not perform well. Our recent research on the Kritzinger sequence will be presented

in Chapter 8.

22 More precisely, there are infinitely many 𝑛 such that the discrepancy is of order 𝑂 (𝑛−2/3).

35

Part II

Contributions

5 Optimal Set Construction

This chapter is based on a mix between the long version presented in the
preprint [Clé+23a], Constructing Optimal 𝑳∞ Star Discrepancy Sets and a more
concise paper under submision at the time of writing. This was joint work with Carola
Doerr, Kathrin Klamroth and Luís Paquete.

5.1 Summary of Results
We present in this chapter two different non-linear programming formulations

to obtain optimal point sets with respect to the 𝐿∞ star discrepancy. Section 5.2

introduces the key results in dimension 2, that is both formulations and some key

lemmas that greatly help the solver. In particular, we generalize a lower bound

by White in [Whi77] on the 𝐿∞ star discrepancy of small point sets in dimension

2. The obtained point sets are far better than Fibonacci sets, one of the best two-

dimensional sets, with a near 50% improvement in all the cases in 2 dimensions.

Table 5.1 and Figure 5.1 highlight the clear improvement in discrepancy values

brought by our optimal sets. The point set structure is also very different, as shown

earlier by Figure 1.1, suggesting a possible new point set construction approach.

The framework introduced for the 𝐿∞ star discrepancy in dimension 2 can be

extended to many different settings. We provide results for dimension 3 and for

different measures such as the extreme and periodic discrepancies in Section 5.3.

In particular, we introduce the multiple-corner discrepancy, a new discrepancy

measure that aims to reduce the dependency on the corner in 0 without adding the

very high computational cost of the extreme discrepancy. We show that optimizing

for this measure provides sets with a more symmetric structure, while still being

competitive with our optimal sets for the 𝐿∞ star discrepancy.

More than the precise discrepancy values, the two key takeaways from this

chapter should be the flexibility of the methods used and the very different structure

of sets obtained.

We conclude this short summary with a technical comment. While the desired

point sets should be in [0, 1)𝑑 , solvers such as Gurobi [Gur23] do not handle well

strict inequalities. We will therefore search for optimal sets in [0, 1]𝑑 . Nevertheless,
it is common in discrepancy theory to change to [0, 1]𝑑 if more convenient and

37

Chapter 5 Optimal Set Construction

101 102

Number of points

0.00

0.05

0.10

0.15

0.20

0.25

St
ar

 d
isc

re
pa

nc
y

Fibonacci
Optimal
Multiple
Sobol
Upper bound
Lower bound

Figure 5.1: 𝐿∞ star discrepancies for the 𝐿∞ star optimal sets (line “optimal”) and our

multiple-corner optimal sets (line “multiple”), compared to the Fibonacci set. The dashed

lines are lower and upper bounds described in Table 5.4.

.

depending on the context [Owe23, Section 15.1]. The lower bound we prove in

Section 5.2.3 also shows that our sets will be in [1/𝑛, 1], hence avoiding the main

issue that may arise with periodicity and 0 ≡ 1 mod 1. Nevertheless, one should

be cautious with this aspect when using our models for the periodic discrepancy.

Finally, all of our code and some figures are available at https://github.com/

frclement/OptiSetsDiscrepancy.

5.2 Problem Formulations in Two Dimensions
We introduce in this section our models to construct optimal 𝐿∞ star discrepancy

sets. Section 5.2.1 generalizes a result by White [Whi77] lower-bounding the star

discrepancy of small sets. Section 5.2.2 presents the more intuitive model, where we

are directly optimizing point positions. It is in general the better performing model

in 2 dimensions. In this model, we initially make an assumption of a minimal gap

Table 5.1: Comparison of previously best values for low-discrepancy sets and our optimal

sets. Optimal values were previously known for 𝑛 ≤ 6.

𝑛 3 4 5 6 7 8 9 10 11

Optimal 0.2847 0.2500 0.2000 0.1667 0.1500 0.1328 0.1235 0.1111 0.1030

Fibonacci 0.5880 0.4910 0.3528 0.3183 0.2728 0.2553 0.2270 0.2042 0.1857

𝑛 12 13 14 15 16 17 18 19 20

Optimal 0.0952 0.0889 0.0837 0.0782 0.0739 0.06996 0.06667 0.0634 0.0604

Fibonacci 0.1702 0.1571 0.1459 0.1390 0.1486 0.1398 0.1320 0.1251 0.1188

38

https://github.com/frclement/OptiSetsDiscrepancy
https://github.com/frclement/OptiSetsDiscrepancy

Problem Formulations in Two Dimensions Section 5.2

on the coordinates of two different points. Section 5.2.3 proves that this hypothesis

does not increase the optimal 𝐿∞ star discrepancy value by showing not only that

there exist optimal point sets with distinct coordinates but also that it is possible to

set the minimal coordinate in each dimension to 1/𝑛 when 𝑛 ≥ 4. It also describes

a general procedure to shift points without increasing the discrepancy value of

the set. Section 5.2.4 presents a second model, based on the fact that any point set

naturally defines a grid 𝛤 as introduced in Section 3.1. Optimizing the placement of

this grid and adding constraints enforcing exactly one point per grid line/column

is equivalent to optimizing the placement of the point set. Finally, we present our

results for these two models in Section 5.2.5 and provide a visual comparison of

our optimal sets to known low-discrepancy sets in Section 5.2.6.

5.2.1 A Generalization of a Result in [Whi77]
As mentioned in Section 2.2.2, White [Whi77] gave optimal discrepancy values for

𝑛 ≤ 6 in dimension 2. His paper also includes a lower bound on the optimal 𝐿∞
star discrepancy values in dimension 2 for 𝑛 ≥ 6 (see Proposition 1 in [Whi77]).

Given the relevance of Proposition 1 from [Whi77] for our models, we provide

below a second proof of Proposition 1, that we furthermore generalize to any

dimension. This result will be used to provide a lower bound constraint to the

solver. It is particularly important to our models as the solver struggles to find good

lower bounds initially.

▶ Theorem 5.1. [Whi77, Proposition 1] Let 𝑃 ⊂ [0, 1)𝑑 with |𝑃 | = 𝑛. If 𝑑 = 2 and

𝑛 ≥ 4, or 𝑑 ≥ 3 and 𝑛 ≥ 3, then 𝑑∗∞(𝑃) ≥ 1/𝑛. ◀

Proof. Let 𝑛,𝑑, 𝑃 be as required. There are two cases to consider: whether there

exist 𝑥 and 𝑦 in 𝑃 such that neither 𝑥 ≤ 𝑦 nor 𝑦 ≤ 𝑥 coordinate-wise, or not. We

will show that in both cases there exists a box with discrepancy at least 1/𝑛.
• We first suppose that the points in 𝑃 can be ordered such that 𝑥 (1) ≤ 𝑥 (2) ≤
. . . ≤ 𝑥 (𝑛)

. For all the large open boxes reaching an outer edge of [0, 1]𝑑 to
have discrepancy smaller than 1/𝑛, each coordinate 𝑥 (𝑖)

𝑗
has to be smaller than

𝑖/𝑛. Given this, in the best possible case, the smallest closed box containing

𝑥 (𝑖)
has volume smaller than (𝑖/𝑛)𝑑 and contains 𝑖 points. In dimension 2, for

𝑖 = 2 and 𝑛 ≥ 4, we then have a local discrepancy of the smallest closed box

containing 𝑥 (2)
of more than

2

𝑛
− 2

𝑑

𝑛𝑑
, which is at least 1/𝑛. The same result

holds in dimension at least 3 with the same value of 𝑖 and 𝑛 ≥ 3.

• If the points are not pairwise dominating each other, there exist 𝑥 and 𝑦 in 𝑃

such that 𝑥1 > 𝑦1 and 𝑥2 < 𝑦2 (without loss of generality on the dimensions).

39

Chapter 5 Optimal Set Construction

The box [0, 𝑞), where 𝑞1 = 𝑥1 and 𝑞2 = 𝑦2 and 𝑞 𝑗 = max(𝑥 𝑗 , 𝑦 𝑗) for 𝑗 ∈
{3, . . . , 𝑑}, contains at least two fewer points than [0, 𝑞] and has the same

Lebesgue measure 𝑉𝑞 . Let 𝑘 be the number of points inside [0, 𝑞). Then we

have 𝑑∗∞(𝑃) ≥ max{|𝑉𝑞 − 𝑘/𝑛 |, |𝑉𝑞 − (𝑘 + 2)/𝑛 |} ≥ 1/𝑛. One of the two boxes
therefore has discrepancy at least 1/𝑛.

We have thus shown that in both cases, there exists a box with local discrepancy at

least 1/𝑛, which concludes the proof. ■

By a similar argument as in Case 2, one can show that any set in dimension

𝑑 with 𝑑 mutually non-dominating points has discrepancy at least 𝑑/(2𝑛). We

conjecture this to be a lower bound for all sets, provided 𝑛 is large enough while

still being far smaller than the exponential number of points based on [BLV08].

5.2.2 A “Classical” Formulation
We consider the problem of locating a set 𝑃 of 𝑛 points 𝑥 (𝑖)

:= (𝑥2𝑖−1, 𝑥2𝑖) ∈ [0, 1]2
for 𝑖 = 1, . . . , 𝑛, such that

23

𝑃 = argmin

𝑋={𝑥 (1) ,...,𝑥 (𝑛) }
𝑑∗∞(𝑋) .

As mentioned in the previous summary, we make the assumption that no two points

in 𝑃 have the same value in any coordinate. The core idea behind the model is to

lower-bound the discrepancy value by the local discrepancies defined by critical

boxes, and for this we need to know how many points are inside each box and

where those boxes are.

Without loss of generality we assume that 𝑥2𝑖−1 < 𝑥2𝑖+1 for all 𝑖 = 1, . . . , 𝑛 − 1,

i.e., the points are labeled in increasing order of their first components. The point

set 𝑃 then induces a grid 𝛤 (𝑃) with grid points 𝑔𝑖 𝑗 = (𝑥2𝑖−1, 𝑥2 𝑗) for 𝑖, 𝑗 = 1, . . . , 𝑛.

By equation (3.4), to compute 𝑑∗∞(𝑃) for a point set 𝑃 , we have to consider all

critical grid points 𝑔𝑖 𝑗 = (𝑥2𝑖−1, 𝑥2 𝑗) for which the defining points 𝑥 (𝑖)
and 𝑥 (𝑗)

are

located on or just below the axes defining 𝑔𝑖, 𝑗 . The first case corresponds to closed

boxes, constraints (5.5a), where 𝑖 = 𝑗 is possible. The second case corresponds to

open boxes, constraints (5.5b), where the points can also be defined by the outer

edges of the box [0, 1)𝑑 . Furthermore, to avoid having to treat the boxes with a

coordinate equal to 1 as separate cases, we can add two dummy points 𝑥 (0) = (0, 1)
and 𝑥 (𝑛+1) = (1, 0), from which we only need the coordinates 𝑥0 and 𝑥2𝑛+1. These

23 We warn the reader that a variable 𝑥𝑖 in the model corresponds to the coordinate of a point 𝑥 (𝑗)
,

and not directly to a point of 𝑃 .

40

Problem Formulations in Two Dimensions Section 5.2

have fixed values equal to 1. We do not include them in any of the sums counting

the number of points inside a box as they do not represent a real point of the final

set.

For each of these critical boxes, we need to determine which points of 𝑃 are

inside. While it is easy to decide whether 𝑥 (𝑖)
is below 𝑥 (𝑗)

in the first component by

simply comparing the respective indices (recall that by assumption, 𝑥
(𝑖)
1

= 𝑥2𝑖−1 <

𝑥2 𝑗−1 = 𝑥
(𝑗)
1

if and only if 𝑖 < 𝑗), we need to define indicator variables 𝑦𝑖 𝑗 ∈ {0, 1}
for all 𝑖, 𝑗 ∈ {1, . . . , 𝑛} to indicate that 𝑥 (𝑖)

is below, or equal to, 𝑥 (𝑗)
in the second

component (note that equality is only possible if 𝑖 = 𝑗). In other words, we want

that 𝑦𝑖 𝑗 = 1 if and only if 𝑥
(𝑖)
2

= 𝑥2𝑖 ≤ 𝑥2 𝑗 = 𝑥
(𝑗)
2
. Then, a grid point 𝑔𝑖 𝑗 needs to

be considered whenever 𝑗 ≤ 𝑖 and 𝑦𝑖 𝑗 = 1 (closed boxes), and whenever 𝑗 < 𝑖 and

𝑦𝑖 𝑗 = 1 (open boxes).

In order to properly define the indicator variables 𝑦𝑖 𝑗 for all 𝑖, 𝑗 ∈ {1, . . . , 𝑛}, we
first consider the case that 𝑖 < 𝑗 . Towards this end, observe that 𝑥2𝑖 > 𝑥2 𝑗 and hence

𝑦𝑖 𝑗 = 0 if and only if 𝑥2 𝑗 − 𝑥2𝑖 < 0. This can be translated into linear constraints on

the indicator variable 𝑦𝑖 𝑗 as follows:(
𝑥2 𝑗 − 𝑥2𝑖 < 0 ⇒ 𝑦𝑖 𝑗 = 0

)
is enforced by 𝑥2 𝑗 − 𝑥2𝑖 > 𝑦𝑖 𝑗 − 1(

𝑥2 𝑗 − 𝑥2𝑖 < 0 ⇐ 𝑦𝑖 𝑗 = 0

)
is enforced by 𝑥2 𝑗 − 𝑥2𝑖 < 𝑦𝑖 𝑗 .

By anti-symmetry, we have 𝑦𝑖 𝑗 = 1 − 𝑦 𝑗𝑖 for all 𝑖, 𝑗 = 1, . . . , 𝑛, 𝑖 ≠ 𝑗 . Moreover, we

set 𝑦𝑖𝑖 = 1 for all 𝑖 = 1, . . . , 𝑛. These constraints correspond to constraints (5.5d)

to (5.5g) in the model below. Note that in the formulation below, we additionally

require a small distance 𝜀 > 0 between 𝑥-coordinate (constraints (5.5c)) and 𝑦-

coordinate values (constraints (5.5d)) of distinct points in order to avoid degenerate

situations with different points with one or multiple equal coordinates. We show

in Section 5.2.3 that there is at least one optimal solution verifying this for 𝜀 small

enough. A solution to the model with this small enough 𝜀 is then a provably optimal

solution of our initial problem.

We hence obtain the following nonlinear programming problem (that we refer

to as model (5.5) in the following) that has quadratic terms in the constraints due

to the volume computations:

min 𝑓

s.t.

1

𝑛

𝑖∑︁
𝑢=1

𝑦𝑢 𝑗 − 𝑥2𝑖−1𝑥2 𝑗 ≤ 𝑓 +(1−𝑦𝑖 𝑗) ∀𝑖, 𝑗 = 1, . . . , 𝑛, 𝑗 ≤ 𝑖 (5.5a)

41

Chapter 5 Optimal Set Construction

−1
𝑛

(
𝑖−1∑︁
𝑢=0

𝑦𝑢 𝑗 −1
)
+ 𝑥2𝑖−1𝑥2 𝑗 ≤ 𝑓 +(1−𝑦𝑖 𝑗) ∀𝑖 = 1, . . . , 𝑛+1, 𝑗 < 𝑖 (5.5b)

𝑥2𝑖+1 − 𝑥2𝑖−1 ≥ 𝜀 ∀𝑖 = 1, . . . , 𝑛 − 1 (5.5c)

𝑥2 𝑗 − 𝑥2𝑖 ≥ 𝑦𝑖 𝑗 − 1 + 𝜀 ∀𝑖, 𝑗 = 1, . . . , 𝑛, 𝑖 < 𝑗 (5.5d)

𝑥2 𝑗 − 𝑥2𝑖 ≤ 𝑦𝑖 𝑗 ∀𝑖, 𝑗 = 1, . . . , 𝑛, 𝑖 < 𝑗 (5.5e)

𝑦𝑖 𝑗 = 1 − 𝑦 𝑗𝑖 ∀𝑖, 𝑗 = 1, . . . , 𝑛, 𝑖 > 𝑗 (5.5f)

𝑦𝑖𝑖 = 1 ∀𝑖 = 1, . . . , 𝑛 (5.5g)

𝑥0 = 𝑥2𝑛+1 = 1

𝑦0 𝑗 = 0 ∀𝑗 = 1, . . . , 𝑛

𝑦 𝑗0 = 𝑦(𝑛+1), 𝑗 = 1 ∀𝑗 = 0, . . . , 𝑛

𝑥𝑖 ∈ (0, 1] ∀𝑖 = 1, . . . , 2𝑛

𝑦𝑖 𝑗 ∈ {0, 1} ∀𝑖, 𝑗 = 1, . . . , 𝑛

𝑓 ≥ 0.

Note that the variables 𝑦 𝑗,(𝑛+1) for 𝑗 = 0, . . . , 𝑛 + 1 are never used in the model and

are hence not defined.

As mentioned previously, constraints (5.5a) and (5.5b) only need to be enforced

for critical grid points. We thus enforce them only for 𝑗 ≤ 𝑖 for closed boxes,

accounting for the case that a point defines a critical grid point by itself, and for

𝑗 < 𝑖 in the case of open boxes. Moreover, the constraints are relaxed (by adding 1

on the right-hand side) whenever 𝑥 (𝑗)
is not above (or equal to) 𝑥 (𝑖)

(and hence 𝑥 (𝑖)

is not below 𝑔𝑖 𝑗 and the box is not critical), i.e., whenever 𝑦𝑖 𝑗 = 0. For constraints

(5.5b), we need to count all points in the respective volume that are strictly below

the considered grid point 𝑔𝑖 𝑗 . Since we assume that no two points share the same

coordinate value in any dimension, the summation is over the indices 1 to 𝑖 − 1,

where we have to correct for the case that𝑢 = 𝑗 for which we consider the point 𝑥 (𝑗)

with 𝑦 𝑗 𝑗 = 1 by subtracting 1 from the sum over the 𝑦𝑢 𝑗 ’s. Boxes with a coordinate

equal to 1 correspond to the special cases where 𝑖 = 𝑛 + 1 or 𝑗 = 0 in constraints

(5.5b).

Constraints (5.5c) (for the first dimension) and (5.5d) and (5.5e) (for the second

dimension) impose a minimum coordinate difference 𝜀. Since the points are ordered

in the first dimension, only consecutive pairs need to be checked there. Section 5.2.3

justifies this minimal coordinate difference.

In order to strengthen model (5.5), additional constraints may be added.

𝑓 ≥ 1/𝑛 valid if 𝑛 ≥ 4 (5.5h)

42

Problem Formulations in Two Dimensions Section 5.2

𝑦𝑖 𝑗 + 𝑦 𝑗𝑘 − 1 ≤ 𝑦𝑖𝑘 ∀𝑖, 𝑗, 𝑘 = 1, . . . , 𝑛 (5.5i)

𝑦𝑖 𝑗 + 𝑦 𝑗𝑘 ≥ 𝑦𝑖𝑘 ∀𝑖, 𝑗, 𝑘 = 1, . . . , 𝑛 (5.5j)

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑦𝑖 𝑗 =
𝑛(𝑛 + 1)

2

(5.5k)

This includes, among others, known bounds on the optimal value of 𝑓 as well as

constraints that are based on the specific properties of the sorting variables 𝑦𝑖 𝑗 as,

e.g., transitivity. [Whi77] derived a lower bound 𝑑∗∞ ≥ 1/𝑛 value for optimal points

sets with 𝑛 > 6 in dimension 2, and that we generalize to 𝑛 > 4 in any dimension

in Theorem 5.1. This knowledge can be included in the model by adding constraint

(5.5h). Constraints (5.5i) and (5.5j) enforce transitivity for the indicator variables,

i.e., if 𝑥
(𝑖)
2

= 𝑥2𝑖 < 𝑥2 𝑗 = 𝑥
(𝑗)
2

and 𝑥
(𝑗)
2

= 𝑥2 𝑗 < 𝑥2𝑘 = 𝑥
(𝑘)
2

(i.e., if 𝑦𝑖 𝑗 = 1 and 𝑦 𝑗𝑘 = 1),

then also 𝑥
(𝑖)
2

= 𝑥2𝑖 < 𝑥2𝑘 = 𝑥
(𝑘)
2

(i.e., 𝑦𝑖𝑘 = 1). Note that constraints (5.5i) are also

valid for cases where some or all of the indices 𝑖, 𝑗, 𝑘 are equal. Constraints (5.5j)

cover the converse case where 𝑥
(𝑖)
2

> 𝑥
(𝑗)
2

and 𝑥
(𝑗)
2

> 𝑥
(𝑘)
2

(i.e., if 𝑦𝑖 𝑗 = 0 and 𝑦 𝑗𝑘 = 0)

and hence 𝑥
(𝑖)
2

> 𝑥
(𝑘)
2

(i.e., 𝑦𝑖𝑘 = 0). Finally, constraint (5.5k) counts the number of

𝑦𝑖 𝑗 variables that have the value 1 in any feasible solution, which is always constant.

5.2.3 Minimal Point Spacing
In order to refine the model further and justify our general position hypothesis, we

prove in this section some properties on optimal point sets. In particular we show

that there exists some optimal sets in dimension 2 such that

• No two points share the same coordinate value in any of the coordinates (we

refer to this as the general position assumption).

• Either the points all have a minimum distance from the lower and left bound-

aries ((𝑗, 𝑖, 𝛿)-shifts in Lemma 5.3), or the respectively first points are on the

lower and left boundaries of the unit cube ((𝑗, 𝑖,−𝛿)-shifts in Lemma 5.5).

This results holds in any dimension.

• The points satisfy some minimum distance requirements, i.e., they can be

moved such that the distance between two vertically consecutive points /

horizontally consecutive points is at least 𝜀 with a sufficiently small 𝜀 > 0.

▶ Definition 5.2. Consider a point set 𝑃 = {𝑥 (1), . . . , 𝑥 (𝑛)}. Let 𝑖 ∈ {1, . . . , 𝑛},
𝑗 ∈ {1, . . . , 𝑑}, and let 0 ≤ 𝛿 ≤ 1 − 𝑥

(𝑖)
𝑗
. A (𝑗, 𝑖, 𝛿)-shift corresponds to the set

43

Chapter 5 Optimal Set Construction

obtained by replacing the 𝑗-th coordinate of the 𝑖-th point 𝑥
(𝑖)
𝑗

by 𝑥
(𝑖)
𝑗

+ 𝛿 . A

(𝑗, 𝑖, 𝛿)-shift is called admissible if

𝛿 ≤ 1

𝑛
− min

𝑘≠𝑖:𝑥 (𝑘)≤𝑥 (𝑖)
𝑥
(𝑖)
𝑗

− 𝑥
(𝑘)
𝑗

if {𝑘 ≠ 𝑖 : 𝑥 (𝑘) ≤ 𝑥 (𝑖)} is not empty and 𝛿 ≤ 1/𝑛 − 𝑥
(𝑖)
𝑗

otherwise. ◀

Figure 5.2 provides an example of an admissible (1, 8, 0.09447)-shift.

▶ Lemma 5.3. Let 𝑃 be a point set of [0, 1)𝑑 and let 𝑠 𝑗,𝑖,𝛿 (𝑃) be the set obtained
after an admissible (𝑗, 𝑖, 𝛿)-shift of 𝑃 . Then 𝑑∗∞(𝑃) ≥ 𝑑∗∞(𝑠 𝑗,𝑖,𝛿 (𝑃)). ◀

The key argument behind this result is to show that if a (𝑗, 𝑖, 𝛿)-shift is admissible,

then no open box defined by 𝑥 (𝑖)
was critical. Indeed, in this case there exists a

smaller open box, that was dominated by the point 𝑥 (𝑖)
that we are shifting, and

that had worse discrepancy than the largest open box not containing 𝑥 (𝑖)
. The

𝑗-coordinate difference between this box and those defined by our 𝑖-th point then

leads to the bounds on 𝛿 for admissibility.

Proof. Consider an admissible (𝑗, 𝑖, 𝛿)-shift from 𝑃∗ = {𝑥 (1), . . . , 𝑥 (𝑛)} to a new

𝑛-point set 𝑃 := 𝑠 𝑗,𝑖,𝛿 (𝑃∗) with 𝑖 ∈ {1, . . . , 𝑛} arbitrary but fixed. Without loss of

generality, we will consider 𝑗 = 1 and the numbering of the points to correspond

to the ordering in the first dimension. We refer to the grid points induced by 𝑃∗

as 𝛤 (𝑃∗) := {𝑔𝑎𝑏 : 𝑎 ∈ {1, . . . , 𝑛 + 1}, 𝑏 ∈ {1, . . . , 𝑛 + 1}𝑑−1} and to the grid points

induced by 𝑃 as 𝛤 (𝑃) := {𝑔𝑎𝑏 : 𝑎 ∈ {1, . . . , 𝑛 + 1}, 𝑏 ∈ {1, . . . , 𝑛 + 1}𝑑−1}, where
the index 𝑛 + 1 is associated to value 1 in the respective coordinate. To show that

discrepancy has not increased we only need to verify that it has not increased for

the grid points in equation (3.4).

We first consider the case of closed boxes. For 𝑎 ∈ {1, . . . , 𝑛 + 1} \ {𝑖} and

𝑏 ∈ {1, . . . , 𝑛 + 1}𝑑−1, the closed box defined by grid point 𝑔𝑎𝑏 = 𝑔𝑎𝑏 , contains either

the same number of points or one less. The local discrepancy for these closed boxes

can only be lower. For a box 𝑔𝑖𝑏 , either we did not cross a hyperplane defined by

𝑥1 = 𝑥
(𝑘)
1

with 𝑘 > 𝑖 and we have the same number of points in a larger volume, or

there existed some 𝑘 > 𝑖 such that𝑔𝑖𝑏 contains as many points as𝑔𝑘𝑏 and the volume

associated with 𝑔𝑘𝑏 is smaller. In both cases, the local discrepancy associated with

𝑔𝑖𝑏 is smaller than 𝑑∗∞(𝑃∗).
We now consider open boxes. As before, 𝑔𝑘𝑏 = 𝑔𝑘𝑏 for 𝑘 < 𝑖 and the points inside

are unchanged. Boxes 𝑔𝑎𝑏 for 𝑎 > 𝑖 are either unchanged or contain one less point

than before the shift. If they contain one less point, then there exists 𝑘 < 𝑖 such

44

Problem Formulations in Two Dimensions Section 5.2

𝑥 (1)

𝑥 (2)

𝑥 (3)

𝑥 (4)

𝑥 (5)

𝑥 (6)

𝑥 (7)

𝑥 (8)

𝑥 (8)

𝑥 (9)

𝑥 (10)

𝑥 (1)

𝑥 (2)

𝑥 (3)

𝑥 (4)

𝑥 (5)

𝑥 (6)

𝑥 (7)

𝑥 (8)

𝑥 (9)

𝑥 (10)

Figure 5.2: Left: An optimal 10-point set 𝑃∗
with 𝑓 ∗ = 𝑑∗∞(𝑃∗) = 0.1111. The red arrow

indicates the (1, 8, 0.09447)-shift, which is admissible with 𝛿 = 1

𝑛
− (𝑥 (8)

2
− 𝑥

(4)
2

). Note that
𝑥 (8)

is slightly higher than 𝑥 (4)
, i.e., the two points are not on the same horizontal grid line.

Right: Alternative optimal 10-point set after implementing all admissible (𝑗, 𝑖, 𝛿)-shifts.

that 𝑥
(𝑖)
1

≤ 𝑥
(𝑎)
1

≤ 𝑥
(𝑘)
1

+ 1/𝑛 and 𝑥 (𝑘) ≤ 𝑥 (𝑖)
. Therefore, the box defined by 𝑔𝑘𝑏 = 𝑔𝑘𝑏

has volume less than 1/𝑛 smaller than 𝑔𝑎𝑏 and contains at least one less point: 𝑥 (𝑘)
.

Hence, the local discrepancy for 𝑔𝑎𝑏 is smaller than 𝑑∗∞(𝑃∗). The last box type to
consider is 𝑔𝑖𝑏 . A similar argument as above can be used: this box will have volume

at most 1/𝑛 greater than a certain 𝑔𝑘𝑏 and contains at least one more point.

We have shown that for all boxes appearing in equation (3.4) for 𝑃 there exists a

box with worse local discrepancy for 𝑃∗
, which concludes the proof. ■

We are also able to formulate an equivalent definition for negative values of 𝛿 .

The admissibility then depends on points that dominate 𝑥 (𝑖)
rather than points

dominated by 𝑥 (𝑖)
.

▶ Definition 5.4. Consider a point set 𝑃 = {𝑥 (1), . . . , 𝑥 (𝑛)}. Let 𝑖 ∈ {1, . . . , 𝑛},
𝑗 ∈ {1, . . . , 𝑑}, and let 0 ≤ 𝛿 ≤ 𝑥

(𝑖)
𝑗
. A (𝑗, 𝑖,−𝛿)-shift corresponds to the set obtained

by replacing the 𝑗-th coordinate of the 𝑖-th point 𝑥
(𝑖)
𝑗

by 𝑥
(𝑖)
𝑗

− 𝛿 . A (𝑗, 𝑖,−𝛿)-shift is
called admissible if

𝛿 ≤ 1

𝑛
− min

𝑘≠𝑖:𝑥 (𝑘)≥𝑥 (𝑖)
𝑥
(𝑘)
𝑗

− 𝑥
(𝑖)
𝑗

if {𝑘 ≠ 𝑖 : 𝑥 (𝑘) ≤ 𝑥 (𝑖)} is not empty and 𝛿 ≤ 𝑥
(𝑖)
𝑗

− (1 − 1/𝑛) otherwise. ◀

▶ Lemma 5.5. Let 𝑃 be a point set of [0, 1)𝑑 and let 𝑠 𝑗,𝑖,−𝛿 (𝑃) be the set obtained
after an admissible (𝑗, 𝑖,−𝛿)-shift of 𝑃 . Then 𝑑∗∞(𝑃) ≥ 𝑑∗∞(𝑠 𝑗,𝑖,−𝛿 (𝑃)). ◀

The proof is analogous to the one of Lemma 5.3.

45

Chapter 5 Optimal Set Construction

▶ Corollary 5.6. For 𝑑 = 2 and 𝑛 ∈ ℕ>0, there exists a set in general position with

discrepancy 𝑑∗∞(𝑛, 2). ◀

Proof. Let 𝑃 be a point set in [0, 1)2 with discrepancy 𝑑∗∞(𝑛, 2). If there is a single
point in 𝑃 , the result is trivial. Otherwise, without loss of generality, suppose there

exist 𝑥 (1)
and 𝑥 (2)

such that 𝑥
(1)
1

= 𝑥
(2)
1

. Then one of the two points dominates the

other, suppose 𝑥 (1) ≤ 𝑥 (2)
. A (1, 2, 𝛿)-shift with 0 < 𝛿 ≤ 1/𝑛 is thus admissible

and we can shift 𝑥 (2)
such that it does not share its first coordinate with any other

point. Repeating this for all the points and the two dimensions gives the desired

result. ■

This direct consequence of Lemma 5.3 does not generalize in the same way

to three dimensions and above, as a shared coordinate for two points no longer

guarantees that one point dominates the other. While it seems likely that for low 𝑛

no two points should share a coordinate, we have no proof in higher dimensions.

Lemmas 5.3 and 5.5 imply that there always exists an optimal 𝑛-point set that

satisfies additional “distance” constraints, while, of course, not all optimal 𝑛-point

sets necessarily satisfy such constraints. In addition, existing 𝑛-point sets can be

modified without deteriorating the objective value by applying admissible shifts in

any sequence. This implies, among others, that in two dimensions the points that

are closest to the lower and left boundary of the unit square can be moved up and

right, respectively. Since there are no other points below them, they can actually be

moved up to a distance of 𝑓 from the respective boundaries, without increasing the

discrepancy value 𝑓 of the considered configuration. Moreover, for every pair of

points 𝑥 (𝑖) ≠ 𝑥 (𝑗)
with 𝑥

(𝑖)
1

≤ 𝑥
(𝑗)
1

and 𝑥
(𝑖)
2

≤ 𝑥
(𝑗)
2

, we can apply (2, 𝑗, 𝛿) or (2, 𝑗,−𝛿)
admissible shifts so that the vertical distance between the two points is at least

1

𝑛
, and similarly we can apply (1, 𝑗, 𝛿) or (1, 𝑗,−𝛿) so that the horizontal distance

between the two points is at least
1

𝑛
.
24

Note that this is also possible when one (or

both) of the points are close to the upper or right boundary of the unit cube, since

we can apply (1, 𝑖,−𝛿) or (2, 𝑖,−𝛿) admissible shifts in this case.

The constraints (5.5l)-(5.5o) implement these conditions, constraints (5.5p) and

(5.5q) follow from the inequalities for the grid points on the upper boundary, and

constraint (5.5r) follows by the triangle inequality.

𝑥1 = 𝑓 (5.5l)

𝑥2𝑖 ≥ 𝑓 ∀𝑖 = 1, . . . , 𝑛 (5.5m)

24 This does not mean the coordinates will be multiples of 1/𝑛 as we require two points where one

dominates the other for this comment to hold.

46

Problem Formulations in Two Dimensions Section 5.2

𝑥2𝑖+1 − 𝑥2𝑖−1 ≥ 𝑦𝑖,(𝑖+1) − 1 + 1

𝑛
∀𝑖 = 1, . . . , 𝑛 − 1 (5.5n)

𝑥2 𝑗 − 𝑥2𝑖 ≥ 𝑦𝑖 𝑗 − 1 + 1

𝑛
∀𝑖, 𝑗 = 1, . . . , 𝑛, 𝑖 < 𝑗 (5.5o)

𝑥2𝑖−1 ≤ 𝑓 + 𝑖 − 1

𝑛
∀𝑖 = 1, . . . , 𝑛 (5.5p)

𝑥2𝑖−1 ≥
𝑖

𝑛
− 𝑓 ∀𝑖 = 1, . . . , 𝑛 (5.5q)

𝑥2 𝑗−1 − 𝑥2𝑖−1 + 𝑥2 𝑗 − 𝑥2𝑖 ≥ 𝑦𝑖 𝑗 − 1 + 2

𝑛
∀𝑖, 𝑗 = 1, . . . , 𝑛 − 1, 𝑖 < 𝑗 (5.5r)

Note that while constraints (5.5n) can be introduced in addition to constraints

(5.5c) but can not replace them, constraints (5.5o) strengthen constraints (5.5d) and

(5.5e) and should thus be used instead. Finally, we note that constraints (5.5p) make

some of the constraints of type (5.5b) redundant. Indeed, when 𝑗 = 0, constraint

(5.5b) gives us exactly constraint (5.5p). With this improvement, we can now set

𝑦𝑖0 = 0 for all 𝑖 ∈ {1, . . . , 𝑛 + 1}.

5.2.4 An Assignment Formulation
We now introduce a second formulation, which will also exploit the results from

the previous section. An alternative formulation is obtained when defining the two

coordinates of all points in 𝑃 separately and independently from each other in two

vectors 𝑥,𝑦 ∈ [0, 1]𝑛. The point set 𝑃 is then obtained by assigning exactly one

𝑦-coordinate to every 𝑥-coordinate25 and vice versa, using assignment variables

𝑎𝑖 𝑗 ∈ {0, 1}, 𝑖, 𝑗 = 1, . . . , 𝑛. In other words, rather than optimizing a point set, we

optimize the associated grid (and indirectly the set): a point (𝑥𝑖, 𝑦 𝑗) is in 𝑃 if and

only if 𝑎𝑖 𝑗 = 1. The advantage of this formulation is its simplicity, since the sorting

can be implemented already when defining the 𝑥- and 𝑦-coordinates of the vertical

and horizontal grid lines, respectively, in an increasing order.

min 𝑓

s.t.

1

𝑛

𝑖∑︁
𝑢=1

𝑗∑︁
𝑣=1

𝑎𝑢𝑣 − 𝑥𝑖𝑦 𝑗 ≤ 𝑓 ∀𝑖, 𝑗 = 1, . . . , 𝑛 (5.6a)

−1
𝑛

𝑖−1∑︁
𝑢=1

𝑗−1∑︁
𝑣=1

𝑎𝑢𝑣 + 𝑥𝑖𝑦 𝑗 ≤ 𝑓 ∀𝑖, 𝑗 = 1, . . . , 𝑛 + 1 (5.6b)

25 𝑥 represents here the sorted list of the first coordinates of the points in 𝑃 .

47

Chapter 5 Optimal Set Construction

𝑥𝑛+1 = 1, 𝑦𝑛+1 = 1 (5.6c)

𝑥𝑖+1 − 𝑥𝑖 ≥ 𝜀 ∀𝑖 = 1, . . . , 𝑛 − 1 (5.6d)

𝑦𝑖+1 − 𝑦𝑖 ≥ 𝜀 ∀𝑖 = 1, . . . , 𝑛 − 1 (5.6e)

𝑛∑︁
𝑖=1

𝑎𝑖 𝑗 = 1 ∀𝑗 = 1, . . . , 𝑛 (5.6f)

𝑛∑︁
𝑗=1

𝑎𝑖 𝑗 = 1 ∀𝑖 = 1, . . . , 𝑛 (5.6g)

𝑥𝑖, 𝑦𝑖 ∈ [0, 1] ∀𝑖 = 1, . . . , 𝑛

𝑎𝑖 𝑗 ∈ {0, 1} ∀𝑖, 𝑗 = 1, . . . , 𝑛

𝑓 ≥ 0.

Constraints (5.6a) and (5.6b) correspond to the discrepancy inequalities, with

the double sum counting the number of selected points inside the box defined by

(𝑥𝑖, 𝑦 𝑗). Constraints (5.6d) and (5.6e) impose the minimal distance between two

grid lines, as derived in the previous subsection. Finally, constraints (5.6f) and (5.6g)

impose that there is exactly one point in each column and row of the grid. The

“exactly” comes from the general position assumption we derived previously.

Note that the values of 𝑥𝑛+1, 𝑦𝑛+1 are fixed to one. These parameters are used

as dummy values to include the open box constraints (5.6b) for the grid points

on the upper and right boundaries in a simple way. Note also that many of the

constraints (5.6a) and (5.6b) are redundant since the defining points may not be

located below or on the respective grid lines. It is possible to check if a box defined

by 𝑥𝑖 and 𝑦 𝑗 is critical by calculating

∑𝑖
𝑘=1

𝑎𝑘 𝑗 +
∑ 𝑗

𝑘=1
𝑎𝑖𝑘 . This sum is equal to 2 if

and only if there is a point on each of the outer edges and thus if and only if the

box is critical. In practice, the model was slower when adding this requirement. It

may be worthwhile to use this requirement for other solvers or different settings.

As in the previous model, the formulation can be strengthened by the following

constraints:

𝑓 ≥ 1/𝑛 if 𝑛 ≥ 4 (5.6h)

𝑥1 = 𝑓 (5.6i)

𝑦1 = 𝑓 (5.6j)

𝑥 𝑗 − 𝑥𝑖 ≥
1

𝑛
−

(
1 −

𝑘∑︁
𝑢=1

(𝑎𝑖𝑢 − 𝑎 𝑗𝑢)
)

𝑖, 𝑗 = 1, . . . , 𝑛, 𝑖 < 𝑗,

𝑘 = 1, . . . , 𝑛 (5.6k)

48

Problem Formulations in Two Dimensions Section 5.2

𝑦 𝑗 − 𝑦𝑖 ≥
1

𝑛
−

(
1 −

𝑘∑︁
𝑢=1

(𝑎𝑖𝑢 − 𝑎 𝑗𝑢)
)

𝑖, 𝑗 = 1, . . . , 𝑛, 𝑖 < 𝑗,

𝑘 = 1, . . . , 𝑛 (5.6l)

𝑥𝑖 ≤ 𝑓 + 𝑖 − 1

𝑛
𝑖 = 2, . . . , 𝑛 (5.6m)

𝑥𝑖 ≥
𝑖

𝑛
− 𝑓 𝑖 = 2, . . . , 𝑛 (5.6n)

𝑦𝑖 ≤ 𝑓 + 𝑖 − 1

𝑛
𝑖 = 2, . . . , 𝑛 (5.6o)

𝑦𝑖 ≥
𝑖

𝑛
− 𝑓 𝑖 = 2, . . . , 𝑛 (5.6p)

Constraint (5.6h) uses Theorem 5.1. Constraints (5.6i) to (5.6p) are direct analogies

to constraints (5.5m) to (5.5q). Only constraints (5.6k) and (5.6l) have to be adapted

since we no longer use ordering variables (the ordering is naturally defined by the

grid itself).

5.2.5 Experimental Results

We describe in this section the results obtained by our different models. All experi-

ments were run with Gurobi 10.0.0 with an accuracy of 10
−4

using Julia and the

JuMP package. Experiments were run on a single machine of the MeSU cluster at

Sorbonne Université, Intel Xeon CPU E5-2670 v3 with 24 cores.

Tables 5.2 and 5.3 give the optimal discrepancy values for point sets for 𝑛 = 1 to

𝑛 = 21 for different models, as well as the associated runtimes. M5 corresponds to

the continuous formulation described in (5.5) andM6 corresponds to the assignment

formulation (5.6). The “+” then indicates which extra constraints were added. The

runtime is indicated for each formulation, the returned value is logically always the

same. We note that values for 𝑛 = 1 to 𝑛 = 6 correspond to those known previously.

The continuous formulation M5 is significantly faster than the assignment one M6,

both with and without the extra constraints. We note that the effectiveness of the

extra constraints is debatable: initial tests on a small laptop provided a factor 4

speedup, but there is no obvious improvement for the tests on the cluster shown

below for M5. We compare the discrepancies of our optimal sets to one of the most

famous sets, obtained from the Kronecker sequence with golden ratio which we

call Fibonacci set (see Section 2.3 for a brief description).

During the computational experiments we observed that very good – if not

optimal – solutions were often found quite early during the solution process, and a

large amount of time was then used by the solver to close the duality gap, i.e., to

49

Chapter 5 Optimal Set Construction

Table 5.2: 𝑑 = 2, 𝑛 ≥ 2 points located in the continuous box [0, 1]2. All problems solved

with Gurobi to global optimality with a tolerance of 10
−4
.

𝑛 2 3 4 5 6 7 8 9

M5 0.01 0.02 0.63 0.41 0.78 0.81 0.3 0.93

M5+ℎ...𝑟 0.01 0.1 0.01 0.14 0.07 0.2 0.32 0.7

M6 0.04 0.06 0.33 0.27 0.22 2.04 2.11 91.32

M6+ℎ...𝑝 0.05 0.05 0.38 0.29 0.33 0.58 0.80 7.19

𝑑∗∞(𝑃cont) 0.3660 0.2847 0.2500 0.2000 0.1667 0.1500 0.1328 0.1235

𝑑∗∞(𝐹𝑖𝑏) 0.6909 0.5880 0.4910 0.3528 0.3183 0.2728 0.2553 0.2270

30 40 50 60 70 80 90 100
Number of points

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Di
sc

ep
an

cy

Lower bound
Upper bound
Fibonacci

Figure 5.3: Comparison of the bounds at 40 000s obtained in Table 5.4 with the values of

the Fibonacci set.

prove global optimality of the solution. Thus, very good point sets can be obtained

by running a solver with a pre-specified time limit, however without showing

optimality. Table 5.4 and Figure 5.3 show discrepancy values obtained for Model

M5+ℎ within a time limit of 1 000s, 10 000s, 20 000s and 40 000s, and a comparison

with the Fibonacci sequence. It turns out that for 𝑛 larger than 100, the complexity

of the model increases too much to make this a viable approach. For the 100 point

set, all the results before the 40 000 seconds cutoff are worse than the Fibonacci set,

only the last improvement makes it noticeably better. We note that Model M5+ℎ
outperformed Model M5+ℎ,...,𝑟 in nearly all cases: only some duality gaps are smaller

with 1 000 seconds runtime.

50

Problem Formulations in Two Dimensions Section 5.3

Table 5.3: 𝑑 = 2, 𝑛 ≥ 10 points located in the continuous box [0, 1]2. While in almost all

instances an optimal solution was obtained very quickly, it often took a very long time to

close the duality gap and to prove optimality. All problems solved with Gurobi 10.0.0 to

global optimality with a tolerance of 10
−4
.

𝑛 10 11 12 13 14 15

M5 1.46 5.06 7.29 16.98 62.22 70

M5+ℎ...𝑟 0.91 4.89 12.01 21.53 69.94 110.56

M6+ℎ...𝑝 5.47 15.41 27.61 65.31 6 279.16 3 445.26

𝑑∗∞(𝑃cont) 0.1111 0.1030 0.0952 0.0889 0.0837 0.0782

𝑑∗∞(𝐹𝑖𝑏) 0.2042 0.1857 0.1702 0.1571 0.1459 0.1390

𝑛 16 17 18 19 20 21

M5+ℎ...𝑟 426.01 616.45 4 610.23 11 240.5 21 892.76 77 988.0

M6+ℎ...𝑝 12 974.11 22 020.44

𝑑∗∞(𝑃cont) 0.0739 0.06996 0.0667 0.0634 0.0604 0.0580

𝑑∗∞(𝐹𝑖𝑏) 0.1486 0.1398 0.1320 0.1251 0.1188 0.1132

5.2.6 Structural Differences between Known and Optimal
Point Sets

Finally, plotting the local discrepancy values over [0, 1]2 reveals that our optimal

sets have a very different structure to known low-discrepancy sets. In each plot, we

calculate the local discrepancy values over [0, 1)2, with brighter colors indicating

a worse discrepancy. Note that each plot has its own color scale. Furthermore,

“triangles” whose corner is to the top-right correspond to open boxes with too few

points whereas those with a corner to the lower-left correspond to closed boxes

with too many points. To facilitate a visual inspection, we also provide a truncated
version of these plots, where all local discrepancy values smaller than 𝑑∗∞(𝑃) − 1/𝑛
are set to 0. This allows us to see better where the worst discrepancy values are

reached and if the local discrepancy values are balanced over the whole space.

While in sets like Fibonacci or the initial segments of the Sobol’ sequence only a

few closed boxes give active constraints for the discrepancy (i.e. the inequality

in the constraint is an equality), a much bigger set of boxes are very close to the

maximal discrepancy value for our sets. In particular, the truncated plots show that

a very large part of [0, 1)2 has a local discrepancy close to 1/𝑛 for our optimal sets.

For both Fibonacci and Sobol’ sets, only overfilled boxes appear, and this seems to

be a characteristic independent of 𝑛. However, for our sets, both types of triangles

appear and quite often sharing a box corner.

51

Chapter 5 Optimal Set Construction

Figure 5.4: Fibonacci, Sobol’ and optimal sets’ local discrepancies for 𝑛 = 6.

Figure 5.5: Fibonacci, Sobol’ and optimal sets’ truncated local discrepancies for 𝑛 = 6. Local

discrepancy values more than 1/𝑛 away from the star discrepancy were set to 0. Colored

regions are therefore close to the worst discrepancy value.

Figure 5.6: Fibonacci, Sobol’ and optimal sets’ local discrepancies for 𝑛 = 12.

Figure 5.7: Fibonacci, Sobol’ and optimal sets’ truncated local discrepancies for 𝑛 = 12.

52

Extensions Section 5.3

Table 5.4: 𝑑 = 2, points located in the continuous box [0, 1]2. All problems solved for

Model M5+ℎ with Gurobi with a time limit of 1 000s, 10 000s, 20 000 and 40 000 seconds,

respectively. Gap represents the difference between the current best solution and a lower

bound found by the solver.

𝑛 30 40 50 60 80 100

time limit 1 000s:

𝑑∗∞(𝑃cont) 0.04305 0.035 0.0317 0.02934 0.02467 0.04070

gap 0.01718 0.01780 0.02432 0.02567 0.01807 0.03568

time limit 10 000s:

𝑑∗∞(𝑃cont) 0.0426 0.0334 0.0283 0.02469 0.02467 0.02570

gap 0.01296 0.01087 0.01550 0.01682 0.01781 0.02068

time limit 20 000s:

𝑑∗∞(𝑃cont) 0.0426 0.0333 0.0283 0.0246 0.02379 0.02346

gap 0.01208 0.01015 0.01530 0.01682 0.01653 0.01844

time limit 40 000s:

𝑑∗∞(𝑃cont) 0.0424 0.0332 0.028 0.02435 0.02131 0.01933

gap 0.01124 0.00947 0.01519 0.01666 0.01403 0.01431

Reference

Fibonacci 0.079231 0.063836 0.053068 0.044223 0.033167 0.027485

5.3 Extensions
This section presents a number of possible extensions of our model. Section 5.3.1

introduces the most natural one, an extension to higher dimensions. Section 5.3.2

describes a way of obtaining optimal lattices, a very frequent structure in the

discrepancy community. Finally, Section 5.3.3 considers alternative discrepancy

notions (extreme, periodic, and multiple-corner discrepancy). These different mea-

sures appear frequently in the discrepancy literature [Mat10], sometimes under the

name “axis-parallel” boxes for the extreme discrepancy. For example, the paper by

Hinrichs and Oettershagen [HO14] mentioned in Section 2.2.2 tackled the optimal

constructions for the periodic 𝐿2 discrepancy (not star).

5.3.1 An Extension to Three Dimensions
Both models presented in Section 5.2 naturally extend to higher dimensions. How-

ever, a considerably simpler model is obtained when generalizing model (5.6) to

the three-dimensional case and will be the only one described here. Our experi-

53

Chapter 5 Optimal Set Construction

Figure 5.8: Fibonacci, Sobol’ and optimal sets’ local discrepancies for 𝑛 = 18.

Figure 5.9: Fibonacci, Sobol’ and optimal sets’ truncated local discrepancies for 𝑛 = 18.

ments suggest it is also the fastest model to solve. As in model (5.6), we define the

𝑥-, 𝑦- and 𝑧-coordinates separately and independently from each other in vectors

𝑥,𝑦, 𝑧 ∈ [0, 1]𝑛 . The point set is then obtained by assigning exactly one 𝑦- and

one 𝑧-coordinate to every 𝑥-coordinate, and vice versa, using assignment variables

𝑎𝑖 𝑗𝑘 ∈ {0, 1}, 𝑖, 𝑗, 𝑘 = 1, . . . , 𝑛.

min 𝑓

s.t.

1

𝑛

𝑖∑︁
𝑢=1

𝑗∑︁
𝑣=1

𝑘∑︁
𝑤=1

𝑎𝑢𝑣𝑤 − 𝑥𝑖𝑦 𝑗𝑧𝑘 ≤ 𝑓 ∀𝑖, 𝑗, 𝑘 = 1, . . . , 𝑛 (5.7a)

−1
𝑛

𝑖−1∑︁
𝑢=1

𝑗−1∑︁
𝑣=1

𝑘−1∑︁
𝑤=1

𝑎𝑢𝑣𝑤 + 𝑥𝑖𝑦 𝑗𝑧𝑘 ≤ 𝑓 ∀𝑖, 𝑗, 𝑘 = 1, . . . , 𝑛 + 1 (5.7b)

𝑥𝑛+1 = 1, 𝑦𝑛+1 = 1, 𝑧𝑛+1 = 1 (5.7c)

𝑛∑︁
𝑗=1

𝑛∑︁
𝑘=1

𝑎𝑖 𝑗𝑘 = 1 ∀𝑖 = 1, . . . , 𝑛 (5.7d)

𝑛∑︁
𝑖=1

𝑛∑︁
𝑘=1

𝑎𝑖 𝑗𝑘 = 1 ∀𝑗 = 1, . . . , 𝑛 (5.7e)

54

Extensions Section 5.3

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑎𝑖 𝑗𝑘 = 1 ∀𝑘 = 1, . . . , 𝑛 (5.7f)

𝑥𝑖, 𝑦𝑖, 𝑧𝑖 ∈ [0, 1] ∀𝑖 = 1, . . . , 𝑛;

𝑎𝑖 𝑗𝑘 ∈ {0, 1} ∀𝑖, 𝑗, 𝑘 = 1, . . . , 𝑛

𝑓 ≥ 0

The values of 𝑥𝑛+1, 𝑦𝑛+1, 𝑧𝑛+1 are fixed to one and used as dummy values.

One should be careful that our result on the general position of some optimal

sets no longer holds in higher dimensions. While the admissible shifts still do

not increase the discrepancy of the set (Lemmas 5.3 and 5.5 still hold), a pair of

points 𝑥 (1)
and 𝑥 (2)

sharing a coordinate no longer guarantees that one dominates

the other. This means we can no longer use the constraints lower-bounding the

gaps between different coordinates. Furthermore, some of the local discrepancy

constraints will count the points incorrectly.
26

Nevertheless, for every distinct

box, there will be a constraint correctly computing the local discrepancy. Indeed,

suppose there exist 𝑥𝑘 = 𝑥𝑖 and 𝑖 < 𝑘 , two coordinates in the same dimension

of different points. For the closed box defined by 𝑥𝑖 , we will not count 𝑥𝑘 , which

leads to a lower discrepancy lower bound. However, the closed box for 𝑥𝑘 counts

these points correctly: the lower bound is unchanged. A similar argument holds by

swapping the roles for open boxes.

As before, the formulation can be strengthened by the following constraints, as

the lowest point in each dimension can still be shifted:

𝑥1 = 𝑓 (5.7j)

𝑦1 = 𝑓 (5.7k)

𝑧1 = 𝑓 (5.7l)

𝑓 ≥ 1/𝑛 valid if 𝑛 ≥ 3 (5.7m)

This is based on the fact that Lemmas 5.3 and 5.5 immediately generalize to three

and more dimensions.

We note that extensions to higher dimensions could be obtained in a similar

way. However, we would obtain 𝑂 (𝑛𝑑) constraints just to bound the discrepancy,

without even considering the products of many variables: each local discrepancy

constraint has a product of 𝑑 variables.

26 This always underestimates the discrepancy. An overestimation would prevent the model from

working.

55

Chapter 5 Optimal Set Construction

Table 5.5 describes our results in dimension 3. We are able to solve the model

in reasonable time for 𝑛 ≤ 8. While the model is relatively easy to solve with the

general position hypothesis (518.98s for 𝑛 = 8), it is vastly more expensive without.

Indeed, it took 1 569 728s to solve the problem in the 𝑛 = 8 case. Finding an optimal

solution is relatively inexpensive (around a day), but closing the optimality gap

takes a lot longer.

Table 5.4 in the 2𝑑 case suggests this is not an insurmountable obstacle if the

objective is only to obtain excellent sets, and not optimal ones. Runtime values are

not included as the computer was not running exclusively this experiment and the

runtime values may not be representative.

Table 5.5: 𝑑 = 3, 𝑛 ≥ 1 points located in the continuous box [0, 1]3. All problems solved

with Gurobi 10.0.0, using a simple reformulation of the cubic terms into quadratic terms.

𝑛 1 2 3 4 5 6 7 8

𝑑∗∞(𝑃cont) 0.6823 0.4239 0.3445 0.3038 0.2618 0.2326 0.2090 0.1875

5.3.2 Optimal Lattice Construction
A very brief introduction to lattices for discrepancy was given in Section 2.3, high-

lighting in particular the two-dimensional Fibonacci set. In general, construction

methods for these lattices usually involve either component by component search,

exhaustive search or Korobov constructions, where the lattice parameter is given

by (1, 𝑎, 𝑎2, . . . , 𝑎𝑑−1) for some well-chosen 𝑎 ∈ [0, 1]. Our models suggest another

construction method for these lattices.
27

We now want to build a point set 𝑃𝑟 =
{
(𝑖/𝑛, {𝑖𝑟 }) |𝑖 ∈ {0, . . . , 𝑛 − 1}

}
, with

𝑟 ∈ [0, 1). While lattice parameters are often found by considering 𝑟 = 𝑝/𝑛
with 𝑝 coprime with 𝑛, we can obtain even better sets by considering all reals in

[0, 1]. This can be easily implemented in the first continuous model, by adding

constraints on the relations between two consecutive points in the set. We have

that 𝑥2𝑖−1 = (𝑖 − 1)/𝑛, 𝑥2 = 0 and 𝑥2𝑖 + 𝑟 = 𝑥2(𝑖+1) mod 1 for 𝑖 ∈ {1, . . . , 𝑛 − 1}. The
first two equalities pose no problem and can be directly added as is in the model.

For the third, we add binary variables (𝑘𝑖)𝑖∈{2,...,𝑛}, where 𝑘𝑖 = 1 if 𝑥2𝑖 + 𝑟 > 1. We

then obtain the equality 𝑥2𝑖 + 𝑟 = 𝑥2(𝑖+1) + 𝑘𝑖 , which can be added to our model.

27 It would be more precise to characterize what we are constructing as Kronecker constructions,

rather than the more general lattices. Indeed, we are finding optimal parameters such that

the two-dimensional set obtained from a Kronecker sequence is the best possible. We will

nevertheless stick with the term “lattice” for readability.

56

Extensions Section 5.3

While this was implemented only for model (5.5), this change can also be done

for model (5.6). For model (5.6), the only choices are which 𝑎1 𝑗 we pick and the

associated 𝑦 𝑗 , as they will define all the other variables. equation (5.5c) can be

removed since we know that the distance between two consecutive 𝑥-coordinates

is 1/𝑛. The following constraints then need to be added to model (5.5).

𝑥2𝑖−1 = (𝑖 − 1)/𝑛 𝑖 = 1, . . . , 𝑛 (5.8a)

𝑥2 = 0 (5.8b)

𝑥2𝑖 + 𝑟 = 𝑥2𝑖+2 + 𝑘𝑖 𝑖 = 1, . . . , 𝑛 − 1 (5.8c)

𝑘𝑖 ≥ 𝑥2𝑖 + 𝑟 − 1 + 𝜀 𝑖 = 1, . . . , 𝑛 − 1 (5.8d)

𝑘𝑖 ∈ {0, 1} 𝑖 = 1, . . . , 𝑛 − 1

𝑟 ∈ [0, 1]

We note that a very small 𝜀 needs to be added in constraint (5.8d) because the

strict inequality is not handled well by the solver. The other possible solution is to

consider the inequality without the 𝜀 and verify that there is no point with 1 as a

coordinate.

Table 5.6 gives the best discrepancy values obtainable for lattice sets with one

parameter fixed to 1/𝑛. While these are worse than the optimal values for 𝑛 = 20,

they are still better than the Fibonacci sequence by a decent margin.

Table 5.6: Best discrepancies for lattice constructions in 2d for different 𝑛. 𝑟 corresponds

to the lattice parameter.

𝑛 𝑟 𝑑∗∞(𝐿𝐴𝑇1) 𝑑∗∞(𝐹𝑖𝑏) Runtime (s)

20 0.653 0.094898 0.1188 7.05

25 0.64269 0.077410 0.095078 21.82

30 0.733 0.06492 0.079231 149.85

35 0.82759 0.056137 0.067913 797.66

40 0.79404 0.049594 0.063836 2349.33

This approach was then generalized to have lattices with two parameters: rather

than (1/𝑛, {𝑖𝑟 }), we now consider ({𝑖𝑟1}, {𝑖𝑟2}). These lattices will naturally be

better than the single parameter ones. The constraints added to remove the frac-

tional part now need to be used on the first variable as well. This requires removing

equation (5.8a) and adding the following equations.

57

Chapter 5 Optimal Set Construction

𝑥1 = 0, 𝑥2 = 0 (5.8e)

𝑥2𝑖−1 + 𝑟2 = 𝑥2𝑖+1 + ℎ𝑖 𝑖 = 1, . . . , 𝑛 − 1 (5.8f)

ℎ𝑖 > 𝑥2𝑖−1 + 𝑟2 − 1 𝑖 = 1, . . . , 𝑛 − 1 (5.8g)

ℎ𝑖 ∈ {0, 1} 𝑖 = 1, . . . , 𝑛 − 1

𝑟2 ∈ [0, 1]

Table 5.7 gives the two parameters as well as the best discrepancies obtained

for varying 𝑛 by lattices. Interestingly, the first parameter 𝑟1 is always very close

to 1/𝑛, while still improving noticeably on the discrepancy values from Table 5.6.

It can also be seen that while the first parameters are monotonically decreasing

and quite close to 1/𝑛, the second parameters seem to have similar values (a lot of

them are around 0.725). We notice that the discrepancy of the best lattice with 37

points remains far from that of our optimal point set with 20 points. This suggests

that construction methods other than lattices should be considered when trying to

build high-quality low-discrepancy sets.

Table 5.7: Best discrepancies obtained for double lattices 𝑑∗∞(𝐿𝐴𝑇2), as well as associated
parameters. The Fibonacci and one-parameter lattice values are added as reference.

𝑛 𝑟1 𝑟2 𝑑∗∞(𝐿𝐴𝑇2) 𝑑∗∞(𝐿𝐴𝑇1) 𝑑∗∞(𝐹𝑖𝑏) Runtime (s)

15 0.07 0.843 0.1083 0.1233 0.1390 1.84

20 0.052 0.737 0.083795 0.0949 0.1188 11.21

25 0.0411 0.79167 0.0697 0.0774 0.095078 41.09

30 0.0343 0.784 0.05918 0.0694 0.079231 194.07

32 0.03218 0.72489 0.055749 0.0613 0.074279 731.00

34 0.03022 0.72497 0.052556 0.0578 0.069910 428.03

35 0.02936 0.72498 0.05107 0.0562 0.067913 1313.43

37 0.02777 0.72489 0.048303 0.0534 0.067861 1295.44

40 0.0256 0.725 0.0449 0.0496 0.063836 3158.23

5.3.3 Other Discrepancies

We describe in this subsection three possible reformulations of our models to build

optimal sets for other discrepancy measures commonly used in discrepancy theory.

This is not an exhaustive list of possible extensions of our models. We favored

58

Extensions Section 5.3

constructions with the most common notions in the literature, or that could have

an impact on practical applications of low-discrepancy sets.

5.3.3.1 Extreme Discrepancy

The extreme discrepancy removes the constraint that the lower-left corner of the

box needs to be in (0, 0), considering “axis-parallel” boxes rather than “anchored”

ones. More formally, for a point set 𝑃 ,

𝐷𝑒𝑥𝑡
∞ (𝑃) := sup

𝑞,𝑟∈[0,1)𝑑 ,𝑞<𝑟

���� |𝑃 ∩ [𝑞, 𝑟) |
|𝑃 | − 𝜆([𝑞, 𝑟))

����,
where 𝑞 < 𝑟 indicates that 𝑞 is smaller than 𝑟 for each coordinate. This discrepancy

measure is more general than the 𝐿∞ star discrepancy, but given that it is even more

complicated to compute, it has been studied less. It is mentioned in [DGW14; Nie92],

but there are only very few papers focusing explicitly on it such as [MC94]. Our

models can be easily adapted for this change of discrepancy measure: it requires

changing the lower bound of each sum in the open and closed box constraints

(5.5a) and (5.5b) (model (5.5)) or (5.6a) and (5.6b) (model (5.6)), and considering the

corresponding constraints for all relevant combinations of 𝑞 and 𝑟 . For example, in

model (5.6), rather than always starting at 1 and going to 𝑖 in each sum, we start

at a certain 1 ≤ 𝑘 ≤ 𝑖 . We once again use the general position hypothesis. While

we do not provide a formal proof of this, and it is more a practical necessity, the

results from Section 5.2.3 should transfer also to this case, with adapted definitions

of admissible shits. Some care should also be put into checking that the box defined

by (𝑘, 𝑙) and (𝑖, 𝑗) is valid, in other words that 𝑘 is on the lower horizontal edge, 𝑖

on the upper horizontal edge, 𝑙 on the left vertical edge and 𝑗 on the right vertical

edge. In model (5.5) this can be checked using the indicator variables. In model (5.6),

this is trivially done since we rely on the ordering of the 𝑥𝑖 ’s and 𝑦 𝑗 ’s and do not

check for critical boxes.

Adapting model (5.6) requires removing constraints (5.6a) and (5.6b) and replac-

ing them by

1

𝑛

𝑖∑︁
𝑢=𝑘

𝑗∑︁
𝑣=𝑙

𝑎𝑢𝑣 − (𝑥𝑖 − 𝑥𝑘) (𝑦 𝑗 − 𝑦𝑘) ≤ 𝑓 ∀𝑖, 𝑗, 𝑘, 𝑙 = 0, . . . , 𝑛, 𝑘 ≤ 𝑖, 𝑙 ≤ 𝑗 (5.9a)

59

Chapter 5 Optimal Set Construction

−1
𝑛

𝑖−1∑︁
𝑢=𝑘+1

𝑗−1∑︁
𝑣=𝑙+1

𝑎𝑢𝑣 + (𝑥𝑖 − 𝑥𝑘) (𝑦 𝑗 − 𝑦𝑘) ≤ 𝑓 ∀𝑖, 𝑗, 𝑘, 𝑙 = 0, . . . , 𝑛 + 1, 𝑘 < 𝑖, 𝑙 < 𝑗

(5.9b)

𝑥0 = 𝑦0 = 0, 𝑎0 𝑗 = 𝑎𝑖0 = 0 ∀𝑖, 𝑗 = 0, . . . , 𝑛. (5.9c)

These are the only constraints that have an impact on the discrepancy value,

constraints (5.6c) to (5.6g) are unchanged. Given that the set of boxes defining

the 𝐿∞ star discrepancy is a subset of those defining the extreme discrepancy, our

lower bounds for the star discrepancy are also valid for the extreme discrepancy:

constraint (5.6h) can be kept. However, constraints (5.6i) to (5.6p) proceeding from

our results in Section 5.2.3 do not directly generalize to this case.
28
We note that

we still use the 𝜀 spacing with a small constant for technical reasons.

For the extreme discrepancy, the model has many more constraints. It is therefore

expected that we are not able to obtain solutions for 𝑛 as high as in the 𝐿∞ star

discrepancy case. Table 5.8 describes the runtimes and discrepancy values obtained.

Table 5.8: Optimal discrepancies and runtimes for the 𝐿∞ extreme discrepancy with an

adapted Model (5.6). Values are rounded with 10
−3

precision. The value in bold is correct

up to 10
−3

precision, but the exact value is between 0.20836 and 0.20845.

𝑛 1 2 3 4 5

𝐷𝑒𝑥𝑡
∞ (𝑂𝑃𝑇𝑒𝑥𝑡) 1 0.618 0.495 0.395 0.339

Runtime (s) 0.00 0.08 1.43 1.65 41.94

𝑛 6 7 8 9 10

𝐷𝑒𝑥𝑡
∞ (𝑂𝑃𝑇𝑒𝑥𝑡) 0.298 0.269 0.25 0.227 0.208
Runtime (s) 22.55 44.49 11 193 13 631 >500 000

5.3.3.2 Periodic Discrepancy

Another common aspect in discrepancy measures is to consider [0, 1)𝑑 as a 𝑑-

dimensional torus (here 𝑑 = 2). The discrepancy is now defined by

𝐷
𝑝𝑒𝑟
∞ (𝑃) := sup

𝑞,𝑟∈[0,1)2

���� |𝑃 ∩ [𝑞, 𝑟) |
|𝑃 | − 𝜆([𝑞, 𝑟))

����,
28 We note that we have simply not yet considered this question. It is quite likely that a general

position result can also be expected here.

60

Extensions Section 5.3

where each one-dimensional element composing [𝑞, 𝑟) is given by [𝑞𝑖, 𝑟𝑖) if 𝑞𝑖 ≤ 𝑟𝑖
and [𝑞𝑖, 1) ∪ [0, 𝑟𝑖) otherwise. This notion is also known as “Weyl”, “toroidal”, or

“wrap around” discrepancy and was studied by Lev in [Lev96]. We notice that this

is a further generalization of the set of boxes defined for the extreme discrepancy.

It is notably more difficult than the star discrepancy. Indeed, as was recently shown

by Gilibert, Lachmann and Müllner in [GLM22], the VC-dimension of the class

of boxes required to define it is in 𝑂 (𝑑 log(𝑑)) and not simply 𝑂 (𝑑). Using the

notations of model (5.6), given a quadruplet (𝑖, 𝑗, 𝑘, 𝑙) where 𝑖 > 𝑘 and 𝑗 > 𝑙 , a box

can be of one of the four following types:

• The regular extreme discrepancy box [𝑥𝑘 , 𝑥𝑖) × [𝑦𝑙 , 𝑦 𝑗). The constraints are
the same as (5.9a), (5.9b) and (5.9c).

• The box wrapping around the 𝑥-axis ([0, 𝑥𝑘) ∪ [𝑥𝑖, 1)) × [𝑦𝑙 , 𝑦 𝑗). The corre-
sponding constraints are (5.10a) and (5.10b).

• The box wrapping around the 𝑦-axis [𝑥𝑘 , 𝑥𝑖] × ([0, 𝑦𝑙) ∪ [𝑦 𝑗 , 1)). This is

associated with constraints (5.10c) and (5.10d).

• The box wrapping around both axes ([0, 𝑥𝑘) ∪ [𝑥𝑖, 1)) × ([0, 𝑦𝑙) ∪ [𝑦 𝑗 , 1)).
This corresponds to the two final constraints (5.10e) and (5.10f).

Since every box defining the discrepancy has to share its axes with the (𝑥𝑖) and
(𝑦 𝑗) we define, one can easily check that all candidate boxes are covered by one of

the types above for a specific quadruplet (𝑖, 𝑗, 𝑘, 𝑙) where 𝑖 > 𝑘 and 𝑗 > 𝑙 .

By the arguments described above, the model for the periodic discrepancy can be

obtained by taking that of the extreme discrepancy to which we add the following

constraints. Once again, we are modifying model (5.6), but it is also possible to

adapt model (5.5). We take the same constraints as for the extreme case, including

the dummy variables, and add the following constraints.

1

𝑛

𝑗∑︁
𝑣=𝑙

(
𝑘∑︁

𝑢=1

𝑎𝑢𝑣+
𝑛∑︁
𝑢=𝑖

𝑎𝑢𝑣)−(1−𝑥𝑖+𝑥𝑘) (𝑦 𝑗−𝑦𝑙) ≤ 𝑓 ∀𝑖, 𝑗, 𝑘 =1, . . . , 𝑛, 𝑙 =0, . . . , 𝑛, 𝑘 < 𝑖, 𝑙 < 𝑗

(5.10a)

−1
𝑛

𝑗−1∑︁
𝑣=𝑙+1

(
𝑘−1∑︁
𝑢=1

𝑎𝑢𝑣+
𝑛∑︁

𝑢=𝑖+1
𝑎𝑢𝑣)+(1−𝑥𝑖+𝑥𝑘) (𝑦 𝑗−𝑦𝑙) ≤ 𝑓 ∀𝑖, 𝑗, 𝑘 =1, . . . , 𝑛+1, 𝑙 =0, . . . , 𝑛, 𝑘 < 𝑖, 𝑙 < 𝑗

(5.10b)

1

𝑛

𝑖∑︁
𝑢=𝑘

(
𝑙∑︁

𝑣=1

𝑎𝑢𝑣+
𝑛∑︁

𝑢=𝑗

𝑎𝑢𝑣)−(𝑥𝑖−𝑥𝑘) (1−𝑦 𝑗 +𝑦𝑙) ≤ 𝑓 ∀𝑖, 𝑗, 𝑙 =1, . . . , 𝑛, 𝑘 =0, . . . , 𝑛, 𝑘 < 𝑖, 𝑙 < 𝑗

(5.10c)

61

Chapter 5 Optimal Set Construction

−1
𝑛

𝑖−1∑︁
𝑢=𝑘+1

(
𝑙−1∑︁
𝑣=1

𝑎𝑢𝑣+
𝑛∑︁

𝑣=𝑗+1
𝑎𝑢𝑣)+(𝑥𝑖−𝑥𝑘) (1−𝑦 𝑗 +𝑦𝑙) ≤ 𝑓 ∀𝑖, 𝑗, 𝑙 =1, . . . , 𝑛+1, 𝑘 =0, . . . , 𝑛, 𝑘 < 𝑖, 𝑙 < 𝑗

(5.10d)

1

𝑛
(

𝑘∑︁
𝑢=1

𝑙∑︁
𝑣=1

𝑎𝑢𝑣+
𝑛∑︁
𝑢=𝑖

𝑛∑︁
𝑢=𝑗

𝑎𝑢𝑣)−(1−𝑥𝑖) (1−𝑦 𝑗)−𝑥𝑘𝑦𝑙 ≤ 𝑓 ∀𝑖, 𝑗, 𝑘, 𝑙 =1, . . . , 𝑛, 𝑘 < 𝑖, 𝑙 < 𝑗 (5.10e)

−1
𝑛

(
𝑘−1∑︁
𝑢=1

𝑙−1∑︁
𝑣=1

𝑎𝑢𝑣+
𝑛∑︁

𝑢=𝑖+1

𝑛∑︁
𝑣=𝑗+1

𝑎𝑢𝑣)+(1−𝑥𝑖) (1−𝑦 𝑗)+𝑥𝑘𝑦𝑙 ≤ 𝑓 ∀𝑖, 𝑗, 𝑘, 𝑙 =1, . . . , 𝑛+1, 𝑘 < 𝑖, 𝑙 < 𝑗 (5.10f)

Table 5.9 describes the run times and discrepancy values obtained. The periodic

discrepancy model contains more constraints than the extreme one, and hence the

maximal 𝑛 for which we are able to find optimal point sets in reasonable time is

further reduced.

Table 5.9: Optimal discrepancies and runtimes for the 𝐿∞ periodic discrepancy.

𝑛 1 2 3 4 5 6 7

𝐷
𝑝𝑒𝑟
∞ (𝑂𝑃𝑇) 1 0.75 0.618 0.5 0.4249 0.3671 0.3279

Runtime 0.1 0.6 0.63 0.84 53.80 98.66 597.78

5.3.3.3 Multiple-corner Discrepancy

Unlike the two previous notions which are common in theoretical discrepancy liter-

ature, this notion is new and targets applications. The 𝐿∞ star discrepancy creates

an asymmetry by giving more importance to (0, . . . , 0). Often, it is undesirable
to orient the regularity of our point set based on a specific corner of the space.

To limit the impact of this, a possible counter-measure is to consider the 𝐿∞ star

discrepancy according to all 2
𝑑
corners, the worst of which is then the discrepancy

value. In dimension 2, this 4-corner discrepancy is defined by the following

𝑑4𝑐∞ (𝑃) := sup

𝑞=(𝑞1,𝑞2)∈[0,1)2
max{𝐷loc([0, 𝑞), 𝑃), 𝐷loc((𝑞, 1], 𝑃),

𝐷loc([0, 𝑞1) × (𝑞2, 1], 𝑃), 𝐷loc((𝑞1, 1] × [0, 𝑞2), 𝑃)},

where 𝐷loc(𝑞, 𝑃) is the local discrepancy of the box 𝑞 for the point set 𝑃 , c.f. Sec-

tion 3.1.

For a given point set 𝑃 , this can be reformulated w.r.t. the classical 𝐿∞ star

discrepancy by considering, in addition, the sets 𝑃2 := {(1 − 𝑥,𝑦) : (𝑥,𝑦) ∈ 𝑃},
𝑃3 := {(1 − 𝑥, 1 − 𝑦) : (𝑥,𝑦) ∈ 𝑃} and 𝑃4 := {(𝑥, 1 − 𝑦) : (𝑥,𝑦) ∈ 𝑃}.

62

Extensions Section 5.4

We then have

𝐷4𝑐𝑜𝑟
∞ (𝑃) = max(𝑑∗∞(𝑃), 𝑑∗∞(𝑃2), 𝑑∗∞(𝑃3), 𝑑∗∞(𝑃4)) .

Given the definition above, the definitions of the point sets, and our models for the

star discrepancy, it can be easily seen that we simply need to make four copies of

the constraints (5.6a) and (5.6b) to adapt model (5.6) to this situation. In addition to

the constraints for 𝑃 given previously, the following constraints need to be added.

1

𝑛

𝑛∑︁
𝑢=𝑖

𝑗∑︁
𝑣=1

𝑎𝑢𝑣 − (1 − 𝑥𝑖)𝑦 𝑗 ≤ 𝑓 ∀𝑖, 𝑗 = 1, . . . , 𝑛 (5.11a)

−1
𝑛

𝑛∑︁
𝑢=𝑖+1

𝑗−1∑︁
𝑣=1

𝑎𝑢𝑣 + (1 − 𝑥𝑖)𝑦 𝑗 ≤ 𝑓 ∀𝑖, 𝑗 = 1, . . . , 𝑛 + 1 (5.11b)

1

𝑛

𝑛∑︁
𝑢=𝑖

𝑛∑︁
𝑣= 𝑗

𝑎𝑢𝑣 − (1 − 𝑥𝑖) (1 − 𝑦 𝑗) ≤ 𝑓 ∀𝑖, 𝑗 = 1, . . . , 𝑛 (5.11c)

−1
𝑛

𝑛∑︁
𝑢= 𝑗+1

𝑛∑︁
𝑣=𝑖+1

𝑎𝑢𝑣 + (1 − 𝑥𝑖) (1 − 𝑦 𝑗) ≤ 𝑓 ∀𝑖, 𝑗 = 1, . . . , 𝑛 + 1 (5.11d)

1

𝑛

𝑖∑︁
𝑢=1

𝑛∑︁
𝑣= 𝑗

𝑎𝑢𝑣 − 𝑥𝑖 (1 − 𝑦 𝑗) ≤ 𝑓 ∀𝑖, 𝑗 = 1, . . . , 𝑛 (5.11e)

−1
𝑚

𝑖−1∑︁
𝑢=1

𝑛∑︁
𝑣= 𝑗+1

𝑎𝑢𝑣 + 𝑥𝑖 (1 − 𝑦 𝑗) ≤ 𝑓 ∀𝑖, 𝑗 = 1, . . . , 𝑛 + 1 (5.11f)

Finally, Table 5.10 gives the results obtained by our model with the multiple-

corner discrepancy. We specify both the multiple-corner discrepancy of our set,

and its actual 𝐿∞ star discrepancy (necessarily smaller than or equal to it, as all

the 𝐿∞ star discrepancy constraints are included in the model). We note that the

𝐿∞ star discrepancy values are not much higher than those of the optimal sets,

and far better than previously known sets. This suggests that considering a set

with good multiple-corner discrepancy could be a good tradeoff for applications,

without losing much for the 𝐿∞ star discrepancy.

29 We have not yet been able to prove, or disprove, this result.

63

Chapter 5 Optimal Set Construction

Table 5.10: Comparison of previously best values for low-discrepancy sets and our optimal

sets, both the 4-corner optimal set 𝑂𝑃𝑇4𝑐 and the 𝐿∞ star discrepancy optimal set 𝑂𝑃𝑇𝑠𝑡𝑎𝑟 .

We note that the optimal 4-corner sets have the same 𝐿∞ star discrepancy and 4-corner

discrepancy in all tested cases.
29

𝑛 3 4 5 6 7 8 9 10

𝐷∗
∞ (𝑂𝑃𝑇𝑠𝑡𝑎𝑟) 0.2847 0.2500 0.2000 0.1667 0.1500 0.1328 0.1235 0.1111

𝐷∗
∞ (𝐹𝑖𝑏) 0.5880 0.4910 0.3528 0.3183 0.2728 0.2553 0.2270 0.2042

𝐷∗
∞ (𝑂𝑃𝑇4𝑐) 0.3333 0.2548 0.2166 0.1875 0.1632 0.1438 0.1319 0.1197

𝐷4𝑐𝑜𝑟
∞ (𝑂𝑃𝑇4𝑐) 0.3333 0.2548 0.2166 0.1875 0.1632 0.1438 0.1319 0.1197

Runtime 0.02 0.12 0.3 0.68 1.14 1.97 4.34 12.68

𝑛 11 12 13 14 15 16 17 18

𝐷∗
∞ (𝑂𝑃𝑇𝑠𝑡𝑎𝑟) 0.1030 0.0952 0.0889 0.0837 0.0782 0.0739 0.06996 0.06667

𝐷∗
∞ (𝐹𝑖𝑏) 0.1857 0.1702 0.1571 0.1459 0.1390 0.1486 0.1398 0.1320

𝐷∗
∞ (𝑂𝑃𝑇4𝑐) 0.1083 0.09999 0.09502 0.08874 0.08429 0.07916 0.07510 0.0715

𝐷4𝑐𝑜𝑟
∞ (𝑂𝑃𝑇4𝑐) 0.1083 0.09999 0.09502 0.08874 0.08429 0.07916 0.07510 0.0715

Runtime 26.45 46.46 88.46 219.22 783.74 1616.65 3287.64 7412.73

Figure 5.10: n=16. Left to right: local 4-corner discrepancy of the optimal 4-corner set,

local 𝐿∞ star discrepancy of the optimal 4-corner set, local star discrepancy of the optimal

𝐿∞ star set and local 4-corner discrepancies of the optimal 𝐿∞ star set. While the optimal

4-corner set is very good for the 𝐿∞ star discrepancy, the same can’t be said for the 4-corner

discrepancy of the optimal 𝐿∞ star set.

5.4 Conclusion

In this chapter, using two types of non-linear programming models, we provide

optimal constructions for sets of minimal 𝐿∞ star discrepancy for 𝑛 = 1 to 𝑛 =

21 in two dimensions and 𝑛 = 1 to 𝑛 = 8 in three dimensions. For 𝑛 ≥ 7 in

dimension 2, these sets have much lower discrepancy than the previously known

sets. Analyzing the local discrepancies of these sets and comparing to known

low-discrepancy sequences also shows a clear structural difference, suggesting

that known sequences are over-sampling in the lower zones of [0, 1]2 compared

to suggest that new approaches are possible to design low-discrepancy sets and

64

Conclusion Section 5.4

sequences. We furthermore observed an almost negligible extra cost for point sets

that are well-distributed not only for the origin (0, . . . , 0) but also other corners of

the square.

Apart from the conjectures mentioned in the chapter such as higher dimension

general position, there are many further research questions that deserve being

looked into. Naturally, finding heuristic approaches or improving our models to

find excellent solutions for higher 𝑛 should be the first goal. Though preceding

this work chronologically, the two following chapters on subset selection provide a

first method of computing better sets in higher dimensions. We will also introduce

greedy algorithms for the 𝐿∞ and the 𝐿2 discrepancy in Chapter 8, greatly inspired

by our approaches here. The possibility of constructing block by block a low-

discrepancy set has not been considered so far and is promising. For example,

we are able to create an excellent 16 point set by adding 8 points to an existing 8

point set. Overall, we believe this to be a first step in a promising new direction

for the discrepancy community as very little had been done so far to harness the

power of optimization formulations, barring Thiémard’s [Thi01b], and Doerr and

de Rainville’s [DR13] work.

65

6 Subset Selection:
Exact approaches

This chapter follows [CDP22], with a few complementary additions: a feasibility
approach, the 𝐿2 version of the 𝐿∞ star discrepancy subset selection problem and the
description of an easier case. This is joint work with Carola Doerr and Luís Paquete.

6.1 Summary of Results

6.1.1 Motivation
Given the advantageous behavior of point sets of small discrepancy in practice

30
, we

study in this chapter how to choose from a given set 𝑃 of 𝑛 points a subset 𝑃𝑘 of size

𝑘 ≤ 𝑛 such that the 𝐿∞ star discrepancy of 𝑃𝑘 is minimized. This star discrepancy
subset selection problem (SDSSP) has its origins in Machine Learning (ML) and in

optimization, and in particular in the instance selection problem, where one aims

to select from a given set of instances a small subset that maximizes diversity –

with the idea that more diverse instances provide better training opportunities for

ML-based approaches. An example for such an approach can be found in [Neu+18],

where diverse images and instances of the traveling salesperson problem (TSP)

are constructed via an evolutionary approach. In each iteration, the evolutionary

algorithm generates a set of new instances and a selection operator then updates by

selecting instances from the old and the newly generated ones. Since no efficient

algorithms were known in [Neu+18] to address the general star discrepancy subset

selection problem, only so-called “+1” schemes are considered, which generate

only one new instance per iteration. As well as practical applications, we aim to

obtain excellent point sets for (𝑛,𝑑) combinations that could not be reached with

the optimal constructions in the previous chapter.

The problem of selecting subsets with respect to small discrepancy values was

also the focus of the work on so-called online thinning, presented in [Dwi+19].

Online thinning requires a decision maker to either accept or reject a point of a

sequence into a selected subset, with the goal of minimizing the discrepancy of the

selected set. The process studied in [Dwi+19] assumes, in addition, that at least one

30 We refer to some of the examples in the introduction such as [Bou+17] or [Cau+20], but this is

not an exhaustive list.

66

Summary of Results Section 6.1

out of every two consecutive points has to be selected. The three main differences

between their work and ours are: (1) while sequences are studied in [Dwi+19], we

consider fixed point sets 𝑃 and a fixed target size 𝑘 , (2) we optimize over all possible

subsets of a given size 𝑘 , and (3) in contrast to [Dwi+19], our approaches are not

restricted to uniformly sampled i.i.d. points.

6.1.2 Our Contribution
Previous results on the NP-hardness of calculating the star discrepancy [GSW09]

hint to the difficulty of solving this problem exactly. We show by a reduction from

the DOMINATING-SET problem that the decision version of the star discrepancy

subset selection problem is NP-hard. We then study the efficiency of algorithmic

approaches for the star discrepancy subset selection problem. Simple algorithmic

approaches such as random subset selection and iterative greedy selection do

not perform well, motivating the design and the analysis of a mixed-integer linear

formulation as well as a combinatorial branch-and-bound approach for this problem,

introduced in Section 6.3. The mixed-integer linear formulation (MILP) is a natural

formulation of the discrepancy subset selection problem that uses the grid structure

of the star discrepancy introduced in Section 3.1. Our branch and bound (BB) is a

classical approach that starts from a greedy solution and uses combinatorial lower

bounds for pruning, which can be computed in an incremental manner, also relying

on the grid formulation in equation (3.4). Our experimental results in Section 6.4

for 𝑑 = 2 indicate that BB presents better performance for small 𝑘/𝑛 ratios while

MILP performs better for large 𝑘/𝑛 ratios. We relate these findings to the quality of

the lower bounds of MILP. Unfortunately, the performance deteriorates strongly

already for 𝑛 > 140 and for 𝑑 > 3, so that we have to restrict our analysis to the

two- and three-dimensional cases.

As a side result, we observe that subset selection can be an interesting approach

to generate point sets of small discrepancy values. For our two-dimensional test

cases, the star discrepancy of the best found size-𝑘 subsets of the Sobol’, the Faure,

the Halton, and the reverse Halton [VC06] sequences are around 50% smaller than

the star discrepancy of the original construction of the same size for 𝑘 = 20 and

40. For larger 𝑘 , the advantage is slightly smaller, but still 40%, on average, for

𝑘 = 60, 36% for 𝑘 = 80, and 44% for 𝑘 = 100. Similar advantages are obtained in

the three-dimensional case for these four sequences. Much better advantages of

at least 60% are obtained for uniform samples for 𝑑 = 2 and 𝑑 = 3 and for Latin

Hypercubes for 𝑑 = 3. For the Fibonacci set for 𝑑 = 2, in contrast, the advantages

are much less important, it is less than 1% for 𝑘 = 80 and 𝑘 = 100, but it is slightly

above 27% and 22% for 𝑘 = 20 and 𝑘 = 40, respectively. The point sets with the

67

Chapter 6 Subset Selection: Exact approaches

best star discrepancy for each value of 𝑘 in the two-dimensional case that were

obtained in our experiments are available at https://algo.dei.uc.pt/star. The BB code

for 𝑑 = 2 is available at https://github.com/luis-paquete/StarDSS.

In complement, this chapter provides three extra approaches relative to [CDP22].

Section 6.3.4 describes a feasibility approach to the MILP formulation. Rather

than trying to find the best solution from scratch, we fix a discrepancy objective

and attempt to obtain a subset that reaches this value, or lower. While it is able

to solve the problem very quickly in many cases, this approach struggles a lot

more when the target value is near, or slightly below, the real optimal solution.
31

Section 6.3.5 underlines an easier case, when points can be orderedwith a dominance

relation. While not too interesting per se, it could provide a good basis should good

decomposition methods be found for the subset selection problem.

Finally, we round out this chapter on exact methods for subset selection with a

possible approach for the 𝐿2 subset selection in Section 6.7. While very different to

the 𝐿∞ methods, it has the advantage of being linearly dependent on the dimension.
Recent success with 𝐿2 techniques to construct good 𝐿∞ sets could rekindle interest

in tackling this question more precisely. We note in particular that it can be

expressed as an Unconstrained Binary Quadratic Problem, for which numerous

algorithms and heuristics exist.

6.2 The Star Discrepancy Subset Selection Problem

Given a 𝑑-dimensional point set 𝑃 ⊆ [0, 1]𝑑 of size |𝑃 | = 𝑛, and given an integer

𝑘 ≤ 𝑛, the goal is to find a subset 𝑃∗ ⊆ 𝑃 of size |𝑃∗ | = 𝑘 such that 𝑑∗∞(𝑃∗) is
minimized. Using equation (3.4), the 𝐿∞ star discrepancy subset selection problem
has the following equivalent formulation:

min

𝑃∗⊆𝑃
|𝑃∗ |=𝑘

max

{
max

𝑞∈𝛤 (𝑃∗)
𝛿 (𝑞, 𝑃∗), max

𝑞∈𝛤 (𝑃∗)
𝛿 (𝑞, 𝑃∗)

}
. (6.1)

We show NP-hardness of this problem in Section 6.2.1 and we discuss some basic

properties in Section 6.2.2.

31 Once again, this matches our comment on all optimization approaches for discrepancy: finding

an upper bound is easy, finding a good lower bound is much harder.

68

https://algo.dei.uc.pt/star
https://github.com/luis-paquete/StarDSS

The Star Discrepancy Subset Selection Problem Section 6.2

6.2.1 NP-Hardness of the Subset Selection Problem
We consider the following decision version of the 𝐿∞ star discrepancy subset

selection problem:

Decision problem: Discrepancy Subset Selection

Instance: natural numbers 𝑛, 𝑘 ∈ ℕ, 𝑘 ≤ 𝑛, 𝜀 ∈ (0, 1], point set 𝑃 = (𝑥 (𝑖))𝑖∈{1,...,𝑛}
Question: Is there 𝑃 ′ ⊆ 𝑃 such that |𝑃 ′| = 𝑘 and 𝑑∗∞(𝑃 ′) ≤ 𝜀?

▶ Theorem 6.1. The decision version of the discrepancy subset selection problem

is NP-hard. ◀

As in the proof of the NP-hardness of calculating the 𝐿∞ star discrepancy

presented in [GSW09], we will obtain Theorem 6.1 by a reduction from the

DOMINATING-SET problem, a problem that is well known to be NP-complete (see,

for example, [GJ90]).

Decision problem: DOMINATING-SET

Instance: Graph 𝐺 = (𝑉 , 𝐸), 𝑘 ∈ {1, . . . , |𝑉 |}
Question: Is there a set 𝑇 ⊆ 𝑉 of size at most 𝑘 such that for any 𝑣 ∈ 𝑉 \𝑇 , there
exists 𝑡 ∈ 𝑇 such that (𝑣, 𝑡) ∈ 𝐸?

Proof of Theorem 6.1. Throughout this proof, let 𝑞 ∈ [0, 1]𝑛. We consider an in-

stance 𝐺 = (𝑉 , 𝐸), 𝑘 ∈ {1, . . . , |𝑉 |} of DOMINATING-SET. We build a point set

𝑃 = (𝑥 (𝑖))𝑖∈{1,...,𝑛} in ℝ𝑛
where 𝑛 = |𝑉 | by defining, for all 𝑖, 𝑗 ∈ {1, . . . , 𝑛},

𝑥
(𝑖)
𝑗

:=

{
𝛼 if (𝑖, 𝑗) ∈ 𝐸 or 𝑖 = 𝑗,

𝛽 otherwise,

where 𝛼 and 𝛽 are two real values such that
1

𝑛
> 𝛼 > 𝛽 > 0.

To begin, we introduce the following formula for the 𝐿∞ star discrepancy, shown

in [GSW09]. For any point set 𝑃 ,

𝑑∗∞(𝑃) = max

{
max

ℓ=0,...,𝑛−1
(𝑉 ℓ

max
− ℓ

𝑛
), max

ℓ=1,...,𝑛
(ℓ
𝑛
−𝑉 ℓ

min
)
}
, (6.2)

where 𝑉 ℓ
min

is the volume of the smallest (by the Lebesgue measure) closed box

containing at least ℓ elements of 𝑃 , and 𝑉 ℓ
max

is the volume of the largest half-open

box containing at most ℓ elements of 𝑃 .

We will set aside the case ℓ = 𝑛 in the first part of the proof. We consider 𝑃𝑇 , a

subset of 𝑃 of size 𝑘 associated to a subset 𝑇 ⊆ 𝑉 of size 𝑘 . For this point set 𝑃𝑇 ,

the largest empty box 𝑉 0

max
is of size at least 𝛽𝑛 and at most 𝛼𝑛 . Since the maximal

coordinate for any point in 𝑃𝑇 is 𝛼 , any half-open box that does not contain all the

69

Chapter 6 Subset Selection: Exact approaches

points of 𝑃𝑇 will have at least one coordinate smaller than 𝛼 . This gives us𝑉 ℓ
max

≤ 𝛼

for all ℓ ∈ {1, . . . , 𝑛 − 1}. We obtain the upper-bound 𝛼 for the first maximum in

(6.2) by choice of 𝛼 and 𝛽 .

For the second maximum, any closed box containing at least one point (but not

all of them) will have each coordinate greater than or equal to 𝛽 since the lowest

coordinate in any dimension for each point is 𝛽 . This gives us a minimum volume

of 𝛽𝑛 for a box containing some points of 𝑃𝑇 . The fraction
ℓ
𝑛
can be upper-bounded

by
𝑛−1
𝑛
, which gives us an upper bound of

𝑛−1
𝑛

− 𝛽𝑛 ≥ maxℓ=1,...,𝑛−1(ℓ𝑛 −𝑉 ℓ
min

).
We now consider the case ℓ = 𝑛 depending on whether or not 𝑇 is a dominating

set of𝐺 . If𝑇 is a dominating set, by our point set construction, for any 𝑗 ∈ {1, . . . , 𝑛},
there exists 𝑖 ∈ 𝑇 such that 𝑥

(𝑖)
𝑗

= 𝛼 . Any box of the type [0, 𝑞] = ∏𝑛
𝑖=1 [0, 𝑞𝑖] will

contain all the points of 𝑃𝑇 if and only if for all 𝑖 ∈ {1, . . . , 𝑛}, 𝑞𝑖 ≥ 𝛼 . Therefore,

the smallest box containing all the elements of 𝑃𝑇 has volume 𝛼𝑛 . This gives us a

1 − 𝛼𝑛 term in (6.2), which is greater than all the other terms calculated previously,

by choice of 𝛼 and 𝛽 .

If𝑇 is not a dominating set, there exists a vertex 𝑖 not dominated by the elements

of 𝑇 . Since 𝑖 is not dominated by 𝑇 , the smallest full-box has size at most 𝛼𝑛−1𝛽
since all the points in 𝑃𝑇 have 𝛽 as their 𝑖-th coordinate. This gives us at least a

1 − 𝛼𝑛−1𝛽 term in equation (6.2) which like in the previous case is also greater than

all the other terms. It is also strictly greater than 1 − 𝛼𝑛. In both cases, we have

shown that the discrepancy value is obtained by the volume of the smallest full-box.

We have that 𝑑∗∞(𝑃𝑇) ≤ 1 − 𝛼𝑛 if and only if 𝑇 is a dominating set of 𝐺 . We note

that any dominating set 𝑇 of size strictly smaller than 𝑘 can become a dominating

set of size exactly 𝑘 by adding points from 𝐺 until 𝑇 is of size exactly 𝑘 . This gives

us the desired result: 𝐺 has a dominating set of size at most 𝑘 if and only if 𝑃 has a

subset of size 𝑘 of discrepancy at most 1 − 𝛼𝑛 . ■

We note that while the problem is NP-hard, it is not NP-complete to our knowl-

edge. If we are given a subset of a point set 𝑃 , checking if its discrepancy is smaller

than 𝜖 cannot be done in polynomial time, under the hypothesis that P ≠ NP. This
comes from the fact that we want an upper bound on the discrepancy and not a

lower bound. For a lower bound, given a specific anchored box, we can verify that

the discrepancy is large enough in linear time by counting the points in the box and

calculating its volume.
32

On the other hand, for an upper bound, we would need to

check that all the possible anchored boxes have a small enough local discrepancy.

It is not sufficient to exhibit one of them.

32 As mentioned in Section 3.2, the star discrepancy calculation was shown to be NP-complete in

[GSW09].

70

The Star Discrepancy Subset Selection Problem Section 6.2

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0
0

0.15

0.2

0.35

0.4

0.2

0.28

0.19

0.23

0.32

0.2

0.38

0.24

0.17

0.28

0.3

0.32

0.11

0.13

0.17

0.15

0.16

0.18

0.19

0.21
●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0
0

0.1

0.1

0.2

0.2

0.2

0.1

0.21

0.23

0.34

0.36

0.18

0.2

0.32

0.16

0.28

0.32

0.16

0.3

0.43

0.29

0.22

0.28

0.14

0.2

0.22

0.06

0.08

0.12

0.04

0.1

0.11

0.13

0.14

0.16

0.02

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0
0

0.1

0.1

0.2

0.2

0.3

0.2

0.28

0.24

0.12

0.12

0.24

0.1

0.23

0.11

0.18

0.12

0.21

0.3

0.33

0.19

0.22

0.28

0.11

0.2

0.22

0.06

0.08

0.12

0.06

0.1

0.11

0.13

0.14

0.16

0.03

●

●

●

●

●

Figure 6.1: Illustration of the point sets defined in Example 6.2. The values are the local

star discrepancy values and the color of each cell is the local star discrepancy value of its

upper right corner (darker colors are used for larger discrepancy values). Blue colors are

used when 𝑑∗∞(𝑦, 𝑃) = 𝛿 (𝑦, 𝑃), and red colors are used when 𝑑∗∞(𝑦, 𝑃) = 𝛿 (𝑦, 𝑃).

6.2.2 Other Basic Properties of the Discrepancy Subset
Selection Problem

Non-Monotonic Behavior of the Star Discrepancy Before we discuss our

strategies to solve the star discrepancy subset selection problem, we first note that

the star discrepancy is a non-monotone function, in the sense that 𝑃 ′ ⊆ 𝑃 does

not imply any order of 𝑑∗∞(𝑃 ′) and 𝑑∗∞(𝑃). The following example illustrates this

non-monotonic behavior. It is visualized in Figure 6.1.

▶ Example 6.2. Let 𝑃 := {(0.1, 0.4), (0.2, 0.9), (0.7, 0.6), (0.8, 0.7)}. Then, it holds
that 𝑑∗∞(𝑃) = 0.40, whereas 𝑑∗∞(𝑃 ∪ {(0.9, 0.2)}) = 0.43 and 𝑑∗∞(𝑃 ∪ {(0.3, 0.3)}) =
0.33. As we can see in Figure 6.1, the discrepancy value of the first set is determined

by the point 𝑞 = (1.0, 0.4), whereas it is determined by points (0.7, 0.9) and (0.3, 0.9)
in the second and third case, respectively. ◀

Non-Monotonic Behavior of the Subset Selection Problem For a fixed set of

points 𝑃 (therefore, fixed 𝑛), there is also no relation between the smallest discrep-

ancy subsets obtained for different 𝑘 . To illustrate this non-monotonic behavior,

consider the following simple example in dimension 1. Let 𝑃 := { 1
6
, 1
4
, 1
2
, 3
4
, 5
6
}.

Niederreiter introduced in [Nie72] an explicit formula for the discrepancy in dimen-

sion 1, also showing that for an 𝑛-point set, the minimal discrepancy is uniquely

obtained by the set { 1

2𝑛
, 3

2𝑛
, . . . , 2𝑛−1

2𝑛
}. The optimal subset of size 2 of 𝑃 is therefore

given by 𝑃 ′
2
= { 1

4
, 3
4
}, whereas the optimal subset of size 3 is given by 𝑃 ′

3
= { 1

6
, 1
2
, 5
6
}.

71

Chapter 6 Subset Selection: Exact approaches

Another example for this non-monotonic relationship between optimal subsets

of different sizes can be found in the results presented in this chapter. For example,

in the 2-dimensional setting, the best size 𝑘 = 20 subset of the first 𝑛 = 140 elements

of the Fibonacci set is not contained in the best subset of size 𝑘 = 120.
33

Extending the Grid to its Original Size For the design of our mixed-integer

linear formulation, it will be convenient to consider the whole grid induced by 𝑃 ,

and not only the one induced by 𝑃∗
.

▶ Lemma 6.3. The star discrepancy subset selection problem is equivalent to the

following:

min

𝑃∗⊆𝑃
|𝑃∗ |=𝑘

max

{
max

𝑞∈𝛤 (𝑃)
𝛿 (𝑞, 𝑃∗), max

𝑞∈𝛤 (𝑃)
𝛿 (𝑞, 𝑃∗)

}
. (6.3)

◀

Proof. Let 𝑃∗ ⊆ 𝑃 , |𝑃∗ | = 𝑘 . We show that max
𝑞∈𝛤 (𝑃) 𝛿 (𝑞, 𝑃∗) = max

𝑞∈𝛤 (𝑃∗) 𝛿 (𝑞, 𝑃∗)
and that max𝑞∈𝛤 (𝑃) 𝛿 (𝑞, 𝑃∗) = max𝑞∈𝛤 (𝑃∗) 𝛿 (𝑞, 𝑃∗). Since 𝑃∗ ⊆ 𝑃 , we only need

to prove “≤”. To show the first equation, let 𝑞 ∈ 𝛤 (𝑃). For every coordinate

𝑗 ∈ {1, . . . , 𝑑}, let 𝑢 𝑗 := min{𝑢 ∈ 𝛤 𝑗 (𝑃∗) | 𝑢 ≥ 𝑞 𝑗 }. Then 𝐷 (𝑢, 𝑃∗) = 𝐷 (𝑞, 𝑃∗) and
hence 𝛿 (𝑢, 𝑃∗) = 𝜆(𝑢) − 1

|𝑃∗ |𝐷 (𝑢, 𝑃∗) ≥ 𝜆(𝑞) − 1

|𝑃∗ |𝐷 (𝑞, 𝑃∗) = 𝛿 (𝑞, 𝑃∗). This shows
that max

𝑞∈𝛤 (𝑃) 𝛿 (𝑞, 𝑃∗) ≤ max
𝑞∈𝛤 (𝑃∗) 𝛿 (𝑞, 𝑃∗).

For the second equation, let 𝑞 ∈ 𝛤 (𝑃). Set ℓ𝑗 := max{ℓ ∈ 𝛤𝑗 (𝑃∗) ∪ {0} | ℓ ≤ 𝑞 𝑗 }.
Then 𝐷 (ℓ, 𝑃∗) = 𝐷 (𝑞, 𝑃∗) and thus 𝛿 (ℓ, 𝑃∗) = 1

|𝑃∗ |𝐷 (ℓ, 𝑃∗) − 𝜆(ℓ) ≥ 1

|𝑃∗ |𝐷 (𝑞, 𝑃∗) −
𝜆(𝑞) = 𝛿 (𝑞, 𝑃∗). ■

6.3 Algorithmic Approaches to Solve the
Discrepancy Subset Selection Problem

In this section, we suggest two different approaches to solve the star discrepancy

subset selection problem, one based on mixed-integer linear programming (MILP),

Section 6.3.1, and one based on branch and bound, Section 6.3.2. In Section 6.4, we

compare their performance against two heuristics, random subset selection and an

iterative greedy selection, which we use to obtain an initial solution for the branch

and bound algorithm. The greedy approach is described in Section 6.3.3. Finally,

33 We do not discuss the position of the points in these optimal subsets here in this work, but the

sets can be found in the repository available at https://algo.dei.uc.pt/star.

72

https://algo.dei.uc.pt/star

Algorithmic Approaches to Solve the Discrepancy Subset Selection Problem Section 6.3

we present a feasibility approach in Section 6.3.4, which performed similarly to the

MILP formulation it is based on, and describe one case where subset selection is

easy to solve in Section 6.3.5.

Convention: To ease the description of our algorithms, we assume that, for all

𝑗 ∈ {1, . . . , 𝑑}, the coordinates {𝑝 (𝑖)
𝑗

| 𝑖 ∈ {1, . . . , 𝑛}} are pairwise different.

6.3.1 A Mixed Integer Linear Programming Formulation
For simplification purposes, we start with the description of the mixed integer

linear programming model for the star discrepancy subset selection problem for

𝑑 = 2. We then discuss extensions for larger dimensions.

The following component-wise order relations in ℝ𝑑
will be required for our

model. For 𝑣,𝑤 ∈ ℝ𝑑
, we write

𝑣 ≦ 𝑤 ⇐⇒ 𝑣 𝑗 ≤ 𝑤 𝑗 for all 𝑗 ∈ {1, . . . , 𝑑}
𝑣 ≤ 𝑤 ⇐⇒ 𝑣 ≠ 𝑤 and 𝑣 ≦ 𝑤

𝑣 < 𝑤 ⇐⇒ 𝑣 𝑗 < 𝑤 𝑗 for all 𝑗 ∈ {1, . . . , 𝑑}

Consider a two-dimensional point set 𝑃 := {𝑝 (1), 𝑝 (2), . . . , 𝑝 (𝑛)} ⊆ ℝ2
.
34

Without

loss of generality, we assume the points in 𝑃 are reordered such that 𝑝
(1)
1

≤ 𝑝
(2)
1

≤
· · · ≤ 𝑝

(𝑛)
1

. Let S𝑛 denote the symmetric group of order 𝑛 and 𝜎 ∈ S𝑛 denote a

permutation of {1, . . . , 𝑛}, such that 𝑝
(𝜎 (1))
2

≤ 𝑝
(𝜎 (2))
2

≤ · · · ≤ 𝑝
(𝜎 (𝑛))
2

.
35

We shall use 𝛾𝑖, 𝑗 (𝑃) to denote the grid point at position (𝑖, 𝑗) in 𝛤 (𝑃), 𝑖, 𝑗 ∈
{1, . . . , 𝑛 + 1}.36 Then, due to the ordering of the points in 𝑃 , it holds that

𝛾𝑖,𝜎 (𝑖) (𝑃) = 𝑝 (𝑖)
, 𝛾𝑖,𝑛+1(𝑃) = (𝑝 (𝑖)

1
, 1), 𝛾𝑛+1,𝜎 (𝑖) (𝑃) = (1, 𝑝 (𝜎 (𝑖))

2
), for 𝑖 ∈ {1, . . . , 𝑛},

and 𝛾𝑛+1,𝑛+1(𝑃) = (1, 1). In addition, we define the following index sets

𝛥 (𝑃, 𝑖, 𝑗) := {ℓ | 𝑝 (ℓ) ≦ 𝛾𝑖, 𝑗 (𝑃), 𝑝 (ℓ) ∈ 𝑃} and

𝛥 (𝑃, 𝑖, 𝑗) := {ℓ | 𝑝 (ℓ) < 𝛾𝑖, 𝑗 (𝑃), 𝑝 (ℓ) ∈ 𝑃}

for 𝑖, 𝑗 ∈ {1, . . . , 𝑛 + 1}.
For our MILP model, we define a binary variable 𝑥𝑖 that takes value 1 if point

𝑝 (𝑖)
is selected, 𝑖 ∈ {1, . . . , 𝑛}, and 0 otherwise. The model is as follows.

34 For this model, the points of the set are 𝑝 (𝑖)
, while variables of the model will be given by 𝑥𝑖 .

35 Where our convention of pairwise different coordinates does not apply, we assume the following:

In the case of a tie 𝑝
(𝑖)
1

= 𝑝
(𝑖+1)
1

in the first coordinate, we assume that 𝑝
(𝑖)
2

≤ 𝑝
(𝑖+1)
2

. In the case

of a tie in the second coordinate 𝑝
(𝜎 (𝑖))
2

= 𝑝
(𝜎 (𝑖+1))
2

we assume that that 𝑝
(𝜎 (𝑖))
1

≤ 𝑝
(𝜎 (𝑖+1))
1

.

36 For simplicity, we restrict the presentation to 𝛤 (𝑃), since 𝛤 (𝑃) ⊂ 𝛤 (𝑃).

73

Chapter 6 Subset Selection: Exact approaches

min 𝑧

s. t. 𝑧 ≥ ℎ𝑖, 𝑗 −
1

𝑘

∑︁
ℓ∈𝛥 (𝑃,𝑖, 𝑗)

𝑥ℓ for all 𝑖, 𝑗 ∈ {1, . . . , 𝑛 + 1}

𝑧 ≥ −ℎ𝑖, 𝑗 +
1

𝑘

∑︁
ℓ∈𝛥 (𝑃,𝑖, 𝑗)

𝑥ℓ for all 𝑖, 𝑗 ∈ {1, . . . , 𝑛}

𝑛∑︁
𝑖=1

𝑥𝑖 = 𝑘

𝑥𝑖 ∈ {0, 1} for all 𝑖 ∈ {1, . . . , 𝑛}
𝑧 ∈ ℝ≥0

(6.4)

Variable 𝑧 is a non-negative continuous variable that takes the optimal star

discrepancy value. The first two constraints are due to the linearization of the

objective function in Problem (6.3) and bound the minimum value of 𝑧, where ℎ𝑖, 𝑗
is the measure of the 𝑑-dimensional box [0, 𝛾𝑖, 𝑗 (𝑃)]. The third constraint ensures

that exactly 𝑘 points in 𝑃 are selected.

Extending our MILP for more dimensions, we obtain𝑂 (𝑛𝑑) constraints and𝑂 (𝑛)
variables. Noteworthy, its relaxation, that is, 𝑥𝑖 ∈ [0, 1], has an integral solution

when 𝑘 = 𝑛. This suggests that the integrality gap, i.e., the difference between the

optimal value 𝑧∗ for the original MILP (satisfying that there exists 𝑥∗ ∈ {0, 1}𝑛 such
that the conditions are satisfied) and the optimal value 𝑧∗

relax.
of its relaxation (where

we only require existence of 𝑥 ∈ [0, 1]𝑛 for which the conditions are satisfied),

may be small when the ratio 𝑘/𝑛 is large. This suggestion is confirmed in the

experimental results reported in Section 6.4.

6.3.2 A Combinatorial Branch-and-Bound Algorithm

Algorithm 1 presents the pseudocode of our combinatorial branch-and-bound

approach (BB) for the star discrepancy subset selection problem, for a given 𝑘 and

a given point set 𝑃 . At a given iteration, the algorithm maintains three stacks: 𝑆𝐴,

which stores the points that were accepted (subset 𝑃𝐴), 𝑆𝐵 , which stores the points

that were rejected (subset 𝑃𝑅), and 𝑆𝑁 , which stores the points for which a decision

has not yet been taken (subset 𝑃𝑁). Both 𝑆𝐴 and 𝑆𝑅 are empty in the beginning,

whereas 𝑆𝑁 contains all points in 𝑃 . Variable 𝑢𝑏 corresponds to the lowest upper

bound on the optimal discrepancy value found so far and is initially set to 1, which

clearly is an upper bound for the star discrepancy of any subset of 𝑃 , since it is an

upper bound for the star discrepancy of any point set.

74

Algorithmic Approaches to Solve the Discrepancy Subset Selection Problem Section 6.3

Algorithm 1: Branch and Bound

𝑆𝐴 := ∅, 𝑆𝑅 := ∅, 𝑆𝑁 := (𝑝 (1), ..., 𝑝 (𝑛)), 𝑢𝑏 := 1

Function 𝐵𝐵(𝑆𝐴, 𝑆𝑅, 𝑆𝑁)
1: if |𝑃𝐴 | = 𝑘 then
2: 𝑢𝑏 := min{𝑢𝑏,𝑑∗∞(𝑃𝐴)}
3: return
4: else if 𝑃𝑁 = ∅ or |𝑃𝐴 | + |𝑃𝑁 | < 𝑘 then
5: return
6: else if 𝐿𝐵(𝑃𝐴, 𝑃𝑅, 𝑃𝑁) > 𝑢𝑏 then
7: return
8: else
9: 𝑞 := pop(𝑆𝑁)
10: push(𝑞, 𝑆𝐴)
11: 𝐵𝐵(𝑆𝐴, 𝑆𝑅, 𝑆𝑁)
12: 𝑝 := pop(𝑆𝐴)
13: push(𝑝, 𝑆𝑅)
14: 𝐵𝐵(𝑆𝐴, 𝑆𝑅, 𝑆𝑁)
15: 𝑞 := pop(𝑆𝑅)
16: push(𝑞, 𝑆𝑁)
17: return

The branching part of the algorithm works as follows: at each recursive step, the

point 𝑝 at the top of stack 𝑆𝑁 is removed and is placed at the top of stack 𝑆𝐴 (𝑝 is

accepted). Then, the remaining smaller sub-problems are solved recursively, with

the points in 𝑆𝐴 (and none of the points of 𝑆𝑅) belonging to the solutions of these

sub-problems. When back to the same recursion level, the point 𝑝 is removed from

the top of stack 𝑆𝐴 and placed at the top of stack 𝑆𝑅 (𝑝 is rejected) and the same

procedure is repeated again for the smaller sub-problems.

The usual stopping conditions avoid the generation of infeasible solutions,

namely, either having 𝑘 points or there are not enough points in 𝑆𝑁 to reach

a solution with 𝑘 points. In the former case, the star discrepancy value of the 𝑘

points is computed and compared against the upper bound (𝑢𝑏), which is updated

accordingly. The function 𝐿𝐵(·) allows the pruning of the search tree by computing

a lower bound on the smallest value of star discrepancy of a feasible solution that

contains the points stored in 𝑆𝐴. The following section describes the lower bound

computations.

75

Chapter 6 Subset Selection: Exact approaches

6.3.2.1 Lower Bounds

Consider that, at a given moment of Algorithm 1, stacks 𝑆𝐴, 𝑆𝑅 , and 𝑆𝑁 contain

point sets 𝑃𝐴, 𝑃𝑅 , and 𝑃𝑁 , respectively. Note that 𝑃𝑁 := 𝑃 \ (𝑃𝐴 ∪ 𝑃𝑅). Let 𝑃∗
𝐴
be

the set of 𝑘 points with the smallest value of star discrepancy that contains 𝑃𝐴 and

does not intersect 𝑃𝑅 , that is,

𝑃∗
𝐴 := argmin

{
𝑑∗∞(𝑃 ′) | 𝑃𝐴 ⊆ 𝑃 ′ ⊆ 𝑃 \ 𝑃𝑅, |𝑃 ′| = 𝑘

}
. (6.5)

Our bounding function is the maximum of two values, that is,

𝐿𝐵(𝑃𝐴, 𝑃𝑅, 𝑃𝑁) = max{𝐿𝐵1(𝑃𝐴, 𝑃𝑅, 𝑃𝑁), 𝐿𝐵2(𝑃𝐴, 𝑃𝑅, 𝑃𝑁)}.

The second value, 𝐿𝐵2(𝑃𝐴, 𝑃𝑅, 𝑃𝑁), is a lower bound on the local discrepancy of

points in 𝛤 (𝑃𝐴),

𝐿𝐵2(𝑃𝐴, 𝑃𝑅, 𝑃𝑁) := max

𝑞∈𝛤 (𝑃𝐴)

{
1

𝑘
𝐷 (𝑞, 𝑃𝐴) − 𝜆(𝑞)

}
≤ 𝑑∗∞(𝑃∗

𝐴). (6.6)

Note that 𝐷 (𝑞, 𝑃𝐴) ≤ 𝐷 (𝑞, 𝑃∗
𝐴
) holds for every point 𝑞 ∈ 𝛤 (𝑃∗

𝐴
). This lower bound

holds as any box 𝑞 ∈ 𝛤 (𝑃∗
𝐴
) will contain at least the points in 𝛤 (𝑃𝐴).

The first value, 𝐿𝐵1(𝑃𝐴, 𝑃𝑅, 𝑃𝑁), is also a lower bound on the local discrepancy of

points in 𝛤 (𝑃𝐴). For a given set 𝑃𝐴 and set 𝑃𝑁 , at each point 𝑞 in 𝛤 (𝑃𝐴), an upper

bound on the value of 𝐷 (𝑞, 𝑃∗
𝐴
) is as follows

min{𝑘, 𝐷 (𝑞, 𝑃𝐴) + 𝐷 (𝑞, 𝑃𝑁)} ≥ 𝐷 (𝑞, 𝑃∗
𝐴) (6.7)

from which the following lower bound 𝜂 (𝑞, 𝑃𝐴, 𝑃𝑁) on the value of the local dis-

crepancy at point 𝑞 can be derived:

𝜂 (𝑞, 𝑃𝐴, 𝑃𝑁) := 𝜆(𝑞) − 1

𝑘
min{𝑘, 𝐷 (𝑞, 𝑃𝐴) + 𝐷 (𝑞, 𝑃𝑁)} ≤ 𝛿 (𝑞, 𝑃∗

𝐴). (6.8)

One can see this lower bound as being the local discrepancy value for 𝑞 should we

pick the remaining points optimally with respect to 𝑞. Finally, by taking the worst

of all these lower bounds, we define our lower bound 𝐿𝐵1(𝑃𝐴, 𝑃𝑅, 𝑃𝑁) as follows

𝐿𝐵1(𝑃𝐴, 𝑃𝑅, 𝑃𝑁) := max

𝑞∈𝛤 (𝑃𝐴)
{𝜂 (𝑞, 𝑃𝐴, 𝑃𝑁)} ≤ 𝑑∗∞(𝑃∗

𝐴). (6.9)

We already point out the main weakness of our lower bounds: we are overly

optimistic for too many boxes at the same time, as we have no guarantee on which

76

Algorithmic Approaches to Solve the Discrepancy Subset Selection Problem Section 6.3

points will be picked in the future. For small discrepancy values, for example

around 3/𝑘 , this means that we cannot stop a branch exploration until either we

have placed too many points inside a box very quickly (relatively rare) or there

are very few candidate points that could be added inside a box. In this last more

common case, this usually means that we have explored nearly all the possible

subsets that can be obtained from 𝑃𝐴. In other words, our lower bounds perform

well for boxes with a small coordinate in the first dimension, but provide very little

information for other boxes.

6.3.2.2 Lower Bound Computation

A naïve computation of 𝐿𝐵(𝑃𝐴, 𝑃𝑅, 𝑃𝑁) requires 𝑂 (𝑑𝑘𝑑+1) time for each new point

𝑝 that enters into 𝑃𝐴 due to the need to compute 𝐷 (𝑞, 𝑃𝐴) and 𝐷 (𝑞, 𝑃𝑁) for every
point 𝑞 in 𝛤 (𝑃𝐴) as well as 𝐷 (𝑞′, 𝑃𝐴) and 𝐷 (𝑞′, 𝑃𝑁) for every point 𝑞′ in 𝛤 (𝑃𝐴).
However, note that 𝐷 (𝑞, 𝑃𝑁) and 𝐷 (𝑞′, 𝑃𝑁) can be pre-computed for every point

𝑞 ∈ 𝛤 (𝑃) and every point 𝑞′ ∈ 𝛤 (𝑃), respectively, and for every subset 𝑃𝑁 , which

requires𝛩 (𝑛𝑑+1) space and time in the pre-processing step. Moreover, for each new

point 𝑝 that enters into 𝑃𝐴 at each recursive step, 𝐷 (𝑞, 𝑃𝐴) and 𝐷 (𝑞′, 𝑃𝐴) need only

to be computed at points 𝑞 ∈ 𝛤 (𝑃𝐴) and 𝑞′ ∈ 𝛤 (𝑃𝐴) such that 𝑝 ≤ 𝑞 and 𝑝 ≤ 𝑞′

holds, respectively. In the following, we show that both components of the lower

bound 𝐿𝐵(𝑃𝐴, 𝑃𝑅, 𝑃𝑁) can be computed even faster in practice by considering a

given ordering of the points in 𝑃 .

As done in Section 6.3.1 and assuming that the points have pairwise different

coordinates (as per our convention made at the beginning of this section), let us

assume, without loss of generality, that 𝑝
(𝑖)
1

< 𝑝
(𝑗)
1

holds for 𝑖 < 𝑗 , 𝑖 ∈ {1, . . . , 𝑛 − 1}.
For this reason, for a given 𝑃𝐴 and 𝑃𝑁 , it holds that 𝐷 (𝑞, 𝑃𝑁) = 0 and 𝐷 (𝑞, 𝑃𝑁) = 0

for every point 𝑞 ∈ 𝛤 (𝑃𝐴). In the following, we discuss particular properties that

arise from this ordering and that will lead to an incremental evaluation of both

lower bounds.

For a given 𝑃𝐴 and 𝑃𝑁 , let 𝑝 ∈ 𝑃𝑁 be the smallest point with respect to the

ordering above. We consider the following subsets of 𝛤 (𝑃𝐴 ∪ {𝑝}):

𝐺0(𝑝, 𝑃𝐴) := 𝛤 (𝑃𝐴 ∪ {𝑝}) \ 𝛤 (𝑃𝐴) and 𝐺1(𝑝, 𝑃𝐴) :=
{
𝑞 ∈ 𝛤 (𝑃𝐴) | 𝑝 < 𝑞

}
.

Note that due to the ordering of the points in 𝑃 , we have that 𝐺1(𝑝, 𝑃𝐴) contains
only points in 𝛤 (𝑃𝐴) that strictly dominate point 𝑝 and have 1 in the first coordinate.

77

Chapter 6 Subset Selection: Exact approaches

Update of 𝑳𝑩1 We state the following propositions for the incremental com-

putation of 𝐿𝐵1(𝑃𝐴, 𝑃𝑅, 𝑃𝑁) in the case of inserting point 𝑝 into 𝑃𝐴 and into 𝑃𝑅 ,

respectively.

▶ Proposition 6.4.

𝐿𝐵1(𝑃𝐴 ∪ {𝑝}, 𝑃𝑅, 𝑃𝑁 \ {𝑝}) = max


𝐿𝐵1(𝑃𝐴, 𝑃𝑅, 𝑃𝑁)
max

𝑞∈𝐺0 (𝑝,𝑃𝐴)
{𝜂 (𝑞, 𝑃𝐴 ∪ {𝑝}, 𝑃𝑁 \ {𝑝})}

◀

Proof. Weprove that for every point𝑞 in 𝛤 (𝑃𝐴), it holds that𝜂 (𝑞, 𝑃𝐴, 𝑃𝑁) = 𝜂 (𝑞, 𝑃𝐴∪
{𝑝}, 𝑃𝑁 \{𝑝}) and, therefore, only the points in𝐺0(𝑝, 𝑃𝐴) need to be considered. For
this, we partition 𝛤 (𝑃𝐴) in two disjoint subsets, 𝛤 (𝑃𝐴) \𝐺1(𝑝, 𝑃𝐴) and 𝐺1(𝑝, 𝑃𝐴).

i) If 𝑞 ∈ 𝛤 (𝑃𝐴) \𝐺1(𝑝, 𝑃𝐴), then 𝐷 (𝑞, 𝑃𝐴∪{𝑝}) = 𝐷 (𝑞, 𝑃𝐴) and 𝐷 (𝑞, 𝑃𝑁 \ {𝑝}) =
𝐷 (𝑞, 𝑃𝑁).

ii) If 𝑞 ∈ 𝐺1(𝑝, 𝑃𝐴), then 𝐷 (𝑞, 𝑃𝐴 ∪ {𝑝}) = 𝐷 (𝑞, 𝑃𝐴) + 1 and 𝐷 (𝑞, 𝑃𝑁 \
{𝑝}) = 𝐷 (𝑞, 𝑃𝑁) − 1, and thus min{𝑘, 𝐷 (𝑞, 𝑃𝐴 ∪ {𝑝}) + 𝐷 (𝑞, 𝑃𝑁 \ {𝑝})} =

min{𝑘, 𝐷 (𝑞, 𝑃𝐴) + 𝐷 (𝑞, 𝑃𝑁)} .

■

▶ Proposition 6.5.

𝐿𝐵1(𝑃𝐴, 𝑃𝑅 ∪ {𝑝}, 𝑃𝑁 \ {𝑝}) = max


𝐿𝐵1(𝑃𝐴, 𝑃𝑅, 𝑃𝑁)
max

𝑞∈𝐺1 (𝑝,𝑃𝐴)
{𝜂 (𝑞, 𝑃𝐴, 𝑃𝑁 \ {𝑝})}

◀

Proof. We prove that for every point 𝑞 in 𝛤 (𝑃𝐴) \ 𝐺1(𝑞, 𝑃𝐴), it holds that

𝜂 (𝑞, 𝑃𝐴, 𝑃𝑁) = 𝜂 (𝑞, 𝑃𝐴, 𝑃𝑁 \ {𝑝}), and therefore, only the points in𝐺1(𝑞, 𝑃𝐴) need to
be considered. The proof is similar to part i) of the proof of Proposition 6.4, except

that only𝐷 (𝑞, 𝑃𝑁) and𝐷 (𝑞, 𝑃𝑁 \{𝑝}) are taken into account. If𝑞 ∈ 𝛤 (𝑃𝐴)\𝐺1(𝑝, 𝑃𝐴),
then 𝐷 (𝑞, 𝑃𝑁 \ {𝑝}) = 𝐷 (𝑞, 𝑃𝑁). ■

78

Algorithmic Approaches to Solve the Discrepancy Subset Selection Problem Section 6.3

Update of 𝑳𝑩2 For the second lower bound computation, we consider the fol-

lowing subset of 𝛤 (𝑃𝐴 ∪ {𝑝}):

𝐺0(𝑝, 𝑃𝐴) := 𝛤 (𝑃𝐴 ∪ {𝑝}) \ 𝛤 (𝑃𝐴).

We state the following equalities.

▶ Proposition 6.6.

𝐿𝐵2(𝑃𝐴 ∪ {𝑝}, 𝑃𝑅, 𝑃𝑁 \ {𝑝}) = max


𝐿𝐵2(𝑃𝐴, 𝑃𝑅, 𝑃𝑁)

max

𝑞∈𝐺0 (𝑝,𝑃𝐴)

{
1

𝑘
𝐷 (𝑞, 𝑃𝐴 ∪ {𝑝}) − 𝜆(𝑞)

}
◀

Proof. Similar to the proof of Proposition 6.4. If 𝑞 ∈ 𝛤 (𝑃𝐴), then we have that

𝐷 (𝑞, 𝑃𝐴 ∪ {𝑝}) = 𝐷 (𝑞, 𝑃𝐴) and 𝐷 (𝑞, 𝑃𝑁 \ {𝑝}) = 𝐷 (𝑞, 𝑃𝑁). ■

The following proposition simply uses the fact that 𝐿𝐵2 is only defined via 𝑃𝐴.

Moving a point from 𝑃𝑁 to 𝑃𝑅 does not have any effect on the value of this lower

bound.

▶ Proposition 6.7. It holds that 𝐿𝐵2(𝑃𝐴, 𝑃𝑅∪{𝑝}, 𝑃𝑁 \{𝑝}) = 𝐿𝐵2(𝑃𝐴, 𝑃𝑅, 𝑃𝑁). ◀

The sets 𝐺0(𝑝, 𝑃𝐴) and 𝐺0(𝑝, 𝑃𝐴) are of size 𝑂 (𝑑𝑘𝑑−1) at worst, as we have 𝑑

possible choices for a coordinate taken from 𝑝 and, given this fixed coordinate,

we have (|𝑃𝐴 | + 1) ≤ 𝑘 choices for each of the other 𝑑 − 1 coordinates. The set

𝐺1(𝑝, 𝑃𝐴) is of size 𝑂 (𝑘𝑑−1) as the first coordinate is fixed and we could have up to

|𝑃𝐴 | ≤ 𝑘 choices for each of the other coordinates in the worst case. The results

above indicate that the lower bound can be computed incrementally in 𝑂 (𝑑𝑘𝑑−1)
time at each recursive step, assuming that 𝐷 (𝑞, 𝑃𝑁) and 𝐷 (𝑞′, 𝑃𝑁) can be computed

in constant time after a pre-processing step as discussed in this section.

6.3.3 Greedy Heuristic
An initial upper bound for BB is given by a greedy heuristic that selects 𝑘 points

iteratively. The greedy choice consists of selecting the point amongst those that

were not yet chosen that gives the best improvement in terms of star discrepancy

(note here that this improvement can be negative, as discussed in Example 6.2).

Therefore, the selection of the next point involves the evaluation of 𝑂 (𝑛) star
discrepancies, each of which takes 𝑂 (𝑘𝑑) time with a naïve approach. Although

79

Chapter 6 Subset Selection: Exact approaches

better running times can be achieved, we found this procedure to be reasonably

fast for the size of the point sets considered in our experimental analysis. In the

subsequent sections, we will include performance statistics for the greedy heuristic

in our reports, to provide an impression for its quality in the various use-cases.

6.3.4 The Feasibility Approach

For practitioners interested only in good discrepancy values and not the optimal

subset, a possible approach is to consider a feasibility problem. The idea is to use

the same model as the MILP introduced in Section 6.3.1, but to remove the objective

and replace it by a constraint with a target value 𝑑∗. In other words, we are directly

solving the decision problem: rather than solving to find the optimal subset, we try

to find if there exists a subset 𝑃𝑘 such that 𝑑∗∞(𝑃𝑘) ≤ 𝑑∗. This formulation allows

us to use solvers dedicated to Constraint Programming problems, to try to exploit

the fact that we are only trying to check if the model is feasible or not.

We performed experiments with open-WBO [MML14] and observed that, while

many instances could be solved nearly instantly, the closer 𝑑∗ got to the correct

optimal value found in our other experiments, the longer it took to solve the problem.

In particular, it was easier for the solver to find a value 𝑑∗ > 𝑑𝑂𝑃𝑇 close to the

optimal 𝑑𝑂𝑃𝑇 than one as close but for which 𝑑∗ < 𝑑𝑂𝑃𝑇 . Overall, while this method

was efficient to find acceptable solutions, it did not perform noticeably better than

the original MILP. It also suffered from the size of the model, and therefore did

not allow us to increase 𝑛 or 𝑑 significantly compared to the MILP. Should there

be major improvements in the Constraint Programming community, it could be

interesting to revisit this approach.

6.3.5 A Simple Case: Dominated Points

Before moving on to the computational results, we conclude our study of exact

algorithms for the 𝐿∞ star discrepancy with a specific case that we can solve exactly

in polynomial time.

The difficulty with our methods so far is the size of the grid. Even when looking

exactly once at each box, we cannot do better than 𝑂 (𝑛𝑑). Should 𝑃 consist of

dominated points (i.e 𝑥 (𝑖) < 𝑥 (𝑗)
if 𝑖 < 𝑗), then there are only (𝑑 + 1)𝑛 relevant

boxes. Each point defines a closed box [0, 𝑥 (𝑖)] and 𝑑 open boxes of the shape[
0, (1, . . . , 1, 𝑥 (𝑖)

𝑗
, 1, . . . , 1)

(
, and these are the only critical boxes for 𝑃 . More impor-

tantly, if we consider our points from 1 to 𝑛, when deciding whether to take the

𝑖-th point we only need to know how many points we have chosen so far and not

80

Comparison of the Different Algorithms Section 6.4

which ones they are. Indeed, regardless of our choices for 1 ≤ 𝑗 ≤ 𝑖 − 1, the critical

boxes defined by 𝑥 (𝑖)
will contain the same number of points.

Let 𝑉 (𝑖, 𝑗) be the best discrepancy value that can be obtained when picking in

our subset 𝑗 of the 𝑖 first points. We have the following dynamic programming

relation

𝑉 (𝑖, 𝑗) = min(𝑉 (𝑖 − 1, 𝑗),max(𝑉 (𝑖 − 1, 𝑗 − 1), 𝐵(𝑖, 𝑗))),
where 𝐵(𝑖, 𝑗) is the worst discrepancy value for the 𝑑 + 1 critical boxes defined by

𝑥 (𝑖)
with 𝑗 points picked previously.

37
This can be computed in 𝑂 (𝑑) time:

38
since

the points are sorted, we know the closed box will have 𝑗 points and the open boxes

𝑗 − 1. Volumes are also known, respectively

∏𝑑
ℎ=1

𝑥
(𝑖)
ℎ

for the closed box and 𝑥
(𝑖)
ℎ

for ℎ ∈ {1, . . . , 𝑑} for the different open boxes. 𝑉 (𝑛, 𝑘) can therefore be computed

in time 𝑂 (𝑛𝑘𝑑) and the usual dynamic programming back-tracking method gives

us the subset with the smallest star discrepancy.

6.4 Comparison of the Different Algorithms
We have presented above three different strategies to address the discrepancy subset

selection problem: an MILP formulation, the branch-and-bound algorithm, and the

greedy strategy. In this section we compare the efficiency of these three algorithms.

We add to the comparison a naïve random sampling approach, which simply selects

random subsets of the target size 𝑘 . Some of the tables are presented separately

in Section 12.1 for completeness, while not overloading this chapter.

The MILP solver and the branch-and-bound algorithm do not always terminate

within the given time limit. In these cases, they can nevertheless report the best

solution that they have been able to find.

6.4.1 Experimental Setup

The Sobol, Halton and RevHal point sets were generated by a program written

in C using GNU Scientific Library, namely, library gsl_qrng for the generation of

quasi-random sequences, with the procedures gsl_qrng_sobol, gsl_qrng_halton,
and gsl_qrng_reversehalton, respectively. The sequences unif were also gener-

ated in a similar way, using library gsl_rng for random number generation with

the procedure gsl_rng_uniform. Faure and iLHS point sets were generated in R

37 This includes the point 𝑥 (𝑖)
.

38 Should we allow equal coordinates, this would no longer hold, and add in the worst case a 𝑂 (𝑛)
factor.

81

Chapter 6 Subset Selection: Exact approaches

using procedure runif.faure available in the DiceDesign package and procedure

improvedLHS available in the lhs package, respectively. Fibon sets were generated

by a code in Python (version 2.7.16).

For the two-dimensional case, we considered 𝑘 ∈ {20, 40, 60, 80, 100, 120} and
for each value of 𝑘 , we considered 𝑛 ∈ {𝑘 + 20, 𝑘 + 40, . . . , 140}. For the three

dimensional case, we considered 𝑘 ∈ {20, 40, 60, 80} and for each value of 𝑘 , 𝑛 ∈
{𝑘 + 20, 𝑘 + 40, . . . , 100}. Preliminary experiments indicated that larger values

of 𝑛 would increase the computational cost significantly, requiring several hours

of computation time before the algorithms converge. For the two randomized

constructions iLHS and unif, we have generated 10 instances for each combination

of values of 𝑘 and 𝑛.

To compare the discrepancy values of the subsets with the original size-𝑘 point

sets, we also computed the discrepancy values of the latter, using the (exact) al-

gorithm described in [DEM96] and provided to us by Magnus Wahlström. For

consistency, we denote these cases as “𝑛 = 𝑘”.

We used SCIP solver version 7.0.1 to solve the MILP formulation described

in Section 6.3.1. The MILP formulation was written in an LP format, which is read

and solved by SCIP solver with the default parameters. The BB algorithm for two

and three dimensions and with the incremental computation of lower bounds as

described in Section 6.3.2 was written in C. In a preliminary step, the points were

sorted in increasing order with respect to the first dimension to prepare them for

the application of our solvers.

To run the experiments, we used a computer cluster Dell PowerEdge R740 Server

with two Intel Xeon Silver 4210R 2.4G, 10 Cores / 20 Threads, 9.6GT/s, 13.75M cache,

with two 32GB RDIMM, two 480GB SSD SATA hard-drives, and Debian GNU/Linux

10 (buster) operating system. The running times in seconds of the SCIP solver and

of the BB program were measured with command time under linux, with a cut-off

time limit of 30 minutes. The time to generate the files with the MILP formulation

was not taken into account. For the BB program, we used gcc compiler version

8.3.0 with -O3 compilation flag. We have only used arrays with static memory

allocation.

6.4.2 Quality of Random Subset Sampling and the Greedy
Heuristic

To gain a feeling for the complexity of the subset selection problem, we first study

the solution quality of randomly selected subsets of target size 𝑘 as well as that of

82

Comparison of the Different Algorithms Section 6.4

Table 6.1: Percentiles of the star discrepancy values found by random subset sampling with

1 000 000 trials, for the instances with 𝑛 = 100 points and subset size 𝑘 = 60 in dimension

𝑑 = 2.

quantile Faure Sobol’ Halton RevHal Fibon

best possible subset 0.0357 0.0356 0.0359 0.0363 0.0351

best found subset 0.0547 0.0540 0.0531 0.0542 0.0518

1% 0.0718 0.0715 0.0714 0.0713 0.0688

10% 0.0844 0.0836 0.0843 0.0838 0.0808

25% 0.0937 0.0928 0.0942 0.0935 0.0899

50% 0.1065 0.1055 0.1078 0.1063 0.1025

75% 0.1219 0.1212 0.1245 0.1222 0.1177

90% 0.1382 0.1370 0.1418 0.1384 0.1334

100% 0.24481 0.2459 0.2673 0.2531 0.2478

the greedy heuristic described in Section 6.3.3 (i.e., the strategy used to initialize

the upper bound for the BB method).

Table 6.1 shows selected percentiles of star discrepancy values for 1 000 000 i.i.d.

uniformly selected subsets of size 𝑘 = 60 for the five considered low-discrepancy

sequences and sets with 𝑛 = 100 points in dimension 𝑑 = 2. The distributions are

quite similar for the five point sets. The main probability mass is around about twice

the solution quality of the best found subset. The latter, in turn, have discrepancy

values that are still between 47.5% and 53.3% worse than the best possible subset.

Even if the evaluation of 1 000 000 subsets could be executed in less than two

minutes, the results already suggest that random sampling is quite inefficient for

the discrepancy subset selection problem.

That the inefficiency of the random subset sampling is not an artifact of the

setting described in Table 6.1 is indeed confirmed by the values in Tables 12.5

and 12.8 (available in Section 12.1), where we report, for all tested combinations

of 𝑘 and 𝑛 in 2𝑑 and 3𝑑 , respectively, the discrepancy values of the best random

subset that could be found within a cut-off time of 30 minutes. For fixed 𝑘 , the

values do not significantly improve with increasing 𝑛, in contrast to the value of

the best possible (or best found) subset of the same size, which are reported in

column 𝑠𝑢𝑏𝑠𝑒𝑡 . As a result, the relative disadvantage of the random subset selection

procedure increases from around 10% for 𝑘 = 20 and 𝑛 = 40 to around 40% for

𝑛 = 140 in the 2𝑑 case. For 𝑘 = 40, the disadvantage is already around 16% on

average for 𝑛 = 60 and 58% for 𝑛 = 140. For 𝑘 = 120 and 𝑛 = 140, the relative

disadvantage of random subset sampling is between 22% for Sobol and 32% for

83

Chapter 6 Subset Selection: Exact approaches

Halton. For the 3𝑑 case, the best subsets found by random sampling are around

19% worse on average than the optimal ones for 𝑘 = 20 and 𝑛 = 40, and this value

increases to around 30% for 𝑘 = 20 and 𝑛 = 60 and to around 35% for 𝑘 = 20 and

𝑛 = 80 and 𝑛 = 100.

Comparing random subset sampling to the greedy strategy (column 𝑔𝑟𝑒𝑒𝑑𝑦 in

Tables 12.5 and 12.8 in Section 12.1), we see that random subset sampling provides

a much better upper bound; however, we should keep in mind that several thou-

sands of millions of subsets are evaluated within the 30 minutes time limit of the

random subset sampling strategy, whereas the greedy strategy is deterministic and

therefore evaluates only a single subset. As discussed above, the figures in Table 6.1

showed that already after two minutes the median performance of random subset

sampling was around twice as large as the value of the best found subset, so that

the comparison between random subset selection and the greedy strategy should

indeed be done with care. For fixed 𝑘 ∈ {20, 40, 60}, the greedy strategy tends to

give worse solutions when the number of available points, 𝑛, increases. Across all

evaluated settings, its discrepancy values are between 33% and 172% worse than

the best (or best found) subset, with an average overhead of 92% and a median of

88%. The average and the median disadvantage of the greedy strategy compared to

the result of the random subset sampling are both around 40%.

Most observations made for the low-discrepancy sequences carry over to the

performance on the subset selection problem on iLHS and unif, as can be seen

in Tables 12.6 and 12.7 for the 2𝑑 case and in Tables 12.9 and 12.10 for the 3𝑑

case, respectively, in Section 12.1. In particular, the performance of 𝑟𝑎𝑛𝑑𝑜𝑚 subset

sampling decreases with increasing 𝑛 and fixed 𝑘 , whereas the values of the best

possible subsets improve. In fact, not only the relative but also the absolute value

of the best subset found by random subset sampling increases with increasing 𝑛,

and this consistently for all 𝑘 in 2𝑑 in the case of iLHS point sets and for most

values of 𝑘 in the unif case (no correlation between different values of 𝑛 can be

identified for the case 𝑘 = 20 nor in the two cases for the 3𝑑 setting). No clear

correlation between the quality of the greedy strategy and the value of 𝑘 and 𝑛

can be identified, except that for the 2𝑑 iLHS samples the absolute values of the

subset computed for 𝑛 = 140 tend to be worse than those for smaller 𝑛. This effect,

however, cannot be observed in the 2𝑑 unif nor in the 3𝑑 cases.

The bounds provided by the 𝑔𝑟𝑒𝑒𝑑𝑦 strategy are quite stable for varying 𝑛 and

fixed 𝑘 , but are significantly worse than bounds provided by the 𝑟𝑎𝑛𝑑𝑜𝑚 strategy

in 2𝑑 . In 3𝑑 , however, this is not the case. Here, the results of the 𝑔𝑟𝑒𝑒𝑑𝑦 strategy

are better than those of the random subset sampling; the average (median, max)

advantage of the greedy strategy over the random one is 20% (30%, 38%) for iLHS
and 16% (18%, 36%) for unif. In some of the 3𝑑 cases, the best value returned by

84

Comparison of the Different Algorithms Section 6.4

Table 6.2: CPU-time (in seconds) of BB for low-discrepancy sequences and sets and median

CPU-time and number of instances solved out of ten (in parenthesis) for randomized

constructions for several values of 𝑛 and 𝑘 in the three-dimensional case, where “-” indicates

that the approach did not terminate before the time limit of 1800 seconds.

𝑘 sequence 𝑛 = 40 𝑛 = 60 𝑛 = 80

20 Faure 34 859 -

Sobol’ 4 973 -

Halton 30 - -

RevHal 10 1278 1378

iLHS 161 (9) 620 (8) 567 (1)

unif 31 (9) 305 (8) 966 (1)

40 Faure - -

Sobol’ - -

Halton - -

RevHal - -

iLHS 253 (2) -

unif - -

60 Faure -

Sobol’ -

Halton -

RevHal -

iLHS 806 (2)

unif 86 (2)

the greedy strategy is either optimal (this is the case for the 𝑘 = 60, 𝑛 = 80, iLHS
setting) or could not be improved by the exact solvers (𝑘 = 80, 𝑛 = 100, iLHS;
𝑘 = 60, 𝑛 = 80, unif; and 𝑘 = 80, 𝑛 = 100, unif) or it is quite close to optimal (e.g.,

𝑘 = 80, 𝑛 = 100, iLHS with a 0.5% overhead compared to the best value returned

by the exact solvers). Note that the 𝑟𝑎𝑛𝑑𝑜𝑚 strategy evaluates much fewer samples

in 3𝑑 than in 2𝑑 , since the star discrepancy computation is substantially more

time-consuming in 3𝑑 .

Thus, summarizing this section, we find that (with few exceptions), both the

𝑟𝑎𝑛𝑑𝑜𝑚 subset sampling and the 𝑔𝑟𝑒𝑒𝑑𝑦 heuristic perform rather poorly on the

discrepancy subset selection problem, clearly motivating the need for more so-

phisticated approaches, either in terms of exact solvers such as the MILP and BB

approaches presented in Section 6.3 or in terms of better heuristics.

85

Chapter 6 Subset Selection: Exact approaches

6.4.3 Comparison between MILPs and Branch-and-Bound

Tables 12.3 and 12.4 in the appendix present the running times (measured in seconds)

of the MILP solver and BB, for different values of 𝑛 and 𝑘 in dimension 𝑑 = 2 on

deterministic sequences and on randomized constructions, respectively. The same

information for branch and bound in𝑑 = 3 is shown in Table 6.2 (for the randomized

constructions more details can be found in Table 12.1 in Section 12.1). We do not

show the results for the MILP solver, since they have shown poor performance in

the 3𝑑 case. For the randomized sequences, the values reported in Table 6.2 are the

median running times on the instances that were solved within the cut-off time.

In Tables 12.1 and 12.4, we report the minimum, the median and the maximum

value. The number of instances that were solved within the time limit is reported

in parenthesis. The entry “-” indicates that the implementation was not able to

terminate within this cut-off time.

For a better comprehension of the information shown in Tables 12.3 and 12.4,

Figure 6.2 plots a summary of these tables. The left and the right column correspond

to the performance of the ILP solver on theMILP formulation and of BB, respectively.

Each row corresponds to the performance obtained for a given value of𝑘 . The points

correspond to the running times in seconds obtained on deterministic sequences or

sets (fau is Faure, sob is Sobol hal is Halton, rev is RevHal, and fib is Fibon) and to

the median running times in seconds on randomized constructions (lhs is iLHS and
uni is unif). The label for each deterministic sequence is placed close to the point

with the largest value of 𝑛 for which the approach was able to solve before the time

limit of 1800 seconds was achieved. In the case of randomized constructions, the

label is placed close to the point with the largest value of 𝑛 for which the approach

was able to solve at least one instance before the time limit. The barplots present

the percentage of solved instances of randomized constructions, where violet and

blue correspond to iLHS and unif, respectively.

The results for 𝑑 = 2 in Tables 12.3 and 12.4 suggest two different patterns for

MILP and for BB: while the latter is faster to find the optimal subset for small 𝑘/𝑛
ratios (see row 𝑘 = 20 in Table 12.3 and second column and first row in Figure 6.2),

MILP is faster for larger 𝑘/𝑛 ratios (see main diagonal in Table 12.3 and the leftmost

running-times in the left column of Figure 6.2). The difference between the two

methods is striking at both ends. BB solves all instances with 𝑛 = 140 and 𝑘 = 20 in

almost less than 100 seconds whereas MILP cannot even solve a single one. MILP

can solve all instances for 𝑛 = 140 and 𝑘 = 120, except for Fibon sets, whereas BB

can only solve RevHal, Fibon, and almost half of the iLHS instances.

The strong performance of MILP as compared with BB when the 𝑘/𝑛 ratio is

close to 1 is related to the quality of the lower bounds on those cases. Table 12.2

86

Comparison of the Different Algorithms Section 6.4

in the appendix shows the integrality gap of the LP relaxation of MILP for 2𝑑

deterministic sequences with respect to the optimal found and, when not available,

with respect to the best solution found. We can observe that the smallest gaps arise

for larger 𝑘/𝑛 ratios. We recall that the solution of the LP relaxation of MILP is

integral when 𝑘 = 𝑛.

Unfortunately, MILP is not feasible for the 3𝑑 case as the memory requirement

grows very fast, reaching the limit available in the cluster for the smallest instances.

This is due to the large number of constraints in the 3𝑑 case. In fact, a file with

the MILP formulation in LP format occupies several gigabytes. For this reason,

Tables 6.2 and 12.1 report only the CPU-time taken by BB on deterministic and

randomized sequences, respectively. The performance decay of BB reported in these

tables is noticeable in comparison with the 2𝑑 case. For instance, this approach

cannot find a single solution for 3𝑑 instances with 𝑛 = 100 and 𝑘 = 20, whereas it

can solve all 2𝑑 instances for the same values of 𝑘 and 𝑛 in at most 250 seconds.

This is mainly due to the time taken with the update of data structures and the

evaluation of the lower bounds, which grows considerably with an increasing

number of dimensions.

We also observe from Table 12.3 that there seems to be little difference of perfor-

mance among the different deterministic sequences and sets. Still, some outliers

are quite noticeable with BB, such as with Faure sequence for 𝑛 = 100 and 𝑘 = 80

which took 1 194 seconds, while with Fibon sequence for the same parameters took

only 45 seconds. Similarly, MILP was not able to solve a Fibon set for 𝑛 = 120 and

𝑘 = 100, took 1 538 seconds to solve a Sobol sequence with the same sizes, while it

took less than 20 seconds to solve the remaining sequences. There is also no large

difference between the running times obtained on deterministic sequences or sets

and on iLHS sets. Differently, we observe that unif sets take less time to be solved

with MILP while they take more time to be solved with BB.

Table 6.3 compares the final solution quality of the MILP and BB for 𝑛 = 140 and

different values of 𝑘 , after a cut-off time of 23 hours. Values marked by an asterix *

could not be proven to be optimal by the solver, and values printed in grey color

are known to be non-optimal, by the result of the other solver. BB could solve all

but four instances, whereas the solver for MILP did not finish on eleven instances.

The solution quality, however, is nevertheless decent: only two values deviate from

the best solution found by BB by more than 1%; these are for 𝑘 = 60 and Sobol
(1.8% worse than the optimal solution) and for Halton (2.1% worse). Only for the

case of 𝑘 = 100 for Sobol sequence (+2.1% compared to the optimal solution) and

for Halton (+22.7% compared to the best solution found by MILP) are the values

obtained by BB worse than those obtained by MILP.

87

Chapter 6 Subset Selection: Exact approaches

●

●

●

●

R11$V2

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

fau
sob

hal
rev

fib

lhs
uni

1e−02

1e+00

1e+02

40 60 80 100 120 140

m=20

● ●

●

●

●

●

R11$V2

● ●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

● ●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

fau

sob

hal

rev

fib

lhs
uni

40 60 80 100 120 140

0.0

0.5

1.0

●

●

R21$V2

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

fau

sob
hal

rev

fib

lhs

uni

1e−02

1e+00

1e+02

m=40

●

●

●

R21$V2

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

fau

sob
hal

rev
fib

lhs uni

0.0

0.5

1.0

●

R31$V2

●

●

●

●

●

●

●

●

●

●

fausob

hal
rev

fib
lhs

uni

1e−02

1e+00

1e+02

m=60

●

●

R31$V2

●

●

●

●

●

●

●

●

●

●

●

●

fau
sob

hal
rev fib lhs

uni

0.0

0.5

1.0

●

R41$V2

●

●

●

●

●

●

●

●

fausob
hal rev

fib

lhs

uni

1e−02

1e+00

1e+02

m=80
●

R41$V2

●

●

●

●

●

●

●

fau

sob hal
rev

fib

lhs

uni

0.0

0.5

1.0

●

R51$V2

●

●●

●

●

●

●

fau

sob

halrev

lhs

uni

1e−02

1e+00

1e+02

m=100

R51$V2

●

●
●

●

●

sob

fiblhs

uni

0.0

0.5

1.0

●

R61$V2

●

●

●

●

●

fau
sob

hal
rev
lhs

uni

1e−02

1e+00

1e+02

m=120

R61$V2

●

●●

rev
fib lhs

40 60 80 100 120 140 40 60 80 100 120 140
0.0

0.5

1.0

n values

ru
n−

tim
es

 in
 s

ec
s.

pe
rc

en
ta

ge
 o

f s
ol

ve
d

in
st

an
ce

s

Figure 6.2: Run-times for deterministic sequences, median run-times for randomized

sequences (points and lines), and percentage of solved instances for randomized sequences

(barplots) for MILP (left column) and BB (right column) and for each combination of 𝑘

(rows) and 𝑛.39

88

Comparison of Star Discrepancy Values Section 6.5

Table 6.3: Optimal and best found (*) star discrepancy values for MILP and BB with a time

limit of 23 hours. All data is for the two-dimensional case with 𝑛 = 140 and different values

of 𝑘 . Provably non-optimal values are printed in grey color.

𝑘 sequence

𝑛 = 140

MILP BB

40 Faure *0.0449 0.0449

Sobol’ *0.0449 0.0447

Halton *0.0452 0.0452

RevHal 0.0444 0.0444

Fibon 0.0448 0.0448

60 Faure *0.0334 0.0334

Sobol’ *0.0334 0.0328

Halton *0.0345 0.0338

RevHal *0.0336 0.0336

Fibon *0.0338 0.0338

80 Faure *0.0273 0.0271

Sobol’ *0.0273 0.0273

Halton 0.0277 0.0277

RevHal *0.0279 *0.0278

Fibon *0.0296 *0.0276

100 Faure 0.0241 0.0241

Sobol’ 0.0241 *0.0246

Halton *0.0242 *0.0297

RevHal 0.0238 *0.0238

Fibon *0.0296 0.0230

6.5 Comparison of Star Discrepancy Values
While we have focused in Section 6.4 on the comparison between the different

solvers, we now discuss the quality of the subsets for the different point construc-

tions. Detailed values and information about the convergence of the exact solvers

can be found in Tables 12.5, 12.6, and 12.7 for low-discrepancy, iLHS, and unif
samples in 2𝑑 and in Tables 12.8, 12.9, and 12.10 for low-discrepancy, iLHS, and
unif samples in 3𝑑 , respectively.

6.5.1 The Two-Dimensional Case

Figure 6.3 visualizes the star discrepancy values of the optimal (or best found, see

Tables 12.5, 12.6, and 12.7 for details) subsets for all tested combinations of 𝑛 and 𝑘

in 2𝑑 .

39 𝑘 is replaced by𝑚 in this plot and subsequent ones.

89

Chapter 6 Subset Selection: Exact approaches

●

●

● ●
●

● ●

●

●
●

●

● ● ●

●

●

●

● ●
●

●

●

● ●

● ●
●

●

●

●

●

● ●
●

●

●

●

●

●
●

● ●

●

●

●

●

●
●

●

●

●

●
●

●
● ●

●

●

●

●

●
●

●

fau

sob

hal
rev

fib

lhs

uni

uni

lhs

0.02

0.05

0.10

0.20

20 40 60 80 100 120 140

m=20

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●
●

●
●

●

●

●

●
● ●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

fau
sob

hal
rev

fib

lhs

uni

uni

lhs

20 40 60 80 100 120 140

m=40

●

●

●
●

●

●

●

●

● ●

●

●
● ●

●

●

●

●
●

●

● ●

● ● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

fau

sob

hal

rev

fib

lhs

uni

uni

lhs

20 40 60 80 100 120 140

0.02

0.05

0.10

0.20

m=60

●

●

●

●

●

●

● ●

●

●

● ●

●

●

● ●

●

● ● ●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

fau

sob

hal

rev

fib

lhs

uni

uni

lhs

20 40 60 80 100 120 140

0.02

0.05

0.10

0.20

m=80

●

●

●

●

●

●

●

●

●

●

●

●
● ● ●

●

●

●

●

●

●

●

●

●

●

●

●fau

sob

hal

rev

fib

lhs

uni

uni

lhs

20 40 60 80 100 120 140

m=100

n values

st
ar

 d
is

cr
ep

an
cy

 v
al

ue
s

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

fau

sob

hal
rev

fib

lhs

uni

uni

lhs

20 40 60 80 100 120 140

0.02

0.05

0.10

0.20

m=120

Figure 6.3: Star discrepancy values for each tested combination of 𝑘 and 𝑛 in 2𝑑 . For the

two randomized constructions iLHS and unif, minimum (dashed lines) and median (solid

lines) values across the ten independent runs are shown.

Dependency on 𝑘 . As expected, the discrepancy values decrease with increasing

𝑘 . While the discrepancy of the best original construction with𝑚 points decreases

from 0.093 to 0.0545, 0.0363, 0.0272, 0.0232, and 0.021 for 𝑘 = 20, 40, . . . , 120 points,

the discrepancy value of the best found size-𝑘 subset (over all 𝑛 > 𝑘 studied)

decreases from 0.0731 for 𝑘 = 20 to 0.0445 for 𝑘 = 40, 0.0338 for 𝑘 = 60, 0.0272

for 𝑘 = 80, 0.023 for 𝑘 = 100, and 0.0199 for 𝑘 = 120. The advantage of the subset

selection is therefore around 21% for 𝑘 = 20, 18% for 𝑘 = 40, 7% for 𝑘 = 60, 0% for

𝑘 = 80, 1% for 𝑘 = 100, and 5% for 𝑘 = 120.

Dependency on 𝑛. For fixed 𝑘 , the values tend to decrease with increasing 𝑛,

but there are a few cases that do not follow this rule, i.e., in which the optimal 𝑘

point subset of a 𝑛 = 𝑘 + 20𝑖 set has greater discrepancy value than the set with

𝑛 = 𝑘 + 20(𝑖 − 1) points. Cases with 𝑛 = 140 may be caused by non-convergence

of the exact solvers, i.e., the reported bounds may simply not reflect the value of

an optimal subset. Examples for this setting are Faure with 𝑘 = 40, Sobol with
𝑘 = 60, Fibon with 𝑘 = 100. However, there are also cases in which the increase

in discrepancy value is not caused by this artifact, but by a real disadvantage of

90

Comparison of Star Discrepancy Values Section 6.5

sequence n=m min n=m min n=m min n=m min n=m min n=m min

Faure 186.5% 1.0% 87.9% 1.3% 90.8% 2.1% 66.2% 3.3% 100.4% 4.8% 86.9% 6.0%

Sobol 79.6% 1.0% 87.9% 0.4% 43.2% 0.9% 86.0% 4.8% 73.0% 10.0% 26.1% 14.1%

Halton 102.1% 1.1% 123.1% 2.0% 93.5% 2.4% 37.9% 3.7% 118.3% 8.7% 112.6% 11.6%

RevHal 105.2% 0.7% 94.6% 2.7% 85.2% 0.3% 66.9% 3.7% 80.9% 3.5% 109.5% 7.0%

Fibon 27.2% 0.0% 22.5% 0.9% 7.4% 1.8% 0.0% 0.0% 0.9% 0.0% 5.5% 0.0%

iLHS (min/10 rep.) 39.8% 0.0% 53.3% 0.0% 50.3% 0.0% 43.0% 2.9% 30.9% 7.0% 40.7% 15.1%

unif (min/10 rep.) 151.2% 3.0% 207.6% 7.6% 256.5% 19.5% 235.7% 46.7% 311.3% 96.5% 232.7% 179.9%

sequence n=m min n=m min n=m min n=m min

Faure 49.3% 0.2% 136.0% 0.0% 82.7% 0.0% 17.0% 16.6%

Sobol 47.6% 0.0% 37.0% 1.0% 21.5% 6.1% 51.4% 10.6%

Halton 73.0% 1.0% 89.6% 3.7% 78.4% 5.9% 28.0% 0.5%

RevHal 55.6% 0.4% 71.3% 2.7% 42.9% 6.9% 36.6% 0.0%

iLHS (min/10 rep.) 228.3% 7.3% 286.0% 25.6% 453.1% 74.3% 421.2% 212.4%

unif (min/10 rep.) 240.2% 7.5% 333.8% 44.9% 457.4% 95.9% 483.2% 242.2%

2d

3d

m=20, best=0.1202 m=40, best=0.0778 m=60, best=0.0606

m=100, best=0.023 m=120, best=0.0199

m=80, best=0.0547

m=20, best=0.0731 m=40, best=0.0445 m=60, best=0.0338 m=80, best=0.0272

Figure 6.4: Relative disadvantage of the discrepancy values of the original point sets

(column “𝑚 = 𝑛”) and of the best size-𝑘 subset (across all tested sets with 𝑛 = 𝑘 + 20𝑖 points,

column “min”), compared against the best overall set with 𝑘 points. For the two random

constructions, iLHS and unif, we report the best out of the ten independent experiments.

the larger 𝑛-point set. This is the case for the Fibon set with 𝑘 = 60, where the

discrepancy of the optimal subset of the 𝑛 = 80 construction is 0.0364, slightly

larger than the 0.0363 discrepancy of the original 𝑘 = 60 construction. It is also the

case for the Fibon set with 𝑘 = 80, which has a discrepancy value of 0.0272 for the

original (𝑛 = 𝑘) construction, whereas the optimal subset of the 𝑛 = 100 point set

has discrepancy 0.0282 (and also the best found subset for the 𝑛 = 120 construction

is worse than the original 80-point one, but the solvers did not converge, so that

we do not know whether the disadvantage is real). Another example of a non-

monotonic behavior is the unif construction with 𝑘 = 100, but here the decrease in

the discrepancy value of the best subset is simply caused by the random nature of

the construction, and the comparatively large variance between the independently

sampled 𝑛-point sets, see Figure 6.5 for an illustration.

We also observe a general trend for diminishing returns for increasing 𝑛, i.e.,

the relative gain when increasing 𝑛 from 𝑘 to 𝑘 + 20 is larger than the gain when

increasing 𝑛 from 𝑘 + 20𝑖 to 𝑘 + 20(𝑖 + 1) for 𝑖 > 0.

Comparison of the different constructions. The by far worst discrepancy values are
obtained by the uniformly sampled point sets unif, and this even when considering

the best of all ten independent runs (dashed line in Figure 6.3). For the original

𝑘-point constructions, i.e., the case 𝑛 = 𝑘 , the Fibon sets are clearly the best, with

discrepancy values that are significantly smaller than that of all other constructions.

However, we also see that the advantage of this set diminishes or even vanishes

when considering the best size-𝑘 subsets that could be identified for 𝑛 > 𝑘 . Indeed,

we observe that the discrepancy values of the 𝑛 = 𝑘 point sets can differ quite

91

Chapter 6 Subset Selection: Exact approaches

●

●

●

●

60 80 100 120 140

0.05

0.10

0.15

0.20

n values

st
ar

 d
is

cr
ep

an
cy

 v
al

ue
s uni

lhs

Figure 6.5: Boxplot of the star discrepancy values of the best sets found for iLHS and unif
in 2𝑑 for 𝑘 = 60 and for several values of 𝑛.

substantially between the different constructions, whereas their values are quite

similar for the best (found) size-𝑘 subsets out of the𝑛 = 140 constructions.To analyze

these values in more detail, we report in Figure 6.4 the smallest discrepancy value

𝑑∗∞(𝑃∗
𝑘
) found for any of the size-𝑘 point sets (top row, value reported as “best=”).

We then report in Figure 6.4 the relative disadvantage (𝑑∗∞(𝑃) − 𝑑∗∞(𝑃∗
𝑘
))/𝑑∗∞(𝑃∗

𝑘
)

of the discrepancy value of the original 𝑘-point constructions (columns “𝑛 = 𝑘”)

and of the best found size-𝑘 subsets (column “min”) against these best discrepancy

values. The disadvantage of the original size-𝑘 constructions against the best found

point set are quite significant for almost all constructions, with the exception of

the Fibon set, for which the advantage of the subset selection approach varies only

between 0% (for 𝑘 = 80) and 27.2% (for 𝑘 = 20). For all other constructions, we see

a substantial advantage of the subset selection approach.

Taking the uniformly sampled point sets aside, the differences between the best

size-𝑘 subsets are at most 1.1% for the case 𝑘 = 20, at most 2.7% for the case 𝑘 = 40,

etc. These values increase with increasing 𝑘 , but the plots in Figure 6.3 suggest that

a further increase in 𝑛 could reduce these differences. While the convergence itself

may not be very surprising, it is interesting to see that a relatively small increase

in 𝑛 can suffice to find small discrepancy subsets in any of the low-discrepancy

construction and in the iLHS sets. For uniformly sampled points, larger sample

size 𝑛 seems to be needed to achieve similarly small discrepancy values.

For the random point sets, the differences between the discrepancy values of the

ten independent unif constructions are larger than those of the iLHS (sub-)sets, as
can be easily seen from the examples plotted in Figure 6.5 and from the detailed

values in Tables 12.6 and 12.7.

92

Comparison of Star Discrepancy Values Section 6.5

●

●

● ● ●

●

●
● ●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

● ●

●

●

●
● ●

●

●

●

● ●

●

●

● ●
●

fau
sob

hal
rev

lhs
uni

lhs
uni

0.02

0.05

0.10

0.20

0.50

20 40 60 80 100

m=20

●

●
●

●

●

● ●
●

●

●

● ●

●

●
● ●

●

●

●

●

●

● ●
●

●

●

●

●

●

● ●
●

fau

sob

hal
rev

lhs
uni

lhs
uni

20 40 60 80 100

m=40

●

●

●

●

●
●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●fau

sob

hal
rev

lhs
uni

lhs
uni

20 40 60 80 100

m=60

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

fau

sob
hal
rev

lhs
uni
lhs
uni

20 40 60 80 100

m=80

n values

st
ar

 d
is

cr
ep

an
cy

 v
al

ue
s

Figure 6.6: Star discrepancy values for each tested combination of 𝑘 and 𝑛 in 3𝑑 . For the

two randomized constructions iLHS and unif, minimum (dashed lines) and median (solid

lines) values across the ten independent runs are shown.

6.5.2 The Three-Dimensional Case
Figure 6.6 compares the discrepancy values of the best (found) subsets of size 𝑘 ,

for all tested super-sets of size 𝑛. Exact values of the best size-𝑚 point set and

the relative disadvantages of the six considered constructions are provided on the

bottom part of Figure 6.4, whereas detailed results are available in Tables 12.8 for

the low-discrepancy sequences, 12.9 for iLHS, and 12.10 for unif, respectively.
Comparison with the 2𝑑 values. A construction that clearly stands out in the 2𝑑

case is the fibon set. This set, however, does not have a straightforward generaliza-

tion to dimensions 𝑑 > 2. It therefore does not appear in our 3𝑑 evaluations. Not

surprisingly, the discrepancy values of the 3𝑑 constructions are much worse than

that of the 2𝑑 constructions for any given 𝑘 . For 𝑘 = 20, the discrepancy of the best

3𝑑 set is 64% larger than that of the best 2𝑑 set of the same size. This disadvantage

monotonically increases with 𝑘 . It is 75% for 𝑘 = 40, 79% for 𝑘 = 60, and 101% for

𝑘 = 80.

Dependency on 𝑘 . As in the 2𝑑 case, the discrepancy values of the best found

size-𝑘 point sets decrease with increasing 𝑘 ; they are 0.1202, 0.0778, 0.0606, and

0.0547 for 𝑘 = 20, 40, 60, and 80, respectively. That is, the advantage of adding

another 20 points decreases with increasing 𝑘 . The discrepancy value of the best

original (𝑛 = 𝑘) constructions are 0.1774, 0.1066, 0.0736, 0.064 for 𝑘 = 20, 40, 60,

and 80, respectively, resulting in a relative advantage of the best size-𝑘 subsets

over the original (𝑛 = 𝑘) constructions decreasing from 32% to 27%, 18%, and 15%,

respectively.

Dependency on 𝑛. For fixed 𝑘 , the discrepancy decreases with increasing 𝑛, and

this quite significantly already for 𝑛 = 𝑘 + 20, with an average gain of 44% in

discrepancy value for 𝑘 = 20 and 𝑘 = 40, 36% for 𝑘 = 60, and 26% for 𝑘 = 80. The

93

Chapter 6 Subset Selection: Exact approaches

latter values are based on incomplete data, however, since the algorithms did not

converge in the 30 minutes time-out and therefore provided only upper bounds for

the discrepancy values of the optimal subset. Based on the same data, the median

gain in discrepancy values for 𝑘 = 20, 40, 60, and 80 is 34%, 46%, 43%, and 27%,

respectively. The values in Figure 6.4 and the curves in Figure 6.6 show that the

advantage is slightly larger when considering the best subset across all tested 𝑛

values, but – as in the 2𝑑 case – the advantage of increasing 𝑛 from 𝑘 + 20𝑖 to

𝑘 + 20(𝑖 + 1) decreases rapidly for 𝑖 > 0.

Comparison of the different constructions. Comparing the different sequences

and sets, we observe a clear disadvantage of the unif and the iLHS constructions.
Even the best found size-𝑘 (sub-)sets have a relative overhead of more than 7% for

𝑘 = 20, more than 25% for 𝑘 = 40, more than 74% for 𝑘 = 60 and more than 200%

for 𝑘 = 80. The discrepancy values of the original 𝑘-point constructions (column

𝑛 = 𝑘 in Figure 6.4) is above 200% for all settings, and it is even larger than 400% for

𝑘 = 60 and 𝑘 = 80. We recall that ten independently sampled constructions were

evaluated, and the values reported in Figure 6.4 are for the best among these ten

trials; the median and average would hence compare even more unfavorably (see

Tables 12.9 and 12.10 for details).

The differences between the four low-discrepancy sequences are quite small

for the best size-20 point set, with less than 1% difference. For 𝑘 = 40, the largest

difference between these sequences is 3.7%. For 𝑘 = 60, the Faure sequence yields
the best subset, and the best subsets of the other sequences are between 5.9% and

6.9% worse. For 𝑘 = 80, the RevHal sequence has the best subset, closely followed

by Halton. The best Sobol and Faure subsets are 10.6% and 16.6% worse. We suspect

that the differences would decrease with increasing 𝑛, but we could not verify this

assumption, since our algorithms did not converge for larger values of 𝑛.

Thus, overall, the low-discrepancy sequences show significant advantages over

the two randomized constructions, but we do not see any clear ranking of these

four tested sequences. For all point sets, the best size-𝑘 subsets have significantly

smaller discrepancy than the original constructions with 𝑘 points.

6.6 Conclusions and Future Work
We have introduced the star discrepancy subset selection problem and we have pre-

sented two different exact solvers, one based on mixed-integer linear programming

(MILP) and one based on branch and bound (BB). We compared the performances

of these solvers, and contrasted them with that of random subset sampling and a

greedy construction. For the two-dimensional case, while theMILP solver is efficient

94

The 𝐿2 Version of Subset Selection Section 6.7

for large 𝑘/𝑛 ratios, BB seems more suitable for small 𝑘/𝑛 ratios. We relate these

findings with the quality of the lower bounds. However, for the three-dimensional

case only BB is able to solve this problem, even for small 𝑛.

Comparing the optimal subsets of seven different point constructions, our key

findings are that (1) the discrepancy of the best size-𝑘 subset can be significantly

better than the original size-𝑘 construction (with the only exception of the Fibon set

with 𝑘 ≥ 80) and the main improvement stems from increasing 𝑛 from 𝑘 to 𝑘 + 20,

(2) the values of the best found subsets are very similar for all low-discrepancy

constructions, regardless of their comparatively large differences in the original

𝑘 = 𝑛 constructions; (3) unif and iLHS point sets are not competitive in 3𝑑 in terms

of discrepancy values.

Given that many computer science applications operate with a fixed budget

problem dimension 𝑑 and a fixed budget 𝑛 of points that can be evaluated, we

consider it valuable to collect point sets of small discrepancy values. Our work

shows that the subset selection approach could be an interesting alternative to

construct such point sets. In the current setting, dimension 2 and relatively few

points, it would be interesting to compare our results to other existing constructions,

such as the symmetrized Fibonacci sequences suggested in [BTY12] or generalized

Halton sequences [BW79]. Our sets could also serve both as an objective for future

optimization-based approaches, and as an extra tool to further improve sets obtained

via other methods.

The most natural next step remains to find methods of solving this problem

in higher dimensions and with more points. Given that our initial approach was

driven by low-discrepancy points sets having theoretically poorer performance in

higher dimensions, we expect even better results in that context. The next chapter

gives an example of such a heuristic approach.

6.7 The 𝑳2 Version of Subset Selection

We finish this chapter with a short description of the 𝐿2 version of this problem. The

results presented here were not published but recent progress in the construction of

good 𝐿∞ point sets by using the 𝐿2 discrepancy leads us to believe this could be useful

in the future. As mentioned in Section 4.1, the main advantage of the 𝐿2 discrepancy

is the Warnock formula, providing both simplicity and a fast calculation. For our

purposes, as for the Kritzinger sequence in Chapter 8, it also has the advantage

of clearly describing the contribution of each point. While one could link this to

95

Chapter 6 Subset Selection: Exact approaches

graph problems,
40
we will present here a reformulation as an Unconstrained Binary

Quadratic Problem (UBQP). An UBQP is formulated as

minimize 𝑦𝑇𝑄𝑦

where 𝑦 ∈ {0, 1}𝑛 and 𝑄 is an 𝑛 x 𝑛 symmetric matrix.

There are two steps in the reformulation. Firstly, since we are working with a

fixed set of points in a fixed dimension, we can ignore the 1/3𝑑 constant term in

equation (4.1). The first sum is naturally connected to terms of the shape 𝑦𝑖𝑄𝑖,𝑖𝑦𝑖 ,

whereas the double sum will need to be split between the different coefficients. For

the 𝑄𝑖,𝑖 coefficients, we have

𝑄𝑖,𝑖 :=
2
1−𝑑

𝑛

𝑑∏
𝑘=1

(1 − (𝑥 (𝑖)
𝑘
)2) + 1

𝑛

𝑑∏
𝑘=1

(1 − 𝑥
(𝑖)
𝑘
),

by taking the 𝑖-th term from the first sum in equation (4.1) and the 𝑖 = 𝑗 term in

the second. For the other 𝑄𝑖, 𝑗 coefficients, we have

2

𝑛2

𝑑∏
𝑘=1

(1 −max(𝑥 (𝑖)
𝑘
, 𝑥

(𝑗)
𝑘

))

by considering the two terms in the second sum.

When choosing 𝑦 as the binary vector such that 𝑦𝑖 = 1 if we pick the 𝑖-th

point in our subset, we obtain the desired representation of our model, up to the

constraint that we must choose exactly 𝑘 points. As described in [Koc+14], this can

be included in the objective function with a large enough penalty (i.e. any solution

that respects the constraint would have a smaller solution value than any that does

not). A constraint of the type 𝐴𝑦 = 𝑏 can be replaced by a penalty of the shape

𝑃 (𝐴𝑦 − 𝑏)𝑇 (𝐴𝑦 − 𝑏), with 𝑃 the penalty value. In our case, since we are calculating

the discrepancy value of a point set, between 0 and 1, and since 𝐴𝑦 = 𝑏 can take

only integral values, 𝑃 = 1 suffices. The 𝑃 (𝐴𝑦 − 𝑏)𝑇 (𝐴𝑦 − 𝑏) penalty can itself be

rewritten as 𝑦𝑇𝐷𝑦 + 𝑐 where 𝑐 is a constant. In our case, we want to express the

constraint that

∑𝑛
𝑖=1𝑦𝑖 = 𝑘 . This corresponds to the matrix with the first row equal

to 1 and the rest 0, while 𝑏1 = 𝑘 and 0 otherwise.

40 The contribution of a point in the sum with quadratic terms becomes a vertex weight, while the

double sum is associated to edge weights on a complete graph.

96

The 𝐿2 Version of Subset Selection Section 6.7

Overall, this gives us the following problem to solve:

minimize 𝑦𝑇𝑄𝑦,

where 𝑄 = (𝑞𝑖, 𝑗)1≤𝑖, 𝑗≤𝑛 is given by

𝑞𝑖, 𝑗 = 1 + 1

𝑛2

𝑑∏
𝑘=1

(1 −max(𝑥 (𝑖)
𝑘
, 𝑥

(𝑗)
𝑘

))

if 𝑖 ≠ 𝑗 and

1 − 2𝑘 − 2
1−𝑑

𝑛

𝑑∏
𝑘=1

(1 − (𝑥 (𝑖)
𝑘
)2) + 1

𝑛2

𝑑∏
𝑘=1

(1 − 𝑥
(𝑖)
𝑘
)

otherwise.

The survey [Koc+14] gives a review of methods to solve this type of problem.

While exact algorithms exist for a few points, it looks like heuristics such as tabu

search would be needed to tackle this problem when we have a few thousands of

points. The most interesting characteristic of this reformulation is that once the

matrix 𝑄 has been created in 𝑂 (𝑑𝑛2) time, solving the problem only depends on

𝑛 and not 𝑑 . This suggests it could be possible to tackle problems in very high

dimensions, as long as 𝑛 is in the thousands. We conclude this brief description

with two remaining questions. The first is the complexity class of the problem.

While subset selection for the 𝐿∞ star discrepancy is unsurprisingly NP-hard, like

the 𝐿∞ discrepancy calculation, we were not able to find a reduction from a known

problem to this one. The main reason is that there is a very precise structure in the

matrix coefficients, and fixing a few of them leads to choosing many of them.
41

The

second remaining question, arguably the most important, is how does this perform

in practice. Can it provide sets with better 𝐿∞ star discrepancy, by reaching much

bigger 𝑛 than the 𝐿∞ version of the problem?

41 UBQP in general is NP-hard, and we could also formulate this as an NP-hard clique problem.

The question is whether this always links to easy versions of these problems, or if we can at least

once find a difficult version.

97

7 Subset Selection: a
Heuristic Algorithm

This chapter corresponds to [CDP24], and is joint work with Carola Doerr and Luís
Paquete.

7.1 Summary of Results

As the exact methods introduced in the previous section for the 𝐿∞ star discrepancy

present clear limits when 𝑛 and 𝑑 increase, we provide in this chapter a heuristic

to solve the problem in much higher dimensions, as well as with a higher number

of points. We introduce a swap-based heuristic, which attempts to replace a point

of the chosen subset by one currently not chosen, using the box with the worst

local discrepancy to guide our swap-choice. A further brute-force check is then

used to guarantee that the final point set is a local minimum. This approach is able

to obtain point sets of much smaller discrepancy than the known constructions

for all dimensions for which the discrepancy can be reliably computed, hence

significantly improving on the range of settings that can be handled by the exact

methods presented in Chapter 6.

With different instantiations of the heuristic, we obtain point sets that are be-

tween 10 and 40% better than the initial Sobol’ set of the same size. As for the

exact methods, initial experiments show that choosing a subset of size 𝑘 close to

the initial point set size 𝑛 leads to better results, especially when the dimension 𝑑

and the target set size 𝑛 increase, which was also observed with exact methods.

We also compare our method with the energy functional introduced by Steiner-

berger [Ste19] (see Section 4.2 for the one-dimensional version), which is minimized

by gradient descent to obtain a point set with low discrepancy. His approach can

be used on any point set in any dimension but he provides results mostly for di-

mensions 2 and 3. We give a detailed comparison of his method with ours as well

as some extended testing in higher dimensions in Section 7.3.4. We show that not

only can we clearly outperform the results obtained by this approach, but also that

combining the two methods allows us to build point sets whose discrepancy is com-

petitive with that of the Sobol’ sequence. This can be done with any starting point

set, it does not require a good number-theoretic construction. We note that the sets

98

A Heuristic Approach for the Star Discrepancy Subset Selection Problem Section 7.2

obtained this way are not as good as those obtained by using subset selection on

the Sobol’ sequence.

Finally, our experiments provide numerous discrepancy values for the Sobol’

sequence for varying 𝑛 and 𝑑 . It is conjectured in [NW10] that 𝑛 = 10𝑑 points are

required to obtain a discrepancy of 0.25 in dimension 𝑑 . Our results in Section 7.3.3

show that the Sobol’ sequence seems to come close to a discrepancy of 0.2 with

𝑛 = 10𝑑 points in all tested dimensions. Furthermore, our improved sets obtained

via subset selection come closer to 𝑛 = 7𝑑 points required to reach a discrepancy of

0.25.

Section 7.2 introduces the new heuristics to solve the problem in higher di-

mensions. Section 7.3 describes our numerical evaluation and the quality of

the obtained point sets, as well as a comparison with Steinerberger’s energy

functional. Extensive numerical results and an extra proof are in Section 12.2

and Section 7.5 respectively. Our code and obtained point sets are available at

https://github.com/frclement/SDSSP_Heuristics.

7.2 A Heuristic Approach for the Star Discrepancy
Subset Selection Problem

To generalize the results of SDSSP to higher dimensions and to larger point sets,

we introduce in this section a general method and several instantiations of it. The

main working principle of this method is to keep the best subset found so far and,

at each step, to attempt replacing some of the points inside this subset with some of

the currently not chosen ones. The point set with the best discrepancy is then kept:

either the initial one or the set obtained after the swaps. In case of a tie, the initial

set is kept. For 𝑗 ∈ {1, . . . , 𝑛 − 1}, we call 𝑗-swap the simultaneous replacement of 𝑗

points inside the set with 𝑗 points outside the set.

The main idea is to keep a current subset and to improve it via well-chosen

1-swaps. During a first step, we only consider the points defining the worst local

discrepancy box as candidates to be removed from the chosen subset. That is, if

the discrepancy of the current subset 𝑃∗
is attained in 𝑞 ∈ [0, 1]𝑑 , up to 𝑑 points

𝑥 ∈ 𝑃∗ ∩ [0, 𝑞] with 𝑥𝑖 = 𝑞𝑖 for some 𝑖 ∈ {1, . . . , 𝑑} are considered to be replaced by

a point 𝑦 ∈ 𝑃 \ 𝑃∗
. If no improving 1-swap is found, we then consider all remaining

1-swaps during the second step. At any point, if an improving 1-swap is found, we

go back to the beginning of the first step with our new point set.

We note that our current choices for the heuristic are strongly influenced by

the cost of discrepancy calculations. A single run with the brute-force check can

require thousands of discrepancy calculations, each with a cost of𝑂 (𝑘𝑑/2+1) for the

99

https://github.com/frclement/SDSSP_Heuristics

Chapter 7 Subset Selection: a Heuristic Algorithm

Algorithm 2: Pseudocode of our heuristic subset selection strategy with

𝑛𝑏𝑖𝑡𝑒𝑟 restarts

Input: 𝑃 , 𝑑 , 𝑛, 𝑘 .
Let 𝑐 [0, ..., 𝑑 − 1] be the critical box table
Let 𝜋 𝑗 be an ordering of 𝑃 ∪ {1, . . . , 1} in dimension 𝑗 , for all 𝑗 ∈ {0, . . . , 𝑑 − 1}.
𝑑𝑚𝑖𝑛 = ∞, 𝑃𝑚𝑖𝑛 = ∅
for 𝑖𝑡 = 0 to 𝑛𝑏𝑖𝑡𝑒𝑟 − 1 do
Select 𝑃𝑘 randomly from 𝑃 , |𝑃𝑘 | = 𝑘

while 𝑃𝑘 is not a local minimum do
found=False

for 𝑖 = 0 to 𝑛 − 1 −min(𝑐 [0], . . . , 𝑐 [𝑑 − 1]) do
for 𝑗 = 0 to 𝑑 − 1 do
if 𝜋 𝑗 (𝑐 [𝑗]) + 𝑖 < 𝑛 then
if 𝑑∗∞(𝑃𝑘) > 𝑑∗∞(𝑃𝑘\{𝑥 (𝜋 𝑗 (𝑐 [𝑗]))} ∪ {𝑥 (𝜋 𝑗 (𝑐 [𝑗]+𝑖))}) then
𝑃𝑘 = 𝑃𝑘\{𝑥 (𝜋 𝑗 (𝑐 [𝑗]))} ∪ {𝑥 (𝜋 𝑗 (𝑐 [𝑗]+𝑖))}
Update 𝑐 [0, . . . , 𝑑 − 1], found=True
break

if found=True then
break

if found=False then
Try all remaining swaps until one improves the set or all have been

tested (𝑃𝑘 is a local minimum).

if 𝑑∗∞(𝑃𝑘) < 𝑑𝑚𝑖𝑛 then
𝑑𝑚𝑖𝑛 = 𝑑∗∞(𝑃𝑘)
𝑃𝑚𝑖𝑛 = 𝑃𝑘

Return(𝑃𝑚𝑖𝑛, 𝑑𝑚𝑖𝑛)

DEM algorithm. Choosing carefully which swap to try should be a key focus in

designing heuristics to tackle this problem. For ease of explanation, we will only

consider the case when a closed box reaches the maximal local discrepancy value,

the open box case is treated very similarly. A slightly simplified pseudo-code is

provided in Algorithm 2.

In our experiments, to compare the performance of both discrepancy calculation

methods in the context of subset selection, we will highlight which of the DEM

algorithm and TA heuristic are used in the experiments.

Initialization. Let 𝑃 ⊆ [0, 1]𝑑 with |𝑃 | = 𝑛 be the input point set and 𝑘 ≤ 𝑛 the

target size. For each coordinate 𝑖 ∈ {1, . . . , 𝑑}, let 𝜋𝑖 be the permutation ordering

100

A Heuristic Approach for the Star Discrepancy Subset Selection Problem Section 7.2

the points 𝑃∪ (1, . . . , 1) by their 𝑖-th coordinate. In other words, 𝑥
(𝜋𝑖 (1))
𝑖

≤ 𝑥
(𝜋𝑖 (2))
𝑖

≤
. . . ≤ 𝑥

(𝜋𝑖 (𝑛+1))
𝑖

= 1.

The algorithm is initialized with a randomly selected subset 𝑃1, for which the

discrepancy 𝑑∗∞(𝑃1) and the corner 𝑎 = (𝑎1, . . . , 𝑎𝑑) of the closed box 𝐵1 = [0, 𝑎]
defining this discrepancy value are computed. To improve this subset, points in

𝐵1 ∩ 𝑃1 must be replaced by points in 𝑃\(𝐵1 ∩ 𝑃1), otherwise the local discrepancy
for 𝐵1 will at best stay the same. Since the maximum local discrepancy can only

be reached for a critical box, in every dimension 𝑗 ∈ {1, . . . , 𝑑} there exists 𝑥 (𝜋 𝑗 (𝑐 𝑗))

with 𝑐 𝑗 ∈ {1, . . . , 𝑛 + 1} such that 𝑥
(𝜋 𝑗 (𝑐 𝑗))
𝑗

= 𝑎 𝑗 and 𝑥
(𝜋 𝑗 (𝑐 𝑗)) ∈ 𝐵1. These points will

be called edge points, written in the table 𝑐 [0, . . . , 𝑑 − 1] in Algorithm 2.

Step 1: Breadth-first search. A dimension 𝑗 ∈ {1, . . . , 𝑑} is picked at random

and the heuristic checks if 𝑥 (𝜋 𝑗 (𝑐 𝑗+1))
is in 𝑃1. If it is not, we compute the discrepancy

of (𝑃1\{𝑥 (𝜋 𝑗 (𝑐 𝑗))}) ∪ {𝑥 (𝜋 𝑗 (𝑐 𝑗+1))}. If this discrepancy is strictly lower than that of

𝑃1, the chosen subset is changed to 𝑃2 := (𝑃1\{𝑥 (𝜋 𝑗 (𝑐 𝑗))}) ∪ {𝑥 (𝜋 𝑗 (𝑐 𝑗+1))}. There is a
new critical box 𝐵2 returned during the discrepancy computation and we go back

to the beginning of Step 1. If 𝑑∗∞(𝑃2) ≥ 𝑑∗∞(𝑃1) or if 𝑥 (𝜋 𝑗 (𝑐 𝑗+1))
is in 𝑃1, dimension

𝑗 + 1 mod 𝑑 is then considered, where we do the same operations. This continues

until either we have found a better subset or all dimensions have been considered.

If all dimensions are checked without finding an improvement, the heuristic goes

back to the first dimension considered. It then does the same operations, but with

𝑥 (𝜋 𝑗 (𝑐 𝑗+2))
rather than 𝑥 (𝜋 𝑗 (𝑐 𝑗+1))

for all 𝑗 ∈ {1, . . . , 𝑑}. This continues until either
we find a new subset with better discrepancy or until we have tried all possible

swaps between 𝑥 (𝜋 𝑗 (𝑐 𝑗))
and 𝑥 (𝜋 𝑗 (𝑏 𝑗))

, with 𝑗 ∈ {1, . . . , 𝑑}, 𝑏 𝑗 ∈ {𝑐 𝑗 + 1, . . . , 𝑛 + 1},
and 𝑥 (𝜋 𝑗 (𝑏 𝑗)) ∉ 𝑃1. In the first case, we go back to the beginning of Step 1 with our

new point subset and new worst box.

Step 2: Brute-force check. If none of the swaps were successful, the heuristic
tries all remaining valid swaps until either a better subset is found (in which case

we go back to Step 1) or until we can guarantee that our current point set is a local

minimum. The valid swaps to check are of two types. They can either involve an

edge point: for any 𝑗 ∈ {1, . . . , 𝑑}, 𝑥 (𝜋 𝑗 (𝑐 𝑗))
is swapped with 𝑥 (𝜋 𝑗 (𝑏 𝑗))

for any 𝑏 𝑗 such

that 𝑏 𝑗 ∈ {1, . . . , 𝑐 𝑗 − 1} and 𝑥 (𝜋 𝑗 (𝑏 𝑗)) ∉ 𝑃1. Or they swap a point strictly inside the

box with one outside: 𝑥 (𝜋 𝑗 (𝑎 𝑗))
such that 𝑎 𝑗 ∈ {1, . . . , 𝑐 𝑗 − 1} and 𝑥 (𝜋 𝑗 (𝑎 𝑗)) ∈ 𝑃1 is

swapped with 𝑥 (ℎ) ∉ 𝑃1 ∪ 𝐵1 with ℎ ∈ {1, . . . , 𝑛}.

Restarts. Multiple runs of the heuristic with different starting positions are

performed, to limit the influence of the initial subset.

101

Chapter 7 Subset Selection: a Heuristic Algorithm

7.2.1 Variants of the Algorithm

Rather than the current breadth-first search, we also tried a depth-first search
where all swaps involving 𝑥 (𝜋 𝑗 (𝑐 𝑗))

for a given 𝑗 were done before moving to the

next dimension. This did not give any noticeable improvements, and we expect

our current method to perform better as it should swap points that are on average

closer, with less risk of unbalancing our subset. Efficiently finding the optimal swap

and the correct number of swaps to perform at once are both open questions.

Another possible modification of our algorithm would be to allow changes in

the current set if the new discrepancy is equal to, and not only strictly smaller,

than the current one (“plateau moves”). However, this less demanding selection

strategy results in much worse empirical performance for our settings. We attribute

this performance loss to the fact that one can keep the same discrepancy value

while breaking the structure in other areas of the point set (for example, moving

two points inside the worst box). This leads to the algorithm making the general

structure of the point set worse while not changing the overall discrepancy value

but blocking future improvements. These issues could possibly be mitigated by

considering other information for tie-breaking, but we did not experiment with

such ideas.

Non-guaranteed Optimality of Our Heuristic: While Section 7.3 will show

the algorithm’s promising performance, we note that we cannot have any theoretical

guarantee for the optimality of the returned set. As the proposition in Section 7.5

shows, it is possible to return a local optimum that is not a global optimum. While

the example shown in the proof is quite specific, such examples appear even for

low 𝑛 in dimension 2 in our experiments. An example is provided in Figure 7.1.

7.3 Experimental Study

In this section, we study the performance of our heuristic in different dimensions

and slightly different instantiations. We also consider how the performance evolves

when two of the problem’s parameters are fixed, for example 𝑑 and 𝑘 or 𝑑 and 𝑛. All

experiments are done on the Sobol’ sequence as it gave the best discrepancy values

before using subset selection. Our methods nevertheless work on any sequence or

set, they only depend on the quality of the initial set to provide good results (hence

our choice of Sobol’). Indeed, subset selection on random sets provides sets with

much better discrepancy than the initial random set, but not as good as known

low-discrepancy sets and sequences (see Section 7.3.4).

We also use our discrepancy calculations to provide more empirical evidence

102

Experimental Study Section 7.3

Figure 7.1: Two subsets for 𝑘 = 8 taken from the first 𝑛 = 10 points of the Sobol’ sequence

in dimension 2. The ten initial points are shown, with those present in both subsets shown

as blue circles. The points shown as red squares and the blue points form a local optimum

for 1-swap with discrepancy 0.234. The black triangles plus the blue points correspond

to the global optimum of discrepancy 0.203. Neither of the two sets can be improved via

1-swaps. Intuitively, replacing the lower red square by the lower black triangle would

create an overfilled box at the bottom, whereas replacing it by the upper triangle would

create an overfilled box on the left.

regarding conjectures on the inverse star discrepancy, i.e., the number of points

required in a given dimension to obtain a set of discrepancy less than a given

threshold. We show in Section 7.3.3 that 𝑛 = 10𝑑 points seem to be sufficient to

reach a discrepancy of 0.2. We conjecture that 𝑛 = 7𝑑 is a closer estimate to the

inverse star discrepancy of 0.25. Finally, we provide in Section 7.3.4 a detailed

comparison with Steinerberger’s energy functional and a potential application of

the combination of the two methods.

7.3.1 Experimental Setup
All the different parts of the code were done in C. The Sobol’ sequence generation

was done with the GNU Scientific Library, using the procedure gsl_qrng_sobol.
Whenever randomness was required (for the first chosen subset and the dimension

choice in Step 1 of the heuristics), rand() was used and initialized with srand(1).
The heuristics were implemented by us, with the exception of the two methods

for calculating the star discrepancy (DEM algorithm and TA heuristic) which were

provided to us by Magnus Wahlström and are available at [Clé+23b].

The experiments were run on a Debian/GNU Linux 11 computer, with a Quad

Core Intel Core i7-6700 processor and 32 GB RAM. gcc 10.2.1 was used with the -O3
compilation flag. Experiments were run with four types of heuristic instantiations,

103

Chapter 7 Subset Selection: a Heuristic Algorithm

either with the TA heuristic or the DEM algorithm, each with or without the brute-

force check. The instantiations will be referred to as TA_BF, TA_NBF, DEM_BF or

DEM_NBF, starting with TA if it is the TA heuristic and ending with BF if it did the

brute-force check, NBF otherwise. Discrepancy values from DEM instantiations are

exact but those from the TA ones are only lower bounds. They should nevertheless

be relatively reliable below dimension 10.

We considered points in dimensions {4, 5, 6, 8, 10, 15, 25}. Unless specified other-

wise, all ground sets are taken from the Sobol’ sequence. Initial experiments were

run for𝑛 ∈ {100, 150, 200, 250} and𝑘 ∈ {𝑛−10, 𝑛−20, 𝑛−30, 𝑛−40, 𝑛−50, 𝑛−60, 𝑛−70},
with a maximum of 10 runs for each instance. Further experiments to refine the

parameter choices or get more precise results were done with slightly different

values of 𝑛 and 𝑘 (but still of the same order of magnitude). They will be described

for the relevant results. Each heuristic experiment was given a 1 hour cutoff, with

the best value found so far returned if the heuristic had not finished by then. More

precisely, if all 10 runs could finish in one hour then the value returned is the best

of those, but for the larger instances the value returned may be the best value found

in the first unfinished run.

7.3.2 Experiment Results
We describe here our experimental results, from general tests to have a global view

on the performance of the heuristic, to finding the optimal parameters. The end of

the section includes a brief discussion on comparisons with both sets and random

subset selection.

General tests: Figures 7.2 and 7.3 show the performance of our different instan-

tiations in dimensions 3 and 6, respectively. Plots change color to highlight when

we are changing the ground set from which these points are selected (i.e., when we

increment the previous 𝑛 by 50). Whenever a heuristic was not able to terminate,

we plot the best discrepancy value obtained during the run.

Figure 7.2 shows the performance of the different instantiations compared to the

Sobol’ sequence (black) in dimension 3. DEM_BF is the best performing version of

the heuristic, with DEM_NBF outperforming it only for the two smallest instances.

For 𝑘 ≥ 70, DEM_BF improves over the Sobol’ set of the same size by between 17

and 27%. DEM_NBF is also performing better with a 14% decrease in the discrepancy

on average. However, the TA variants are struggling: TA_NBF improves the Sobol’

sequence by only 8% on average and TA_BF improves it by 2%, both being worse

than the Sobol’ set of similar size for numerous instances. In dimension 3, the

DEM algorithm is much faster than the TA heuristic which has a similar runtime

regardless of the dimension. This allows the DEM instantiations to run multiple

104

Experimental Study Section 7.3

Figure 7.2: Performance of the different instantiations in dimension 3, from left to right:

TA_BF, TA_NBF, DEM_BF and DEM_NBF. Different colors indicate a change of the initial

set size (red for 𝑛 = 100, blue for 𝑛 = 150, green for 𝑛 = 200 and yellow for 𝑛 = 250), and

the black curve corresponds to the Sobol’ sequence (it is the same in all four plots). The

plot includes the 𝑘 = 𝑛 case for all four different 𝑛, the rightmost point in this color.

Figure 7.3: Performance of the different instantiations in dimension 6, from left to right:

TA_BF, TA_NBF, DEM_BF and DEM_NBF. Different colors indicate a change of the initial

set size (red for 𝑛 = 100, blue for 𝑛 = 150, green for 𝑛 = 200 and yellow for 𝑛 = 250), and

the black curve corresponds to the Sobol’ sequence (it is the same in all four plots). The

plot includes the 𝑘 = 𝑛 case for all four different 𝑛, the rightmost point in each color.

instances within the 1 hour time limit. For example, TA_BF does not finish even

once for 𝑛 = 200 and 𝑘 = 130, whereas DEM_BF takes around 41 seconds for a

single run. For 𝑛 = 150 and 𝑘 = 80, DEM_BF finishes a run in 6 seconds, DEM_NBF

in 0.8 seconds and TA_NBF in 500 seconds.

Figure 7.3 shows that all 4 instantiations have relatively similar performances

in dimension 6, all 4 having the best performance on at least one instance. On

each instance, the best performing heuristic gives a 10 to 35% improvement on

the discrepancy of the Sobol’ sequence of the same size. Even taking the worst

performing one, with the exception of 30 points for the TA_BF heuristic, we have a

7 to 30% improvement. We note that from 𝑛 ≥ 120 and 𝑛 − 𝑘 ≥ 30 onwards, both

_BF instantiations are often (or always for DEM_BF) unable to finish a single run.

We introduced the subset selection problem largely because in higher dimensions a

smaller number of samples might not guarantee that low-discrepancy sets would

105

Chapter 7 Subset Selection: a Heuristic Algorithm

have enough points to reach the asymptotic regime. The tests in dimensions 3

and 6 show that subset selection is more effective in dimension 6, despite the

instantiations running fewer tries. For example, DEM_BF does not finish a single

run in dimension 6 but it does 10 separate runs in dimension 3. This seems to confirm

our hypothesis that subset selection will perform better in higher dimensions, for

which an exponential number of points is required to reach the asymptotic bounds.

Fixed 𝒏 or 𝒌: Given these initial results, further tests were done only on the

DEM_BF and TA_NBF instantiations. In lower dimensions, the DEM algorithm

is faster than the TA heuristic. Each heuristic run is fast enough to allow for a

brute-force check and the DEM_BF instantiation gives us the best possible subsets

with our method. It also guarantees the correctness of the discrepancy value. For

higher dimensions, both the DEM algorithm and the brute-force check become too

expensive, TA_NBF is the only reliably fast instantiation.

We now fix the dimension (here 𝑑 = 6) and the resulting point set size (𝑘 = 90)

to find the best ground set size 𝑛 to obtain higher quality point sets. In Figure 7.4,

we see that DEM_BF performs well for all different values of 𝑛, whereas TA_NBF

works better for 𝑛 − 𝑘 close to 20. The first 90 points of the Sobol’ sequence have

discrepancy 0.126, and only a single instance for TA_NBF fails to improve this value.

The best instances, for DEM_BF with 𝑛 − 𝑘 ∈ {10, 20, 30}, give a 20% improvement

over the Sobol’ sequence. These values for 𝑛 − 𝑘 are linked to our results on exact

methods in Chapter 6, where the greatest discrepancy improvements were also

observed for 𝑛 − 𝑘 = 20.

For 𝑛1 > 𝑛2 and a fixed 𝑘 , the optimal subset selection solution for 𝑛1 is better

than the one for 𝑛2. However, we observe that increasing 𝑛 is not necessarily a

good strategy for our heuristic, in particular for TA variants. We expect this to

come from a larger search space which cannot be well explored by the heuristic

and from the existence of a large number of sub-optimal local optima.

We then performed a similar experiment with fixed 𝑛 and varying 𝑘 to verify

that our results were coherent, this time in dimension 5. The results are shown

in Figure 7.5. We first note that the increase in discrepancy when 𝑘 decreases

is expected as we have smaller point sets. The heuristic performs well for all

different values of 𝑘 , with both instantiations always outperforming the Sobol’

sequence. DEM_BF improves the Sobol’ sequence discrepancy by between 12 and

33% and TA_NBF by 2 to 26%. Once again, TA_NBF performs much better when

the difference between 𝑛 and 𝑘 is small whereas DEM_BF seems to be much more

reliable for all values. The discrepancy of the point sets obtained with the heuristics

behaves less erratically than the initial Sobol’ sequence as the new point sets

avoid discrepancy spikes for specific point set sizes. The noticeable improvement

obtained by going from 200 to 195 points suggests that removing very few carefully

106

Experimental Study Section 7.3

100 120 140 160 180 200
Initial point set size n

0.100

0.105

0.110

0.115

0.120

0.125

0.130

0.135

0.140

St
ar

 d
isc

re
pa

nc
y

TA_NBF
DEM_BF
Sobol 90 points

Figure 7.4: Best discrepancy obtained for

different values of 𝑛, 𝑘 fixed to 90, and 𝑑 = 6,

with a cutoff time of 1 hour.

100 120 140 160 180 200
k

0.05

0.06

0.07

0.08

0.09

0.10

0.11

0.12

St
ar

 d
isc

re
pa

nc
y

Sobol
DEM_BF
TA_NBF

Figure 7.5: Discrepancy obtained for differ-

ent values of 𝑘 , 𝑛 fixed to 200 and 𝑑=5.

chosen points could also lead to large discrepancy improvements. While we expect

this to happen because our heuristics perform better (the search space is much

smaller), this could be a promising direction for cheaper methods of improving

low-discrepancy point sets.

Best results: Figure 7.6 gives the best values obtained by TA_NBF and DEM_BF

for 𝑘 = 𝑛 − 20 and 𝑘 = 𝑛 − 30, which should be the best conditions for our heuristic

given the previous results. We notice that there is very little difference between both

algorithms, and with 𝑘 = 𝑛 − 20 or 𝑘 = 𝑛 − 30. In all cases, our heuristic is clearly

outperforming the Sobol’ sequence, the discrepancy value for 170 points of Sobol’ is

reached at 120 or 130 points for all our point sets. Our heuristic improves the Sobol’

sequence’s discrepancy by 8 to 30% depending on the instantiation choice. For each

choice of 𝑘 and 𝑛, the worst instantation improves the discrepancy by between 8

and 25%, whereas the best performing one improves it by 15 to 30%. While the

plots here show results in dimension 6, our experiments show that our heuristic

performs well for all dimensions for which we can compute the discrepancy. We

note that results become poorer for much larger 𝑛: if 𝑛 = 500 and 𝑘 = 480, the

benefit of using subset selection becomes quite small. Section 12.2 gives a greater

set of values obtained during our experiments.

Comparison with low-discrepancy point sets: We note that subset selection

is not limited to low-discrepancy sequences but can also be used with a low-

107

Chapter 7 Subset Selection: a Heuristic Algorithm

80 100 120 140 160
Point set size

0.07

0.08

0.09

0.10

0.11

0.12

0.13

0.14

0.15

St
ar

 d
isc

re
pa

nc
y

TA_NBF k=n-20
TA_NBF k=n-30
DEM_BF k=n-20
DEM_BF k=n-30
Sobol

Figure 7.6: Best discrepancy values ob-

tained with our heuristic for 𝑑 = 6 and

k=𝑛 − 20 or 𝑘 = 𝑛 − 30

50 75 100 125 150 175 200 225
Number of points

0.06

0.08

0.10

0.12

0.14

0.16

0.18

St
ar

 d
isc

re
pa

nc
y

TA
DEM
Sobol set

Figure 7.7: Performance of the two sub-

set selection instantiations on Sobol’ sets

in dimension 6. Subset selection was done

for 𝑘 = 𝑛 − 20, 𝑛 − 30 and 𝑛 − 50 and

𝑛 ∈ {50, 100, 150, 200, 250}.

discrepancy set. One can obtain an 𝑛-point set in dimension 𝑑 + 1 from a low-

discrepancy sequence in dimension 𝑑 by taking the first 𝑛 points and adding 𝑖/𝑛
as the 𝑑 + 1-th coordinate of the 𝑖-th point (see Section 2.2.1). Figure 7.7 shows

the results obtained by using subset selection on the obtained sets in dimension 6,

starting from the Sobol’ sequence. The results are similar as those in the sequence

case: 𝑘 = 𝑛 − 20 and 𝑘 = 𝑛 − 30 give the best results, while the improvement

in the discrepancy value is up to 33%. Finally, the discrepancy values between

the set version of Sobol’ obtained with the 𝑑-dimensional sequence and the 𝑑 + 1-

dimensional sequence are quite similar. This suggests that subset selection on

sequences provides point sets better than low-discrepancy sets.

Comparison with random subset selection: Finally, we note that selecting
the best subset from a large number of random subsets does not work well. This

had been tested extensively when comparing with the exact case in Section 6.4.2,

and remains true here. We only provide some simple examples. For 𝑛 = 100 and

𝑘 = 80 in dimensions 4 and 5, 100 000 random subsets give us a best discrepancy of

respectively 0.081502 and 0.099460, roughly 10% worse than the DEM with brute

force instantiation. This becomes even worse when 𝑛 −𝑘 increases and the number

of possible subsets increases: for 𝑛 = 100 and 𝑘 = 60 in dimension 4 the best random

subset has discrepancy 0.105830, against 0.087650 with subset selection. While

these values do not seem too bad, the main cost of our algorithm is calculating

108

Experimental Study Section 7.3

Table 7.1: Number of points necessary to reach target discrepancies for subset selection

and Sobol’ in dimensions 4 and 5.

Dimension Target discrepancy Sobol’ 𝑛 Subset selection 𝑛

𝑑 = 4 0.30 15 10

0.25 17 15

0.20 28 20

0.15 45 30

0.10 89 50

0.05 201 170

𝑑 = 5 0.30 17 10

0.25 26 20

0.20 38 25

0.15 52 40

0.10 112 70

0.05 255 210

discrepancies. In our experiments, the values were obtained with between 10 000

and 20 000 discrepancy evaluations in the brute force cases and 1 000 and 2 500

evaluations without brute force: far less than the 100 000 required with random

subsets to obtain half or a third of the improvement.

7.3.3 Improvements for the Inverse Star Discrepancy

Obtaining point sets with better star discrepancy naturally leads to improvements

for the inverse star discrepancy problem mentioned in Section 2.2.2: given a dis-

crepancy target 𝜀, what is the minimal 𝑛 such that there exists a point set 𝑃 such

that |𝑃 | = 𝑛 and 𝑑∗∞(𝑃) ≤ 𝜀? Table 7.1 shows the improvement in inverse star

discrepancy by using the subset selection approach. For applications where the

evaluation of each point can take a whole day of calculations, the 12 to 46% gain is

substantial. These values were obtained by only taking results from our previous

experiments (either in figures or the tables in Section 12.2). We did not try to find

the smallest values to reach these discrepancy targets. It is likely that our results

could be further improved by a more targeted search. Adapting parameters to the

desired instance, increasing the number of runs or removing the 1-hour cutoff are

possible options to obtain better results.

109

Chapter 7 Subset Selection: a Heuristic Algorithm

We note that the star discrepancy of some known sequences may have been the-

oretically overestimated, or most likely simply never calculated. In [NW10], Open

Problem 42 lists three open questions with targets for the inverse star discrepancy,

as well as a conjecture that 𝑛 = 10𝑑 would be a sufficient number of points to reach

𝑑∗∞ = 0.25. The open questions had been solved by Hinrichs [Hin13] for the first,

and later by Doerr and de Rainville [DR13] for all three,
42
each time by building a

new point set. Our experiments on the Sobol’ sequence show that 𝑛 = 7𝑑 points

are sufficient at least for lower dimensions (smaller than 10). Figure 7.8 shows how

the discrepancy of the Sobol’ sequence evolves for specific dimensions, as well as a

comparison with our subset selection sets.

All three open problems seem to be solved by taking a few hundred points rather

than the thousands suggested, confirming de Rainville and Doerr’s results without

requiring a new set construction. For example, in dimension 15, 146 points have a

discrepancy of 0.198, in dimension 30 320 points have a discrepancy of 0.193 and

in dimension 25 1205 points have a discrepancy of 0.0996 which can then be lifted

to a 50-dimensional point set with discrepancy smaller than 0.2 using Hinrichs’

lifting procedure [Hin13]. We acknowledge that these discrepancy values may not

be exact as we used the TA heuristic to compute them. However, there is such a

large margin both in discrepancy value and number of points that we believe the

Sobol’ sequence to solve the three problems posed in [NW10].

Figure 7.9 shows the number of points of the Sobol’ sequence that are needed

to reach discrepancy less than or equal to 0.2 depending on the dimension. This

number of points should not be seen as an exact value, but as an upper-bound

(with the TA imprecision caveat). Indeed, we found this via binary search to avoid

having to compute discrepancy values for all possible 𝑛. However, since the star

discrepancy of the Sobol’ sequence is not monotonous in 𝑛 (see Figure 7.6), it is

possible we have missed better point sets. Nevertheless, we observe a linear relation

between the dimension and the number of points, close to 𝑛 = 10𝑑 . This reinforces

our impression that even the 𝑛 = 10𝑑 conjecture from [NW10] is overestimating

the number of points necessary to reach discrepancy ≤ 0.25.

7.3.4 Comparison with the Energy Functional

Section 4.2 introduced a greedy method by Steinerberger to construct a low-

discrepancy sequence in one dimension, using the Erdős-Turan inequality. He

provides its generalization in higher dimensions in [Ste19] for a point set 𝑋 =

(𝑥𝑖)𝑖∈{1,...,𝑁 }

42 With the caveat that their values could not be verified exactly because of the high dimensions.

110

Experimental Study Section 7.3

Figure 7.8: Discrepancy values obtained

for the Sobol’ sequence in different dimen-

sions, compared with the values obtained

by subset selection (dashed lines, using the

TA heuristic).

.

5 10 15 20 25 30
Dimension

50

100

150

200

250

300

n
to

 re
ac

h
0.

2
di

sc
re

pa
nc

y

Sobol
Subset selection

Figure 7.9: Number of points needed to ob-

tain a discrepancy of 0.2 in different dimen-

sions.

𝐸 [𝑋] :=
∑︁

1≤𝑚,𝑛≤𝑁
𝑚≠𝑛

𝑑∏
𝑘=1

(1 − log(2 sin(|𝑥𝑚,𝑘 − 𝑥𝑛,𝑘 |𝜋))). (7.1)

This expressionwas derived from the Erdős-Koksma-Turán inequality, equation (2.5)

introduced in Section 2.2.3, modified to allow the use of gradient descent for opti-

mization. Starting with a given point set of any kind, he applied standard gradient

descent until convergence to obtain a new point set which should be better dis-

tributed and hopefully have lower discrepancy. He provided a number of examples

in dimension 2, while underlining that specific point sets could not be improved by

his functional. We ran more extensive experiments in higher dimensions, especially

in a setting where 𝑛 is not necessarily far larger than 𝑑 . We implemented the

functional in C.

Figure 7.10 shows our results and compares the obtained point sets with the

results obtained via our subset selection approach. While the energy functional

manages to improve in most cases the discrepancy of the input point set, it is

much less effective than subset selection. In particular, it is sometimes unable to

improve the Sobol’ sequence, for example for 𝑑 = 5 and 𝑘 = 100. Subset selection is

111

Chapter 7 Subset Selection: a Heuristic Algorithm

Feuille1

abs. Δ to Sobol' abs. Δ to Sobol'

50 0.075719 22.00 % 0.092855 4.35 % 0.097075

100 0.047100 22.25 % 0.060519 0.09 % 0.060575

150 0.038961 13.10 % 0.041204 8.10 % 0.044834

50 0.097189 27.59 % 0.13805 -2.86 % 0.134218

100 0.061478 33.67 % 0.08828 4.76 % 0.092688

150 0.053195 13.84 % 0.061526 0.34 % 0.061738

50 0.118428 28.44 % 0.157522 4.81 % 0.165488

100 0.077755 35.58 % 0.128515 -6.47 % 0.120707

150 0.064438 13.97 % 0.080885 -7.99 % 0.074899

50 0.139858 37.99 % 0.210873 6.51 % 0.225548

100 0.100891 18.93 % 0.127619 -2.55 % 0.124451

150 0.079571 12.39 % 0.095112 -4.72 % 0.090827

50 0.173767 30.09 % 0.24854 0.00 % 0.248547

100 0.125779 21.78 % 0.160022 0.48 % 0.160793

150 0.095667 10.35 % 0.133886 -25.46 % 0.106714

50 0.209863 29.58 % 0.301397 -1.14 % 0.298001

100 0.146189 29.73 % 0.216883 -4.24 % 0.208052

150 0.124148 17.25 % 0.158246 -5.48 % 0.150029

Subset Selection
Dimension Set size

Energy functional
Sobol'

10

3

4

5

6

8

Page 1

Figure 7.10: Comparison of the energy functional and subset selection. The functional is

applied to the Sobol’ set of the same size, the subset selection results are taken from our

general experiments with 𝑛 − 𝑘 = 50 for DEM_BF or TA_NBF. We also show percentage

improvement of subset selection and the energy functional compared to the Sobol’ sequence.

therefore more effective than the functional at creating a new point set with lower

discrepancy.

Furthermore, the functional cannot be applied to our new point sets to obtain

better point sets. Applying the energy functional optimization to our own low-

discrepancy point sets makes them noticeably worse, removing a large part of the

initial gain of subset selection. Figure 7.11 gives the discrepancies of point sets

obtained by DEM_BF or TA_NBF (𝑛 is the nearest multiple of 50 in each line), to

which we apply the energy functional to obtain the point sets for the third column.

The Sobol’ point sets are added as a comparison point in the last column. We

observe that the functional makes the point sets noticeably worse, sometimes even

worse than the Sobol’ point set of corresponding size. This also shows that the

energy functional cannot be used as a surrogate for the discrepancy, the point sets

obtained with the energy functional approach have much lower energy than those

found by subset selection.

Impact of the ground set on the quality of the obtained point sets. Despite
this, the energy functional has one clear advantage over our method (apart from

the runtime), in that it can take any point set as starting position. While this is not

impossible for subset selection, the quality of the starting set strongly limits the

quality of the resulting set with our method. For example, Figure 7.12 compares

112

Conclusion and Future Work Section 7.4

Feuille1

abs. Δ to Sobol' abs. Δ to Sobol'

50 0.097189 27.59 % 0.116502 13.20 % 0.134218

100 0.061478 33.67 % 0.089109 3.86 % 0.092688

150 0.053195 13.84 % 0.075875 -22.90 % 0.061738

50 0.118428 28.44 % 0.15563 5.96 % 0.165488

100 0.077755 35.58 % 0.093182 22.80 % 0.120707

150 0.064438 13.97 % 0.071634 4.36 % 0.074899

50 0.139858 37.99 % 0.181417 19.57 % 0.225548

100 0.100891 18.93 % 0.109322 12.16 % 0.124451

150 0.079571 12.39 % 0.109322 -20.36 % 0.090827

50 0.173767 30.09 % 0.202708 18.44 % 0.248547

100 0.125779 21.78 % 0.156435 2.71 % 0.160793

150 0.095667 10.35 % 0.133956 -25.53 % 0.106714

50 0.209863 29.58 % 0.2843 4.60 % 0.298001

100 0.146189 29.73 % 0.216883 -4.24 % 0.208052

150 0.124148 17.25 % 0.154398 -2.91 % 0.150029

Dimension Set size
Subset Selection Energy functional

Sobol'

4

5

6

8

10

Page 1

Figure 7.11: Applying the energy functional to our subset selection point sets. These point

sets were obtained with 𝑘 = 𝑛−50, see Section 12.2. Also showing percentage improvement

of subset selection and subset selection+energy functional compared to the Sobol’ sequence

of the same size.

the effectiveness of subset selection, the energy functional and a combination of

the two on random point sets generated in Python with the random module. For

each (𝑛,𝑑) pair, 50 random instances are generated. The Sobol’ sets are added for

comparison, the energy functional should be compared to the 𝑛 points line (red)

and the two others to the 𝑛 − 20 line (blue). The sets obtained with only subset

selection are a lot worse than the low-discrepancy sets, and in the majority of cases

worse than those with only the energy functional. However, the combination of the

two methods is always at least competitive with the Sobol’ set of similar size, and

even better in the vast majority of cases. This suggests a new method of computing

low-discrepancy point sets, without requiring any knowledge of existing sequences

or number theory: starting from any random set, applying successively the energy

functional and then subset selection generates good low-discrepancy point sets. It

also shows that while the discrepancy of the point sets obtained with the energy

functional is not always as good as it could be, the point set created is regular

enough to be used as a starting point for subset selection.

7.4 Conclusion and Future Work

Building on the previous chapter on subset selection, we introduced a heuristic

that allowed us to obtain better point sets in all dimensions for which the star

113

Chapter 7 Subset Selection: a Heuristic Algorithm

Figure 7.12: A comparison of subset selection (middle in each plot), the energy functional

(left in each plot) and the combination of the two methods for random points (right in

each plot). This is done in dimensions 2 (left), 3 (middle) and 4 (right) and with an initial

𝑛 = 70 (top), 𝑛 = 120 (middle) and 𝑛 = 170 (bottom). The horizontal lines represent the

discrepancy values of the Sobol’ sets of relevant size, 𝑛 (red) and 𝑛 − 20 (blue) in each plot.

discrepancy can be computed, with on average a 20% lower discrepancy than

the initial point set. The obtained point sets were compared with known low-

discrepancy sequences as well as with an energy functional by Steinerberger. We

also provided some initial guidance on the optimal choice of parameters from the

problem, with 𝑘 = 𝑛 − 20 being a good baseline, where 𝑘 is the subset size and 𝑛

the input set size.

There are a number of open questions remaining, both on our current heuristic

and more general aspects of the problem. Firstly, we have only considered 1-swaps

so far. It is likely that heuristics would perform better with more change possibilities

at each step. Proposition 7.1 in the next section shows allowing more swaps would

not bring better theoretical guarantees and it would entail more computations, but

the heuristic would have a better capacity to explore the possible subsets. The

second step is also very expensive: determining a limited set of pairs to check

114

Complement: Heuristic Proof Section 7.5

before initiating a restart rather than testing all combinations is likely to improve

the heuristics.

Secondly, this problem has shown the limits of current algorithms to compute the

star discrepancy. They are expensive and can only give lower bounds when 𝑛 and

𝑑 get too high. Some sort of surrogate to replace the star discrepancy evaluations

would be extremely useful, as well as interesting in itself to better understand the

star discrepancy behavior. As we have shown, Steinerberger’s functional would not

be good enough for such purposes. A slightly less ambitious goal could be to find a

better upper bound for the star discrepancy. Current upper bounds can be obtained

either via Thiémard’s approach [Thi01a] or bracketing covers [Gne08], neither of

which are fast enough for our purposes. Improvements for these algorithms would

lead to more precise information on the inverse star discrepancy. Our experiments

already seem to show that known sequences perform better than expected, but

faster and more precise algorithms would help us refine these conjectures. The

promising results of 𝐿2 discrepancy in the next chapter, as well as the ease with

which we can evaluate the contribution of each point, suggests that adapting this

heuristic to the 𝐿2 discrepancy could bring interesting results.

7.5 Complement: Heuristic Proof
We conclude this chapter with an extra result, showing that any swap-based heuris-

tic for subset selection can be unable to find the global minimum under reasonable

hypotheses.

▶ Proposition 7.1. Let 𝑘-SDSSP- 𝑗 be the problem of obtaining the minimal star

discrepancy subset of size 𝑘 by only doing improving 𝑗-swaps. For every 𝑑 ≥ 2,

there exist point sets 𝑃 in dimension 𝑑 for which the 𝑘-SDSSP- 𝑗 has local minima

which are not global minima if 𝑛 ≥ 2𝑘 and 𝑗 < 𝑘 , or 𝑛 < 2𝑘 and 𝑗 < 𝑛 − 𝑘 . ◀

Proof. We first consider a base case for 𝑗 = 𝑘 − 1, 𝑑 = 2, and 𝑛 = 2𝑘 . Its extension

to all the other combinations of 𝑑 , 𝑗 , and 𝑛 will be described afterwards.

Base case: We construct a point set 𝑃 ⊆ [0, 1]2 of size 2𝑘 and let 𝑗 = 𝑘 − 1,

represented in Figure 7.13. To build 𝑃 , we first consider a very small constant

𝛼 and a set of 𝑘 + 1 points (𝑞 (𝑖)
1
, 𝑞

(𝑖)
2
) that satisfy 𝑞

(𝑖)
1
𝑞
(𝑖)
2

= 1 − 𝛼 . We assume

the indices to be sorted such that for all 𝑖 , 𝑞
(𝑖)
1

< 𝑞
(𝑖+1)
1

. We further require that

𝑞
(𝑖)
1
𝑞
(𝑖+1)
2

> 1 − 1/(2𝑘). These points are the red triangles in Figure 7.13. We then

use these 𝑘 +1 points to build the first 𝑘 points of 𝑃 , the set 𝑃𝐴 := {(𝑞 (𝑖)
1
, 𝑞

(𝑖+1)
2

) : 1 ≤
𝑖 ≤ 𝑘} = {(𝑝 (𝑖)

1
, 𝑝

(𝑖)
2
) : 𝑖 ∈ {1, . . . , 𝑘}} given by blue squares in Figure 7.13. From

115

Chapter 7 Subset Selection: a Heuristic Algorithm

Largest empty

boxes for

𝑃𝐴 and 𝑃𝐵

Top curve:

𝑥𝑦 = 1 − 𝛼

Bottom curve:

𝑥𝑦 = 1 − 1/𝑘
1

1

•

•

•

•
•

Figure 7.13: An illustration of the different points of the proof of Proposition 7.1: the 𝑞 (𝑖)

are in red, 𝑝 (𝑖)
in blue if 𝑖 < 𝑘 + 1 and green otherwise. The lower curve corresponds to

𝑥𝑦 = 1 − 1/𝑘 , the upper one to 𝑥𝑦 = 1 − 𝛼 . They are not up to scale for readability. The

red lines represent how blue points are built, whereas the blue and green boxes are the

discrepancy-defining boxes for 𝑃𝐴 and 𝑃𝐵 respectively. The 𝐿∞ star discrepancy of 𝑃𝐴 is

1 − 𝛼 while that of 𝑃𝐵 is 1 − 𝛼 − 𝛿𝑝
(2)
1

. However, it is impossible to transition from 𝑃𝐴 to 𝑃𝐵
without changing the whole set at once.

each point 𝑝 (𝑖)
in 𝑃𝐴 with 𝑖 ≥ 2, we can build a point 𝑝 (𝑘+𝑖)

, with 𝑝
(𝑘+𝑖)
1

:= 𝑝
(𝑖)
1

and

𝑝
(𝑘+𝑖)
2

:= 𝑝
(𝑖)
2

− 𝛿 , where 𝛿 is a small positive constant strictly upper-bounded by

min𝑖∈{1,...,𝑘−1} |𝑝 (𝑖)
2

− 𝑝
(𝑖+1)
2

| and such that 𝑝
(𝑘+𝑖)
1

𝑝
(𝑘+𝑖)
2

≥ 1 − 1/𝑘 . 𝑝 (𝑘+1)
is such that

𝑝
(𝑘+1)
2

= 𝑝
(1)
2

− 𝛿 and 𝑝
(𝑘+1)
1

= 𝑝
(1)
1

− 𝛾 , where 𝛾 is strictly positive smaller than 𝑝
(1)
1

and such that 𝑝
(𝑘+1)
1

𝑝
(𝑘+1)
2

≥ 1 − 1/𝑘 . The set formed by these points is defined as

𝑃𝐵 , represented by green discs in Figure 7.13.

We first note that for any subset 𝑃𝑘 of 𝑃 of size 𝑘 , the 𝐿∞ star discrepancy of 𝑃𝑘
will be given by the largest box in [0, 1]𝑑 containing no points of 𝑃𝑘 . Any open box

containing points will have local discrepancy at most 1 − 1/𝑘 (the maximal volume

minus the minimal number of points) and any closed box containing points will

have local discrepancy at most 1 − (1 − 1/𝑘) = 1/𝑘 (the maximal number of points

minus the minimal volume of a box containing a point). On the other hand, the

largest empty box will always have volume at least 1− 1/𝑘 (all the points are above

the curve 𝑥𝑦 = 1 − 1/𝑘 , see Figure 7.13) and thus local discrepancy at least 1 − 1/𝑘 .
We now show that 𝑃𝐴 is a local optimum but not a global one. First of all, 𝑃𝐴

has discrepancy exactly 1 − 𝛼 , obtained for one of the 𝑘 + 1 empty boxes whose

top-right corner is either (𝑝 (1)
1
, 1), (1, 𝑝 (𝑘)

2
) or (𝑝 (𝑖+1)

1
, 𝑝

(𝑖)
2
) for 𝑖 ∈ {1, . . . , 𝑘 − 1}. By

definition of 𝑗-swaps, we replace 𝑗 of the points inside 𝑃𝐴 by points in 𝑃𝐵 (since

116

Complement: Heuristic Proof Section 7.5

𝑃𝐴 ∪ 𝑃𝐵 = 𝑃). Let 𝑃𝐶 be our new point set, |𝑃𝐴 ∩ 𝑃𝐶 | = 1. Let 𝑝 (𝑖)
be the point in

𝑃𝐴 ∩ 𝑃𝐶 . There are now two different cases to consider:

• If 𝑝 (𝑘+𝑖)
is not in 𝑃𝐶 , then the box with upper-right corner in (𝑝 (𝑖+1)

1
, 𝑝

(𝑖)
2
) is

still empty. None of the other points could be inside since we have 𝑝
(1)
2

≥
𝑝
(𝑘+1)
2

≥ 𝑝
(2)
2

≥ . . . ≥ 𝑝
(𝑘)
2

≥ 𝑝
(2𝑘)
2

and the first coordinates are ordered in the

reverse order. The discrepancy of 𝑃𝐶 is therefore at least that of 𝑃𝐴.

• If 𝑝 (𝑘+𝑖)
is in 𝑃𝐶 , then there exists ℎ ∈ {1, . . . , 𝑘} such that 𝑝 (ℎ)

and 𝑝 (𝑘+ℎ)
are

not in 𝑃𝐶 . The box with upper-right corner in (𝑝 (ℎ+1)
1

, 𝑝
(ℎ−1)
2

) (with 𝑝 (ℎ+1)
1

= 1

if ℎ + 1 > 𝑘 and 𝑝
(ℎ−1)
2

= 1 if ℎ = 1) has to be empty. By the ordering given

above, this empty box will have a volume greater than that of 𝑝
(ℎ+1)
1

𝑝
(ℎ)
2

, the

discrepancy of 𝑃𝐴.

By the above, 𝑃𝐴 is a local minimum. However, for 𝑃𝐵 , the largest empty boxes will

have volume 𝑝
(𝑘+𝑖+1)
1

𝑝
(𝑘+𝑖)
2

for 𝑖 ∈ {1, . . . , 𝑘 − 1}. By construction 𝑝
(𝑘+𝑖+1)
1

= 𝑝
(𝑖+1)
1

and 𝑝
(𝑘+𝑖)
2

< 𝑝
(𝑖)
2
. Since the discrepancy of 𝑃𝐵 is given by the largest empty box, we

can conclude that𝑑∗∞(𝑃𝐵) < 𝑑∗∞(𝑃𝐴), 𝑃𝐴 is hence a local minimum for the 𝑘-SDSSP- 𝑗

problem, but not a global one.

Higher dimensions: Taking the same point set with 1’s added for all the

coordinates in dimensions greater than 2 gives the exact same proof.

More points 𝒏 > 2𝒌: We can add all the 𝑛 − 2𝑘 new points to the region above

the curve 𝑥𝑦 = 1 − 𝛼 . Taking any of these never reduces the volume of the largest

empty box, thus a local/global minimum in the base case is still a local/global

optimum.

Fewer swaps 𝒋 < 𝒌 − 2: A local optimum for 𝑗 = 𝑘 − 2 swaps is still a local

optimum for 𝑗 < 𝑘 − 2 swaps, the global optimum is unchanged.

Fewer points 𝒏 < 2𝒌: The same construction is no longer possible and at

least 2𝑘 − 𝑛 points have to be shared between any two sets. If 𝑗 ≥ 𝑛 − 𝑘 then

there are no local optima which are not also global optima, as any subset can be

transformed to any other in a single step. If we remove the first 2𝑘 − 𝑛 points

from 𝑃 (this is less than 𝑛, we are removing only points from 𝑃𝐴), we want the set

𝑃𝐿𝑂 := {𝑝 (𝑖)
: 𝑖 ∈ {2𝑘 − 𝑛 + 1, 3𝑘 − 𝑛}} to be a local minimum. We note that we are

keeping the numbering from the base case, i.e, the points in 𝑃 are numbered from

2𝑘 − 𝑛 + 1 to 2𝑘 . This requires us to be unable to switch all the 𝑛 − 𝑘 “unshared”

points to those in 𝑃𝐵 (note that 𝑝 (1)
and 𝑝 (𝑘+1)

no longer have a special role as 𝑝 (1)

no longer exists), therefore 𝑗 < 𝑛 − 𝑘 . The proof is then the same. ■

117

8 Greedy Sequence Constructions

The second half of this chapter is based on the preprint [Clé23]. The author is very
thankful to Stefan Steinerberger, Carola Doerr and Kathrin Klamroth for some very
interesting discussions and questions. The first half is exclusive to this thesis.

8.1 Summary of Results
This section is split into two parts, both describing greedy constructions but with

different discrepancy measures. Sections 8.2 and 8.3 describe how to add one point

to an existing set such that the 𝐿∞ star discrepancy of the new set is minimal.

While it is a relatively natural problem that would be of interest to practitioners,
43

it appears that there does not exist an algorithm for this yet. We provide two

approaches, an algorithmic one in Section 8.2 and one based on our non-linear

programming approaches from Chapter 5 in Section 8.3. Numerical experiments

in Section 8.4 using the second method show that while the methods technically

work, the point sets obtained have a higher discrepancy than expected. We believe

that greedy 𝐿∞ methods will be more relevant when adding a relatively important

number of points to a set, for example to go from 𝑛 points to 2𝑛, than when adding

a single point.

Sections 8.6 and 8.7 are an empirical study of the Kritzinger sequence introduced

in [Kri22]. Limited numerical results in [Kri22; Ste24] suggest it is of similar

discrepancy order as traditional low-discrepancy sequences. However, we still lack

theoretical results. We first describe a slightly improved algorithm to compute it

in one dimension, allowing us to push the number of points computed from the

thousands to the millions. We observe that not only does the sequence stay very

regular, but also that it appears to outperform the Fibonacci sequence, regardless

of the starting point(s). While the properties we rely on for the computation do

not hold in higher dimensions, we are still able to provide an exact algorithm to

compute it, along with heuristic approaches for higher number of points where

the exact methods no longer work. With these, we are able to compute hundreds

43 Given that sets perform theoretically better than sequences, it could be interesting to use a set at

first which would then be modified by adding a relatively small number of points if necessary.

118

Greedy Addition of Points: 𝐿∞ Approach Section 8.2

(exactly) or thousands of points (approximately) in dimension 2, and hundreds in

dimension 3. Despite the imprecision in our heuristics, the resulting sequences still

seem competitive with the Sobol’ sequence in dimension 2 and the Halton sequence

in dimension 3. Based on these results, we conjecture that greedy 𝐿2 minimization

leads to low-discrepancy sequences in higher dimensions.

8.2 Greedy Addition of Points: 𝑳∞ Approach

We begin by describing an algorithm to greedily add a point to an existing set with

respect to the 𝐿∞ star discrepancy in dimension 2. We will highlight during the

algorithm description why it cannot be easily adapted to higher dimensions. The

algorithm in dimension 1 is much simpler and will not be described in detail here.
44

The problem we are trying to solve is the following. Given a point set 𝑃 ∈
([0, 1]2)𝑛 , we want to determine

𝑥𝑛+1 := argmin

𝑦∈[0,1)2
𝑑∗∞(𝑃 ∪ {𝑦}).

This problem naturally arises when one is working with a set of low-discrepancy

points, andwants to add further points without redoing all the previous experiments.

While working with a sequence is the more natural approach, one may not know

this in advance and would like to benefit from the better regularity of sets. It is also

a simple algorithmic approach to try constructing a low-discrepancy set, as was

done to initialize our branch-and-bound approach in Chapter 6.

This section describes an algorithmic method of solving this problem, while Sec-

tion 8.3 gives an optimization approach based on the methods introduced in Chap-

ter 5.

For the algorithmic approach, when adding a new point (𝑞1, 𝑞2), we need to

consider all the boxes with top-right corner in 𝛤 (𝑃 ∪ {𝑞}) which could define the

new discrepancy value. These can be of the following types:

• [0, 𝑝) or [0, 𝑝] where 𝑞 ∉ [0, 𝑝). This is done in Section 8.2.1 via 𝑣 (𝑏).

44 Supposing the points are ordered with dummy points 0 = 𝑥 (0)
and 1 = 𝑥 (𝑛+1)

, we only need to

look at each interval [𝑥 (𝑖) , 𝑥 (𝑖+1)). Wherever we place the point in the interval, it will contain 𝑖

points if open and 𝑖 + 1 if closed, which can be solved directly. A similar dynamic programming

method as the one we will describe in this section, but only in one dimension, can easily compute

the remaining discrepancy values for the untouched intervals. There only remains to compare

which interval gives the best value.

119

Chapter 8 Greedy Sequence Constructions

• [0, 𝑝) or [0, 𝑝] where 𝑏 ∈ [0, 𝑝). This is also done in Section 8.2.1, this time

via 𝑤 (𝑏).

• [0, 𝑝) or [0, 𝑝] with 𝑝1 = 𝑞1 or 𝑝2 = 𝑞2. This is done in Section 8.2.2.

• [0, 𝑞]. This box leads to a parabolic surface and is considered at the end

of Section 8.2.2.

In both the following sections, we will be considering the decomposition of

[0, 1] based on the grid 𝛤 (𝑃). We will be working with boxes [𝑎, 𝑏) of this grid,
where 𝑎 := (𝑎1, 𝑎2) and 𝑏 := (𝑏1, 𝑏2) are such that there is no other coordinate

between 𝑎1 and 𝑏1, or between 𝑎2 and 𝑏2. In Section 8.2.1, we study how local

discrepancies change for boxes in 𝛤 (𝑃), i.e., which are not defined by the new point

added. Section 8.2.2 will then describe how to optimally add a point to a box [𝑎, 𝑏).
The solutions of both steps are then regrouped to find the optimal point to add.

8.2.1 Boxes Without the New Point

We suppose the new point will be added to a box [𝑎, 𝑏) defined by the grid of 𝛤 (𝑃).
Choosing to place a point inside this box guarantees that we will not place it in

any of the smaller boxes, and it will be inside all of the bigger boxes. This means

the discrepancy of all the other boxes will change and this needs to be taken into

account in order to be able to make the best choice between the different boxes

of the grid of 𝛤 (𝑃). For each box corner 𝑏 ∈ 𝛤 (𝑃), one can keep two values 𝑣 (𝑏)
and 𝑤 (𝑏). 𝑣 (𝑏) represents the worst discrepancy value in boxes of 𝛤 (𝑃) that do not
dominate 𝑏 if the point is placed in the box [𝑏, 1]. Similarly, 𝑤 (𝑏) represents the
worst discrepancy value in boxes dominating 𝑏 if the point is placed in [0, 𝑏]. All
other boxes in the new grid 𝛤 (𝑃 ∪ {𝑞}) are either examined in the next step or do

not need to be examined as they are not critical.

Let us write 𝛤 (𝑃) := 𝑋 ×𝑌 , where 𝑋 := {𝑥1, . . . , 𝑥𝑛, 1 : 𝑥1 ≤ 𝑥2 . . . ≤ 𝑥𝑛 < 1} and
𝑌 := {𝑦1, . . . , 𝑦𝑛, 1 : 𝑦1 ≤ 𝑦2 . . . ≤ 𝑦𝑛 < 1}. Barring edge cases where one of the

terms will be missing (one can set them to 0 if undefined), we have

𝑤 (𝑥𝑖, 𝑦 𝑗) = max

(
𝑤 (𝑥𝑖+1, 𝑦 𝑗), 𝑤(𝑥𝑖, 𝑦 𝑗+1), 𝛿

(
(𝑥𝑖, 𝑦 𝑗), 𝑃 ∪ {(0, 0)}

)
, (8.1)

𝛿
(
(𝑥𝑖, 𝑦 𝑗), 𝑃 ∪ {(0, 0)}

))
.

In other words, the worst discrepancy value in boxes dominating (𝑥𝑖, 𝑦 𝑗) is either
reached in the box itself or by a box dominating either (𝑥𝑖+1, 𝑦 𝑗) or (𝑥𝑖, 𝑦 𝑗+1). 𝑃 ∪

120

Greedy Addition of Points: 𝐿∞ Approach Section 8.2

{(0, 0)} represents the fact that the box
[
(0, 0), (𝑥𝑖, 𝑦 𝑗)

)
will always

45
contain the

new point, wherever we actually choose it to be. This can be solved with a simple

dynamic programming algorithm, with the base case being for 𝑥𝑖 = 𝑦 𝑗 = 1.

One will notice that we can introduce 𝑤 (𝑏) as the worst discrepancy value in

boxes dominated by 𝑏 if the point is placed in [𝑏, 1]. With a symmetric dynamic

programming method,
46
we can solve𝑤 (𝑏) over the whole grid. It suffices to notice

that 𝑣 (𝑎) = max(𝑤 (𝑎1, 1), 𝑤 (1, 𝑎2)) to compute 𝑣 (𝑎) over the grid. Both the dynamic

programming algorithms are in 𝑂 (𝑛2), although they cannot be done at the same

time.

8.2.2 Optimal Placement Inside a Box of 𝜞 (𝑷)

We now consider the problem of optimally placing a point inside a single half-open

box of the grid associated with 𝛤 (𝑃), [𝑎, 𝑏) where 𝑎 := (𝑎1, 𝑎2) and 𝑏 := (𝑏1, 𝑏2).
For any such box [𝑎, 𝑏), the number of points contained inside [0, 𝑞) is the same

regardless of the choice of 𝑎 ≤ 𝑞 < 𝑏. Optimally placing a point inside this box

requires to consider only the critical boxes using a coordinate of 𝑞 (i.e., a box of the

shape [0, 𝑝) or [0, 𝑝], where 𝑝1 = 𝑞1 or 𝑝2 = 𝑞2) and the closed box [0, 𝑞]. Indeed,
for all the other boxes, regardless of the choice of 𝑞, the boxes will contain a fixed

number of points and therefore their local discrepancies were computed in the

previous step (see Section 8.2.1).

We first consider the boxes [0, 𝑝) or [0, 𝑝] where 𝑝1 = 𝑞1. A toy example is

provided in Figure 8.1.

For the closed boxes, each of them defines a local discrepancy equation of the

shape 𝑦 = 𝑁𝑖 − 𝑞1𝑐2,𝑖 where 𝑁𝑖 is the number of points inside [(0, 0), (𝑞1, 𝑐2,𝑖)], 𝑐2,𝑖
is the second coordinate of another point in the set and 𝑦 the discrepancy value,

function of 𝑞1. We only consider critical boxes above our current box (see Figure 3.2

and the definition of critical boxes, and Figure 8.1 for an example). Let us call

𝑐2,1, . . . , 𝑐2,𝑘 the coefficients for the different equations, corresponding to the second

coordinates of the other points. On the interval [𝑎1, 𝑏1), we want to find the highest
discrepancy value given by any of these equations.

47
In other words, we are looking

45 This would be incorrect in the specific case that the optimal point inside the box shares a

coordinate with 𝑏, i.e. when we solve the previous problem in [𝑎, 𝑏) and not [𝑎, 𝑏 − 𝜀). If we
ignore the issue with the imprecise line equations mentioned in the next subsection, the last term

in Equation (8.1) should be 𝛿
(
(𝑥𝑖 , 𝑦 𝑗), 𝑃

)
. This does not present any extra technical difficulties.

46 The base case is now in (0, 0), rather than 𝑖 + 1 it is 𝑖 − 1, etc...

47 There is a technical difficulty with the open interval due to computer finite precision. In our

case, it is more convenient to accept a discretization step, i.e. we are working in [𝑎1, 𝑏1 − 𝜀],
than obtaining a supremum. This supremum could indeed lead to an incorrect point count in

121

Chapter 8 Greedy Sequence Constructions

Figure 8.1: On the left, we have the grid 𝛤 (𝑃) associated to a point set with three points

(black circles). We want to place a point in the second box in the lowest row. This new point

will define new critical boxes at the intersection with all the grid lines above it. Each of the

coloured line segments leads to two line equations, represented on the right. The decreasing

lines correspond to the open boxes, and the increasing ones to the closed boxes. We want

to find the upper convex hull of these lines on the interval [0.2, 0.6]. This is represented by

the thicker lines. The lowest discrepancy value that can be obtained depending on 𝑥 is the

lowest point on these thicker lines, here 𝑥 = 5/12. One would need to do a similar process

with the grid lines to the right, then compare with the parabolic surface associated with the

closed box [0, 𝑞], where 𝑞 is the new point, to finally obtain the optimal choice in the box.

for the upper convex hull of a line arrangement of decreasing lines. We also have

an extra advantage in that we know in advance the 𝑐2,𝑖 values and their ordering.

This is a classical problem, solved in [Ata86]. We give a description of the method

as we are in a particularly simple case where the complexity is linear in the number

of lines.

We start with an empty list of intersections𝑀 .
48

The line with steepest slope is

the highest one at −∞, we can then find its intersection point with the line with

the second steepest slope. If this intersection point is above 𝑏1, it can be forgotten,

otherwise we update our list of intersections. All lines from the steepest to the

the equations as we could count a point with a coordinate equal to 𝑏1 or 𝑏2, and is in any case

considered in another box.

48 We will store the successive equations forming the convex hull as well as the intersection points.

For ease of reading, we will refer only to this as the list of intersections. There is no extra cost in

obtaining the information required to maintain both at the same time.

122

Greedy Addition of Points: 𝐿∞ Approach Section 8.2

flattest are considered in this manner. At each step, we find the intersection with

the last line to be part of the intersection list𝑀 .
49

If this intersection is before the

previous intersection in our list, we forget the last line in𝑀 and re-do this step. If it

is after and below 𝑏1, we add it in the list. Since each intersection comparison leads

to either an addition of a line to 𝑀 or the definitive removal of one, there are at

most 2𝑘 such steps, leading to an 𝑂 (𝑘) complexity, itself in 𝑂 (𝑛).
One can notice that for the open boxes [0, 𝑝), we will have the same problem, on

the same interval, but with a set of increasing lines. One can therefore solve this

with a similar complexity. We now need to find the upper convex hull of the union

of these two sets of line arrangements. Since one consists of increasing lines and

the other of decreasing lines on the same interval and both are sorted, we simply

need to go through the intersection points from 𝑎1 to 𝑏1 until one of the increasing

lines gives a higher discrepancy value than the decreasing lines. We then use the

equations for the two locally dominant lines to find the exact intersection point.

By keeping the beginning of the list for the decreasing lines up to that intersection

point and the end of the list of increasing lines after that intersection point, we

have access to the exact discrepancy value over the interval [𝑎1, 𝑏1) depending on

𝑞1, as well as which box gives this value (and the associated line equation), and

where the boxes change.

This method gives us the list𝑀1 of intersection points and associated segments

that define the discrepancy value over [𝑎1, 𝑏1). Similarly, we can obtain the list

𝑀2 for [𝑎2, 𝑏2). For each box in the grid defined by 𝑀1 × 𝑀2, there remains to

merge the results and find which equation locally defines the discrepancy. One

should also not forget to include the discrepancy for the box [0, 𝑞]. Overall, we
need to compare the planes containing the segments found previously and that

are constant in 𝑦 for 𝑀1 (respectively 𝑥 for 𝑀2), as well as the parabolic surface

defined by 𝑧 = 𝑥𝑦 − 𝑁𝑎 where 𝑁𝑎 is the number of points in [0, 𝑎]. Since we have
all the necessary equations, this can be done in constant time for each box of the

grid𝑀1 ×𝑀2.
50
Overall, this step is in 𝑂 (𝑛2) time as there are 𝑂 (𝑛2) elements in

𝑀1 ×𝑀2 to examine. This enables us to find 𝑢 (𝑎, 𝑏), the best discrepancy value that

can be obtained when placing a point in [𝑎, 𝑏) for boxes defined by this point, as

well as the associated point 𝑞.

There only remains to regroup the two steps. When adding a point to a box

[𝑎, 𝑏), the local discrepancy of the critical boxes will either appear in 𝑣 (𝑎), 𝑤 (𝑏)

49 One can do this in constant time with a stack.

50 For the parabolic surface one could first find the minimal point with the two planes and verify if it

is indeed above the parabolic surface to avoid having to compute the equation of the intersection.

123

Chapter 8 Greedy Sequence Constructions

or 𝑢 (𝑎, 𝑏). In other words, the optimal point to add is exactly the point associated

with the following minimum

min

(𝑎,𝑏)∈𝛤 (𝑃)
max(𝑣 (𝑎), 𝑤(𝑏), 𝑢 (𝑎, 𝑏)).

In the worst case, this takes 𝑂 (𝑛4) time as there are 𝑂 (𝑛2) such boxes [𝑎, 𝑏).
However, in practice, one can bound 𝑢 (𝑎, 𝑏) for all the different [𝑎, 𝑏) by lower-

bounding the discrepancies that can be obtained when adding a point in any box

[0, 𝑝) or [0, 𝑝]. To give an example, for 𝑞 ∈ [𝑎, 𝑏), any open box

[
0, (𝑞1, 𝑐2,𝑖)

)
will

contain as many points as [0, (𝑎1, 𝑐2,𝑖)] and a larger volume. By passing over all

boxes of 𝛤 (𝑃), both open and closed, one can obtain bounds for all boxes [𝑎, 𝑏) in
𝑂 (𝑛2) time. Both these bounds and the 𝑣 (𝑎) and 𝑤 (𝑏) values can therefore allow

us to avoid having to compute 𝑢 (𝑎, 𝑏) in every box.

Finally, there are a number of tricks to further improve the complexity in practice.

Firstly, a lot of the lines in the line arrangements will be in common for the same

row/column of the grid. With an extra memory cost, one can compute all the line

arrangements for the open boxes for a given row/column at once, and similarly for

closed boxes. There will still be the merge step in any case. We also expect that for

a large majority of boxes the parabolic surface is always either below or above the

line arrangement’s convex hull, and no computations are required in the second

case. This should be the case in particular for slightly unbalanced sets, for example

those where an overfilled box of the old set will still be the worst box of the new

set even if the new point is placed outside. Finally, if we have multiple boxes with

the same point count, only one of these can appear in the convex hull. This further

decreases the potential size of 𝑀1 ×𝑀2. Overall, using the previous bounds and

these technical comments, we expect the complexity to be a lot smaller than 𝑂 (𝑛4)
in practice (𝛺 (𝑛2) is certain).

8.3 An Optimization Perspective

Greedily computing the optimal point for the 𝐿2 star discrepancy can also be seen

as a variant of our optimization models introduced in Section 5.2. Indeed, we can

consider that we are trying to optimize the placement of a set of 𝑛 + 1 points, while

fixing the variables associated to 𝑛 of these points.
51

This can be done in both

models, but we will only present the continuous version. The only aspect one

should be careful with is the ordering: we can no longer suppose all the points are

51 Clearly, this can be generalized to adding 𝑗 points to an existing set for any 𝑗 > 0.

124

An Optimization Perspective Section 8.3

sorted in the first dimension since we do not know where our 𝑛 + 1-th point will be

relative to the 𝑛 fixed points. The reasoning behind the constraints is generally the

same as in model (5.5), and we refer the reader to Section 5.2.2.

We define 𝑟𝑖, 𝑗 the binary variable equal to 1 if and only if the new point

(𝑥2𝑛+3, 𝑥2𝑛+4) is dominated in the first variable by 𝑥 (𝑖)
(this dominance relation

is itself defined by variable 𝑣𝑖) and in the second by 𝑥 (𝑗)
(similarly defined by vari-

able 𝑤 𝑗). Given a fixed set 𝑃 := {𝑥 (𝑖)
: 𝑖 ∈ {1, . . . , 𝑛}}, we obtain the following

model.

min 𝑓

s.t.

1

𝑛

(
𝑟𝑖, 𝑗 +

𝑖∑︁
𝑢=1

𝑦𝑢 𝑗

)
− 𝑥2𝑖−1𝑥2 𝑗 ≤ 𝑓 +(1−𝑦𝑖 𝑗) ∀𝑖, 𝑗 = 1, . . . , 𝑛, 𝑗 ≤ 𝑖

(8.2a)

−1
𝑛

(
𝑟𝑖, 𝑗 +

𝑖−1∑︁
𝑢=0

𝑦𝑢 𝑗 −1
)
+ 𝑥2𝑖−1𝑥2 𝑗 ≤ 𝑓 +(1−𝑦𝑖 𝑗) ∀𝑖 = 1, . . . , 𝑛+1, 𝑗 < 𝑖

(8.2b)

1

𝑛

(
1 +

𝑖∑︁
𝑢=1

(1 −𝑤𝑢)
)
− 𝑥2𝑖−1𝑥2𝑛+4 ≤ 𝑓 +𝑤𝑖+(1 − 𝑣𝑖) ∀𝑖 = 1, . . . , 𝑛 + 1 (8.2c)

−1
𝑛

(
𝑖−1∑︁
𝑢=1

(1 −𝑤𝑢)
)
− 𝑥2𝑖−1𝑥2𝑛+4 ≤ 𝑓 +𝑤𝑖+(1 − 𝑣𝑖) ∀𝑖 = 1, . . . , 𝑛 + 1 (8.2d)

1

𝑛

(
1 +

𝑛∑︁
𝑢=1

𝑦𝑢 𝑗 (1 − 𝑣𝑢)
)
+ 𝑥2𝑛+3𝑥2 𝑗 ≤ 𝑓 +𝑣 𝑗+(1 −𝑤 𝑗) ∀𝑗 = 1, . . . , 𝑛+1 (8.2e)

−1
𝑛

(
𝑛∑︁

𝑢=1

𝑦𝑢 𝑗 (1 − 𝑣𝑢) −1
)
+ 𝑥2𝑛+3𝑥2 𝑗 ≤ 𝑓 +𝑣 𝑗 ∀𝑗 = 1, . . . , 𝑛+1 (8.2f)

−1
𝑛

(
𝑛∑︁

𝑢=1

(1 − 𝑟𝑢,𝑢)
)
+ 𝑥2𝑛+3𝑥2𝑛+4 ≤ 𝑓 (8.2g)

𝑥2 𝑗 − 𝑥2𝑖 ≥ 𝑦𝑖 𝑗 − 1 + 𝜀 ∀𝑖, 𝑗 = 1, . . . , 𝑛, 𝑖 < 𝑗

(8.2h)

𝑥2 𝑗 − 𝑥2𝑖 ≤ 𝑦𝑖 𝑗 ∀𝑖, 𝑗 = 1, . . . , 𝑛, 𝑖 < 𝑗

(8.2i)

125

Chapter 8 Greedy Sequence Constructions

𝑦𝑖 𝑗 = 1 − 𝑦 𝑗𝑖 ∀𝑖, 𝑗 = 1, . . . , 𝑛, 𝑖 > 𝑗

(8.2j)

𝑦𝑖𝑖 = 1 ∀𝑖 = 1, . . . , 𝑛 (8.2k)

𝑥2𝑛+4 − 𝑥2𝑖 ≥ 𝑤𝑖 − 1 + 𝜀 ∀𝑖,= 1, . . . , 𝑛, 𝑖 (8.2l)

𝑥2𝑛+4 − 𝑥2𝑖 ≤ 𝑤𝑖 + 𝜀 ∀𝑖 = 1, . . . , 𝑛, 𝑖 (8.2m)

𝑥2𝑛+3 − 𝑥2𝑖−1 ≥ 𝑣𝑖 − 1 + 𝜀 ∀𝑖,= 1, . . . , 𝑛, 𝑖 (8.2n)

𝑥2𝑛+3 − 𝑥2𝑖−1 ≤ 𝑣𝑖 + 𝜀 ∀𝑖 = 1, . . . , 𝑛, 𝑖 (8.2o)

𝑟𝑖, 𝑗 ≥ 𝑣𝑖 +𝑤 𝑗 − 1 ∀𝑖, 𝑗 = 1, . . . , 𝑛 (8.2p)

𝑟𝑖, 𝑗 ≤ 𝑣𝑖 ∀𝑖, 𝑗 = 1, . . . , 𝑛 (8.2q)

𝑟𝑖, 𝑗 ≤ 𝑤 𝑗 ∀𝑖, 𝑗 = 1, . . . , 𝑛 (8.2r)

𝑥0 = 𝑥2𝑛+1 = 1

𝑦0 𝑗 = 0 ∀𝑗 = 1, . . . , 𝑛

𝑦 𝑗0 = 𝑦(𝑛+1), 𝑗 = 1 ∀𝑗 = 0, . . . , 𝑛

𝑥𝑖 = 𝑥
((1+𝑖)/2)
1

∀𝑖 = 1, 3, . . . , 2𝑛 − 1

𝑥𝑖 = 𝑥
(𝑖/2)
2

∀𝑖 = 2, 4, . . . , 2𝑛

𝑦𝑖 𝑗 , 𝑟𝑖, 𝑗 , 𝑣𝑖, 𝑤 𝑗 ∈ {0, 1} ∀𝑖, 𝑗 = 1, . . . , 𝑛

𝑓 ≥ 0.

Apart from the equations defining the 𝑣,𝑤 and 𝑟 variables, we also need to modify

all the local discrepancy constraints. Indeed, for the boxes defined by the old points,

equations (8.2a) and (8.2b), we also need to check if the new point is in the box or

not. This is directly known with variable 𝑟𝑖, 𝑗 . The boxes defined on one side by the

new point lead to equations (8.2c), (8.2d), (8.2e) and (8.2f). For these, we know if

the box is critical by looking at 𝑤 𝑗 and 𝑣 𝑗 , or 𝑣𝑖 and 𝑤𝑖 . The point count is adapted

using both the sorting of the initial points and our new variables. We also instantly

know if the new point will be inside by the criticality check on the right-hand side:

if the box is critical, the point is inside the closed box, and not in the other cases.

Finally, equation (8.2g) counts the number of points inside the closed box defined

by the coordinates of the new point.

8.4 Experimental Results
While we are able to solve this problem for much higher 𝑛 than in Chapter 5, the

usefulness of this method remains uncertain. Indeed, repetitively adding a point to

the same set, for example to go from 8 to 16 points, gives a relatively poor set. Even

126

Experimental Results Section 8.4

worse, starting from a single point in (0.5, 0.5), as we will do for the Kritzinger

sequence in the next step, can potentially lead to a very bad set. Table 8.1 describes

the next point added by the solver and the new discrepancy value for the resulting

set. Figure 8.2 plots the discrepancy of the new set if one adds a point in any

position at each of the four steps given in Table 8.1. It is obvious that one does not

want points to be so close to each other, yet the chosen points are in the correct

zone. This highlights the need for extra criteria when choosing where the next

point should go. We stress that greedy 𝐿∞ constructions are not systematically bad,

but that more work is necessary to use them well than for greedy 𝐿2 constructions

(see Section 8.6 and Section 8.7.2).

Table 8.1: Successive discrepancy values obtained when adding a point starting with the

set (0.5, 0.5). All the points added by the solver are at the edge of the optimal zone but

remain correct.

New point (0.9999,0.5) (0.0,0.5) (0.5,0.5) (0.6,0.5)

Discrepancy 0.5 0.5 0.5 0.5

Figure 8.2: Each plot describes the new discrepancy value of the set that would be obtained

if we added a point in any position. The four images from left to right correspond to four

successive steps of the greedy approach starting with a single point. The points appear in

red, always on the 𝑦 = 0.5 line. Two points are in (0.5, 0.5) in the last image. The next point

is always picked in the darkest zone, while for the third image any point picked would lead

to the same discrepancy value.
52

It would be possible to add an infinite number of points

on the line 𝑦 = 0.5. Indeed, adding a point above means there remains an empty box of

volume 0.5 and below means there is a closed box of volume 0.5 containing all the points.

While this is a worst-case example, starting with a good set does not lead to

much better results. Table 8.2 shows the discrepancy values obtained when starting

from our optimal point set of size 8. While some choices can be good (twelve to

52 The imprecision comes from our minimal distance between two points in the mathematical

programming formulation, and from the discretized calculation when plotting in Python.

127

Chapter 8 Greedy Sequence Constructions

thirteen points), the overall value seems relatively stable. More importantly, it is

much higher than the initial set which had a discrepancy of 0.1328.

Table 8.2: Successive discrepancy values obtained by greedily adding one point from the

8-point optimal set. This set had a discrepancy of 0.1328.

𝑛 9 10 11 12 13 14 15 16

𝑑∗∞(𝑃) 0.1745 0.2078 0.1927 0.2078 0.1577 0.1602 0.1745 0.1893

In a similar way, successively adding then removing one point from a given set

in the hope of improving the discrepancy of the set gives generally poor results

(the same toy-example starting with (0.5, 0.5) applies again).53 One of the reasons
is that there is no single optimal point to add in the majority of cases, if we only

consider the 𝐿∞ star discrepancy of the resulting set. Indeed, as long as the worst

box keeps the same discrepancy value, we can make many other boxes worse while

not changing the overall value. This lack of global knowledge makes the method

relatively poor. Adding penalties in the objective function, for example when

placing a point too close to another, could prove to be an acceptable correction.

Another possible method to improve the results of the greedy 𝐿∞ approach could

be to addmultiple points at the same time and not just one. This can be done with a

very similar model as model (8.2): rather than adding a single point associated with

variables 𝑥2𝑛+1 and 𝑥2𝑛+2, we will add𝑚 points associated with variables 𝑥2𝑛+1 to
𝑥2𝑛+2𝑚 . All the binary variables can naturally be extended, as well as the definitions

of the constraints. With this extended model, we are able to add up to around 8

points at a time to an existing set. Unsurprisingly, the results are much better than

when adding step by step, as shown in Figure 8.3. From a runtime perspective, while

it is still much faster than solving the entire model for 16 points, we are limited in

how many points at once we can add. Based on some experiments on Gurobi on a

laptop, eight seems to be the limit. Should one want to run this multiple times in a

row to build a bigger set, four or six extra points might a better choice than higher

𝑚.
54

Overall, while greedy 𝐿∞ constructions perform badly, there is still hope in their

53 A very natural family of poor examples is those of point sets with one clearly worse box, for

example with too many points. Any point outside this region will be optimal, including those

that could be very close to existing points. This is what happens with the sets taken from the

Sobol’ sequence and its overfilled boxes as shown in Figure 1.1. The new point is placed in the

top-right corner, often on an existing point, greatly limiting the improvement potential.

54 Preliminary experiments where we add extra constraints limiting the search space have given

good results and run much faster, for example by imposing that our new points alternate

coordinate-wise with our old points. They do not have the same optimality guarantee however.

128

The Kritzinger Sequence: Summary of Results Section 8.5

Figure 8.3: One of the optimal 16 points sets, with the constraint that it must contain the

8 red points. The 8 yellow points are those added. The discrepancy is much closer to the

optimal one, 0.0739, than when adding one by one as in Table 8.2.

use with adapted algorithms. Adding multiple points at once is a possibility to limit

the numerous possibilities available when picking a single point and, more impor-

tantly, adding secondary objectives or constraints to enforce additional geometric

properties seems promising. Choosing these objectives well, in particular with the

aim of repeating multiple times the greedy step, remains an open question.
55

8.5 The Kritzinger Sequence: Summary of Results
We now turn our attention to the more promising greedy approach, the construction

of the Kritzinger sequence as introduced in Section 4.3. In other words, rather

than greedily adding the optimal point with respect to the 𝐿∞ star discrepancy,

we add the optimal point with respect to the 𝐿2 star discrepancy. The numerical

experiments in [Kri22; Ste24] are limited to a few thousand points in dimension 1,

55 Initial experiments with a secondary objective maximizing the minimal distance between points

or between coordinates of different points are promising. This could simply be because they

avoid the solver issue of bringing points close together when there is freedom of choice. In any

case, these simple objectives avoid the biggest pitfalls highlighted previously.

129

Chapter 8 Greedy Sequence Constructions

a little bit above 1500 based on plots in [Kri22; Ste24], and no construction methods

are provided for higher dimensions. We introduce in the next sections a better

algorithm to compute sequences of up to a few millions of points in dimension 1

(Section 8.6). We also provide a set of numerical methods to construct, exactly or

approximately, the Kritzinger sequence in dimensions 2 and 3 (Section 8.7).

In dimension 1, we obtain much stronger evidence that the 𝐿∞ star discrepancy

of the sequence is of order 𝑂 (log(𝑛)/𝑛). In dimensions 2 and 3, we show that we

can build a large number of approximate sequences that can rival low-discrepancy

sequences, strengthening the conjecture that the discrepancy of the Kritzinger

sequence in dimension 𝑑 is 𝑂 (log𝑑 (𝑛)/𝑛). Extending observations made in [Ste19],

we also show in Section 8.6.2 that the Kritzinger sequence can be initialized with a

very bad set of points and still rival the Fibonacci sequence.
56

Our code as well as

the points generated are available at [Clé].

8.6 Competitiveness of the Kritzinger Sequence in
Dimension 1

8.6.1 Generating More Points
As mentioned in the general setting in Section 4.3, in one dimension, after scaling

by 𝑛 + 1, the function we want to minimize is

𝐹 (𝑦, 𝑃) = −(𝑛 + 1) (1 − 𝑦2) + (1 − 𝑦) + 2

∑︁
𝑥∈𝑃

(1 −max(𝑥,𝑦)) .

If we consider 𝑥1, . . . , 𝑥𝑛 to be the ordered points of 𝑃 , 𝐹 (𝑦, 𝑃) is a second order

polynomial on each [𝑥𝑖, 𝑥𝑖+1] interval (where 𝑥0 = 0 and 𝑥𝑛+1 = 1 are added as

dummy points). More specifically, for the interval [𝑥𝑖, 𝑥𝑖+1], we have 𝐹𝑖 (𝑦, 𝑃) :=
(𝑛 + 1)𝑦2 − 𝐴𝑖𝑦 + 𝐵𝑖 , where 𝐴𝑖 = 2𝑖 + 1 and 𝐵𝑖 is a constant. The minima of such

polynomials will be reached only for 𝑦 = (2𝑖 + 1)/(2(𝑛 + 1)), where 𝑖 ∈ {0, . . . , 𝑛}
[Kri22, Theorem 2]. It is therefore only necessary to check these (𝑛 + 1) candidates
to find the global minimum. While the minimum may not be unique, there will be

no large zone of points all reaching this minimal value, but only a few localized

points (a single one in the majority of cases).

56 This was also emphasized by Stefan Steinerberger during his presentation in the Dagstuhl seminar

23351, as well as during subsequent discussions. We thank him for the help and encouragement

provided for this work.

130

Competitiveness of the Kritzinger Sequence in Dimension 1 Section 8.6

Importantly, we can derive the expression of 𝐹𝑖−1 from that of 𝐹𝑖 . Indeed, 𝐹𝑖−1
differs from 𝐹𝑖 only for the term involving 𝑥𝑖 which became 1− 𝑥𝑖 rather than 1−𝑦.

We obtain 𝐴𝑖−1 = 𝐴𝑖 − 2 and 𝐵𝑖−1 = 𝐵𝑖 − 2𝑥𝑖 . Since the last polynomial is known,

given by 𝐹𝑛 (𝑦, 𝑃) = (𝑛 + 1)𝑦2 − (2𝑛 + 1)𝑦 + 𝑛, each polynomial and its solution can

be found in constant time. Since there are 𝑂 (𝑘) such polynomials for the addition

of the 𝑘-th point, this gives an 𝑂 (𝑛2) runtime for the greedy construction of the

first 𝑛 points of a Kritzinger sequence. We remark that keeping the points sorted

can be done in constant time, this has no impact on the overall complexity.

We note that this is theoretically better than Remark 2 from [Kri22], which says

that if an interval [ℓ/𝑛, (ℓ + 1)/𝑛] already contains a point then it will not contain

the next point. Indeed, checking if each interval already contains a point takes

constant time, with an extra linear time to compute the local solution. If there

are multiple empty intervals, this will take more time. We can combine the two

together but the gains are negligible.

Using this method, we provide the first million points of the Kritzinger sequence

in Figure 8.4. We compare them with one of the best traditional low-discrepancy

sequences, the Fibonacci sequence.
57

We also include the upper bound on the best

asymptotic constant by Ostromoukhov [Ost09] in the plots. The sequence that gives

this constant is compared to the Kritzinger sequence on the right in Figure 8.4. While

the Ostromoukhov sequence performs much better for very specific values, the

Kritzinger sequence outperforms the Ostromoukhov sequence in the vast majority

of cases.

Figure 8.4 shows that the Kritzinger sequence is competitive with, if not on

average better than, the golden ratio Kronecker sequence for the first 1 000 000

points, with a discrepancy value computed every 1 000 points. Plots with one-point

steps in Figure 8.5 show that the spikes in the Kritzinger sequence’s discrepancy

values are extremely localized. We note that the big spikes represent only one or
two successive subpar point choices out of thousands of points. Figure 8.6 describes
the proportion of instances for which the golden ratio Kronecker sequence is better

than the Kritzinger sequence. These experiments show the Kritzinger sequence is

reliably outperforming the Fibonacci sequence, being better for around 65% of the

instances. This empirical convergence provides further evidence for the following

conjecture by Kritzinger.

▶ Conjecture 8.1. [Kri22, Conjecture 2] The Kritzinger sequence has an 𝐿∞ star

discrepancy in 𝑂 (log(𝑛)/𝑛) in one dimension. ◀

57 As described in Section 2.3, it is given by 𝑥𝑛 = {𝑛𝛼} where {·} represents the fractional part and
𝛼 is the golden ratio (1 +

√
5)/2.

131

Chapter 8 Greedy Sequence Constructions

0.0 0.2 0.4 0.6 0.8 1.0
Number of points/1 000 000

0.20

0.25

0.30

0.35

 S
ca

le
d

st
ar

 d
isc

re
pa

nc
y

Fibonacci
Kritzinger
Ostromoukhov

0.0 0.2 0.4 0.6 0.8 1.0
Number of points/1 000 000

0.10

0.15

0.20

0.25

0.30

0.35

 S
ca

le
d

st
ar

 d
isc

re
pa

nc
y

Ostromoukhov
Kritzinger

Figure 8.4: Comparison of the first million points of the Kritzinger sequence with the

Fibonacci sequence (left) and the Ostromoukhov sequence (right). Values are calculated

every 1 000 points and scaled by 𝑛/log(𝑛). The black line corresponds to the best theoretical
upper bound on the asymptotic discrepancy constant by Ostromoukhov. We clearly notice

that this asymptotic constant is much better than the discrepancy of the Ostromoukhov

sequence for a million points. While the asymptotic discrepancy order of the Ostromoukhov

sequence is the best known to this day, it is outperformed by the Kritzinger sequence for

the first million points.

8.6.2 Changing the Initialization Point(s)

Impact of the initial point: In all our work so far, the sequence was naïvely

initialized with a single point in 0.5. We performed experiments with 𝑥0 = 𝑖 × 0.1,

for 𝑖 = 0 to 9 and an extra 𝑥10 = 0.9999. All the sequences performed similarly

as Figure 8.7 shows. For readability, we plot the minimum, maximum, and average

scaled discrepancy for each of these sequences. All of these have similar behaviors

and perform very well.

Changing this single initialization point to 5 randomly selected values has also

no noticeable impact on the quality of the obtained sequence, as shown in Figure 8.8.

We note that both in this case and the previous single point initialization, there is

no meaningful difference between the different runs. All seem to have the same

behaviour, there is not one that performs better more often or another that is more

often worse.

Correcting a bad initial set: Finally, we initialize the sequence with a large set

of badly chosen points: 100 points from 0 to 0.01 with a step-size of 10
−4
. While the

discrepancy values are unsurprisingly relatively poor initially, they are as good as

those obtained with a single initial point at the 10 000 point mark, and continue to

perform just as well as the previous sequences afterwards, as Figure 8.9 shows. The

initial values are not included in the plot to make it readable. The first 9 values (for

𝑛 = 1000 to 𝑛 = 9000) nevertheless come very close to the discrepancy that would

132

Evaluating the Kritzinger Sequence in Higher Dimensions Section 8.7

35800 35825 35850 35875 35900 35925 35950 35975 36000
Number of points

0.18

0.20

0.22

0.24

0.26

0.28

0.30

0.32

Sc
al

ed
 st

ar
 d

isc
re

pa
nc

y

Fibonacci
Kritzinger
Ostromoukhov

55800 55825 55850 55875 55900 55925 55950 55975 56000
Number of points

0.18

0.20

0.22

0.24

0.26

0.28

0.30

0.32

Sc
al

ed
 st

ar
 d

isc
re

pa
nc

y

Fibonacci
Kritzinger
Ostromoukhov

Figure 8.5: Localized plots in regions where the Kritzinger sequence was seemingly not

performing well. Discrepancy values are calculated for all 𝑛 and scaled by 𝑛/log(𝑛). Higher
spikes in the Kritzinger sequence correspond to very few badly chosen points and are

quickly corrected by the next choices.

be obtained with only the initial points in the box [0, 0.01). For example, for 7000

points, we obtain a discrepancy of 0.00438 whereas any set of 7000 points with 100

points in [0, 0.01] has a discrepancy of at least 0.00428.

8.7 Evaluating the Kritzinger Sequence in Higher
Dimensions

8.7.1 Construction of the Kritzinger Sequence
In higher dimensions, the first obstacle is that equation (4.2) no longer gives us

rational solutions. Indeed, looking at the two-dimensional case gives us

𝐹 ((𝑥,𝑦), 𝑃) = − 𝑛 + 1

2

(1 − 𝑥2) (1 − 𝑦2) + (1 − 𝑥) (1 − 𝑦)

+ 2

∑︁
𝑥𝑖∈𝑃

(1 −max(𝑥𝑖,1, 𝑥)) (1 −max(𝑥𝑖,2, 𝑦)).

𝐹 ((𝑥,𝑦), 𝑃) will be shortened to 𝐹 (𝑦, 𝑃) for readability when the context is clear,

with 𝑦 a vector. As in the one-dimensional case, we can consider the boxes of the

type [𝑥𝑖,1, 𝑥 𝑗,1] × [𝑥𝑘,2, 𝑥𝑙,2] such that all the maxima above take a fixed value (either

the constant coordinate, or one of the parameters of 𝑦). We will call such boxes

gridboxes.58 These gridboxes form a grid of size (𝑛 + 1) × (𝑛 + 1), each gridbox will

be referenced by a pair of integers (𝑖, 𝑗). For example, (𝑛 + 1, 𝑛 + 1) corresponds

58 They correspond exactly to the boxes defined by the elements of 𝛤 (𝑃).

133

Chapter 8 Greedy Sequence Constructions

0.0 0.2 0.4 0.6 0.8 1.0
Number of instances/1 000

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pr
op

or
tio

n
of

 in
st

an
ce

s w
he

re
 Fi

bo
na

cc
i i

s b
et

te
r

Figure 8.6: Proportion of 𝑛 for which the Fibonacci sequence is better than the Kritzinger

one, initialized in 𝑥 = 0.5, counting only one instance per 1000 points. The Kritzinger

sequence appears to perform better in 60% to 70% of the cases, and this appears to be

relatively stable.

0.0 0.2 0.4 0.6 0.8 1.0
Number of points/1 000 000

0.20

0.22

0.24

0.26

0.28

0.30

0.32

Sc
al

ed
 st

ar
 d

isc
re

pa
nc

y

Minimum
Maximum
Average
Ostromoukhov

Figure 8.7: Best, average and worst scaled discrepancy out of 11 sequences with different

single starting points for the Kritzinger sequence in dimension 1. The excellent performance

of the maximum of the sequences shows the robustness of the Kritzinger sequence.

to the top-right box. Inside each gridbox, we want to find the minimum of the

following 2-variable fourth-order polynomial 𝐹𝑖, 𝑗 .

𝐹𝑖, 𝑗 ((𝑥,𝑦), 𝑃) := − 𝑛 + 1

2

(1 − 𝑥2) (1 − 𝑦2) + (1 − 𝑥) (1 − 𝑦) +𝐴𝑖, 𝑗 (1 − 𝑥) (1 − 𝑦)
(8.3)

+ 𝐵𝑖, 𝑗 (1 − 𝑥) +𝐶𝑖, 𝑗 (1 − 𝑦) + 𝐷𝑖, 𝑗

𝐴𝑖, 𝑗 , 𝐵𝑖, 𝑗 ,𝐶𝑖, 𝑗 and 𝐷𝑖, 𝑗 are constants that only depend on the choice of the gridbox.

134

Evaluating the Kritzinger Sequence in Higher Dimensions Section 8.7

0.0 0.2 0.4 0.6 0.8 1.0
Number of points/1 000 000

0.20

0.22

0.24

0.26

0.28

0.30

0.32

Sc
al

ed
 st

ar
 d

isc
re

pa
nc

y

Minimum
Maximum
Average
Ostromoukhov

Figure 8.8: Best, average and worst scaled discrepancies out of 6 sequences with 5 random

initial points in dimension 1. Results are very similar to the one point case, further under-

lining the lack of dependency on the initial point of the Kritzinger sequence.

0.0 0.2 0.4 0.6 0.8 1.0
Number of points/1 000 000

0.20

0.25

0.30

0.35

Sc
al

ed
 st

ar
 d

isc
re

pa
nc

y

Fibonacci
Kritzinger
Ostromoukhov

Figure 8.9: Scaled discrepancy values with a bad initial set of 100 points, for 𝑛 = 10 000 to

one million.

If we want to find (𝑥,𝑦) such that ∇𝐹𝑖, 𝑗 ((𝑥,𝑦), 𝑃) = 0, we need to find (𝑥,𝑦) solution
of the two following equations.

(𝑛 + 1) (1 − 𝑦2)𝑥 − (𝐴𝑖, 𝑗 + 1) (1 − 𝑦) − 𝐵𝑖, 𝑗 = 0 (8.4a)

(𝑛 + 1) (1 − 𝑥2)𝑦 − (𝐴𝑖, 𝑗 + 1) (1 − 𝑥) −𝐶𝑖, 𝑗 = 0 (8.4b)

Expressing 𝑥 as a function of 𝑦 in equation (8.4a), reinserting it in equation (8.4b),

and eliminating the fractions gives us a ninth-order polynomial. This problem

cannot be tackled by off-the-shelf solvers and other methods need to be found.

We describe some possibilities in the next two sections: an exact method in Sec-

tion 8.7.1.1 and approximate approaches in Section 8.7.1.2. Both give relatively

135

Chapter 8 Greedy Sequence Constructions

comparable results, which will be described in Section 8.7.2. The methods will be

described for two dimensions but can easily be generalized to higher dimensions.

8.7.1.1 Exact Construction

This section is inspired by the methods in [Clé+23a] presented in Chapter 5 to

optimally place points for the 𝐿∞ star discrepancy. We can express our problem of

optimizing the placement of a point in an existing set with regards to the 𝐿2 star

discrepancy as a non-linear mathematical programming problem.

min − 𝑛 + 1

2

𝑣3 + (1 − 𝑦1) (1 − 𝑦2) + 2

𝑛∑︁
𝑗=1

𝑡 𝑗𝑢 𝑗

𝑥2 𝑗−1 = 𝑥 𝑗,1 ∀𝑗 = 1, . . . , 𝑛 (8.5a)

𝑥2 𝑗 = 𝑥 𝑗,2 ∀𝑗 = 1, . . . , 𝑛 (8.5b)

𝑟 𝑗 − 1 ≤ 𝑥2 𝑗−1 − 𝑦1 ∀𝑗 = 1, . . . , 𝑛 (8.5c)

𝑟 𝑗 ≥ 𝑥2 𝑗−1 − 𝑦1 ∀𝑗 = 1, . . . , 𝑛 (8.5d)

𝑠 𝑗 − 1 ≤ 𝑥2 𝑗 − 𝑦2 ∀𝑗 = 1, . . . , 𝑛 (8.5e)

𝑠 𝑗 ≥ 𝑥2 𝑗 − 𝑦2 ∀𝑗 = 1, . . . , 𝑛 (8.5f)

𝑡 𝑗 = (1 − 𝑟 𝑗)𝑦1 + 𝑟 𝑗𝑥2 𝑗+1 ∀𝑗 = 1, . . . , 𝑛 (8.5g)

𝑢 𝑗 = (1 − 𝑠 𝑗)𝑦2 + 𝑠 𝑗𝑥2 𝑗+2 ∀𝑗 = 1, . . . , 𝑛 (8.5h)

𝑣1 = 𝑦1𝑦1 (8.5i)

𝑣2 = 𝑦2𝑦2 (8.5j)

𝑣3 = (1 − 𝑣1) (1 − 𝑣2) (8.5k)

𝑟 𝑗 , 𝑠 𝑗 ∈ {0, 1} ∀𝑗 = 1, . . . , 𝑛,

𝑡 𝑗 , 𝑢 𝑗 ∈ [0, 1] ∀𝑗 = 1, . . . , 𝑛,

𝑥 𝑗 ∈ [0, 1] ∀𝑗 = 1, . . . , 2𝑛,

𝑦1, 𝑦2, 𝑣1, 𝑣2, 𝑣3 ∈ [0, 1]

Model (8.5) describes the objective and constraints used in the two-dimensional

case, this can be easily generalized to higher dimensions. The objective corresponds

to the minimization of 𝐹 ((𝑦1, 𝑦2), 𝑃), with some reformulations explained below.

The constraints (8.5a) and (8.5b) fix the values of the previous points. Each of the

maximum terms in the final sum needs to be reformulated for the solver. For this,

we introduce binary variables in equations (8.5c) to (8.5f) (𝑟 𝑗 for the first dimension

and 𝑠 𝑗 for the second) that are equal to 1 if the constant is greater, and 0 if our

136

Evaluating the Kritzinger Sequence in Higher Dimensions Section 8.7

variable is bigger. For each of these binary variables, two constraints are required:

𝑟 𝑗 − 1 ≤ 𝑥2 𝑗−1 − 𝑦1 ∀𝑗 = 1, . . . , 𝑛

𝑟 𝑗 ≥ 𝑥2 𝑗−1 − 𝑦1 ∀𝑗 = 1, . . . , 𝑛

The first constraint imposes that if the constant coordinate is smaller, then 𝑟 𝑗 is

equal to 0. The second fixes 𝑟 𝑗 to 1 if the constant coordinate is bigger. Variable

𝑡 𝑗 in constraint (8.5g) then plays the role of the maximum function for the first

coordinate, while variable 𝑠 𝑗 in constraint (8.5h) plays a similar role for the second

coordinate. While no other constraints are theoretically required, solvers such as

Gurobi [Gur23] cannot handle products of more than two variables easily. Terms

such as 𝑦2
1
𝑦2
2
have to be replaced. For this, we introduce three extra variables 𝑣1 to

𝑣3 in constraints (8.5i) to (8.5k), simply to reformulate the objective.

With this method, we are able to solve problems in a reasonable time for up to a

few hundred points. We will use the sets obtained here as a baseline to guarantee

that our approximate methods are relatively trustworthy.

8.7.1.2 Approximate Methods

We tried three different heuristics: searching on a discrete grid, random search, and

gradient descent. With these, we are able to compute a few thousand points.

The discrete grid: Searching on a discrete grid was done by changing our

search space [0, 1] to a grid {(𝑘/𝑚, 𝑙/𝑚) : 𝑘, 𝑙 ∈ {0, . . . , 𝑛 − 1}}, where 1/𝑚 is

the grid stepsize. Given our current point set 𝑃 , for each point 𝑦 on the grid, we

evaluate 𝐹 (𝑦, 𝑃) and simply choose the point that minimizes this function as our

next point. As in the one-dimensional case, we can do this better than the naïve

𝑂 (𝑛𝑚2) runtime by tracking which gridbox our search point is in. This means

we only need to track the value of the constants 𝐴𝑖, 𝑗 , 𝐵𝑖, 𝑗 , 𝐶𝑖, 𝑗 , and 𝐷𝑖, 𝑗 to evaluate

𝐹𝑖, 𝑗 (𝑦, 𝑃) in constant time. There may be no or multiple points per gridbox, but this

does not impact the overall 𝑂 (𝑚2) complexity.

However, this method had a drawback in that it could ignore some of the

𝐹𝑖, 𝑗 if 𝑚 was too small. We therefore adapted it to defining a sub-grid per
gridbox and function 𝐹𝑖, 𝑗 . For each point on this sub-grid, we evaluate 𝐹𝑖, 𝑗
and keep the best performing point. This point is then compared to those

obtained with the other 𝐹𝑖, 𝑗 , and the best one is kept. This increases the

global complexity: there are 𝑂 (𝑛2) functions 𝐹𝑖, 𝑗 , and for each of these we evalu-

ate𝑂 (𝑚2) points, but it guarantees that we have considered the whole search space.

Random search: To avoid having to recompute 𝐹 (𝑦, 𝑃) for every point, we

137

Chapter 8 Greedy Sequence Constructions

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.12

0.08

0.04

0.00

0.04

0.08

0.12

0.16

0.20

0.24

Figure 8.10: Plots of 𝐹 (𝑦, 𝑃) for the Kritzinger sequence initialized in (0.5, 0.5) with 247

(left) and 266 points (right). The point minimizing 𝐹 (𝑦, 𝑃) is shown in white (respectively

the 248-th and 267-th points of the sequence). 𝐹 (𝑦, 𝑃) is very smooth, suggesting gradient

descent methods can be used locally.

re-use the grid structure and the 𝐹𝑖, 𝑗 functions. For each 𝐹𝑖, 𝑗 function, we sample

a fixed number of points 𝑠 (around 100 million in 2 dimensions, 10 billion in 3

dimensions), scaled by the volume of the box. Not only should a larger box have

more samples to guarantee a better exploration but, since we are trying to spread

points out, a small box might indicate we are already close to existing points and

thus less likely to pick a point there. The complexity to compute the next point

with the random search method is in 𝑂 (𝑠𝑛2).59

Gradient descent: While we cannot easily find an exact solution for our polyno-

mials, they remain of a relatively low degree and we are searching for solutions in

a relatively small space (initially [0, 1]2, then smaller sub-boxes). Numerical exper-

iments to plot 𝐹 (𝑦, 𝑃) over [0, 1] for around 250 points are shown in Figure 8.10.

We see that for the Kritzinger sequence 𝐹 (𝑦, 𝑃) is relatively smooth and, while

there are multiple local minima, they correspond to different 𝐹𝑖, 𝑗 . We can therefore

hope that inside each gridbox (𝑖, 𝑗), there is a single minimum and that we can

do gradient descent to find argmin(𝑥,𝑦) 𝐹𝑖 𝑗 ((𝑥,𝑦), 𝑃). This is the most expensive

method as it requires running a gradient descent algorithm inside 𝑂 (𝑛2) boxes to
determine the (𝑛 + 1)-th point.

As shown in the next section, the three methods provide sequences of similar

quality. We note that gradient descent seems to be able to obtain nearly the same

59 This could be improved with the use of a low-discrepancy set to sample in the desired zones

when 𝑛 becomes big. For low 𝑛, we sample so many points that it has relatively little importance.

138

Evaluating the Kritzinger Sequence in Higher Dimensions Section 8.7

points as the Kritzinger sequence when 𝑛 is low in two dimensions, but is also the

worst performing method once 𝑛 and 𝑑 increase. The grid method appears to be

inferior to the random approach in all cases.

8.7.2 Results in Dimensions 2 and 3
In this section, we present our results in dimensions 2 and 3. While the methods

are valid for any dimension, they get more expensive as the dimension increases.

Furthermore, there is a great instability in the point choices. In 1𝑑 , picking a point

slightly off would have little impact for the next few points, as we know that

they respect a specific structure. This is no longer the case in higher dimensions:

choosing one point very slightly differently can lead to instant changes for the

next point and then lead to very different sequences. We initialized 10 different

sequences with (0.5, 0.5) and used the random heuristic on them separately to

obtain 500 points. While they all had very similar discrepancy values over the 500

points, the sequences generally became very different around the 70 points mark.

In some cases, two of the sequences were identical up to 70 points and did not have

a single point in common after the 80th. As the dimension increases, this leads to

much greater mistakes in the sequence.

0 50 100 150 200 250
Number of points

0.6

0.7

0.8

0.9

1.0

1.1

St
ar

 d
isc

re
pa

nc
y

Sobol
Exact

0 100 200 300 400 500
Number of points

0.6

0.7

0.8

0.9

1.0

1.1

Sc
al

ed
 st

ar
 d

isc
re

pa
nc

y

Gradient
Random
Sobol
Minigrid
Exact

Figure 8.11: On the left, comparison of the exact Kritzinger sequence initialized in (0.5,0.5)

compared with the Sobol’ sequence. On the right, comparison of the different methods

initialized in (0.5,0.5) with the Sobol’ sequence. In both, discrepancies are scaled by𝑛/log(𝑛).

Nevertheless, our results show that the quality of the sequence remains robust, at

least in 2 dimensions. In particular, Figure 8.11 (left) gives the 𝐿∞ star discrepancy

of the first 277 points of the Kritzinger sequence initialized in (0.5, 0.5), compared

to the Sobol’ sequence. This is scaled by 𝑛/log(𝑛) (not squared, otherwise the

plot would have needed to be truncated for readability). Figure 8.11 (right) then

compares the approximatemethodswith the exact sequence and the Sobol’ sequence

139

Chapter 8 Greedy Sequence Constructions

0 2500 5000 7500 10000 12500 15000 17500 20000
Number of points

0.08

0.10

0.12

0.14

0.16

0.18

Sc
al

ed
 st

ar
 d

isc
re

pa
nc

y

Kritzinger, random
Sobol

Figure 8.12: Random heuristic and Sobol’ sequence 𝐿∞ star discrepancies for up to 20 000

points in dimension 2. 𝐿∞ star discrepancy values are scaled by 𝑛/log2(𝑛).

in the same context. We see that our approximate methods produce sequences

that are quite similar to the exact sequence, at least for the discrepancy values

obtained. All of them are competitive with the Sobol’ sequence for all values

shown. This suggests to some degree that like in the one-dimensional experiments

with different starts, greedy 𝐿2 sequence construction is not too dependent on the

exact points themselves for good performance. Even when increasing 𝑛 further as

in Figure 8.12, we observe that the random method generates a sequence whose

𝐿∞ star discrepancy values are comparable to those of the Sobol’ sequence over

the first 13 000 points. While there seems to be a big difference at 16 000 points,

one should remember that the construction method of the Sobol’ sequence leads to

better values when 𝑛 = 2
𝑘
for 𝑘 ∈ ℕ. Combining this with the low precision of the

method partly explains the discrepancy gap.

Figure 8.13 describes our results in dimension 3. The exact Kritzinger sequence

consistently outperforms the Sobol’ sequence, while the random approach seems

to perform decently. Both the gradient and discrete grid approaches are a lot less

successful. We note that while we are able to compute more points with the random

approach, their quality degrades around𝑛 = 500. Figure 8.13 shows that our random

points approach is generally outperformed by the Sobol’ sequence. Nevertheless,

the discrepancy order seems to still be 𝑂 (log(𝑛)3/𝑛), despite the imprecisions in

the construction.

Our empirical results in 2 and 3 dimensions, suggesting quite strongly that the

discrepancy is of the same order as for the Sobol’ sequence, lead us to formulate

the following conjecture.

▶ Conjecture 8.2. The Kritzinger sequence has a discrepancy of 𝑂 (log𝑑 (𝑛)/𝑛) in
dimension 𝑑 . ◀

140

Conclusion Section 8.8

0 50 100 150 200 250 300 350
Number of points

0.05

0.10

0.15

0.20

0.25

Sc
al

ed
 st

ar
 d

isc
re

pa
nc

y

Gradient
Random
Sobol
Minigrid
Exact

Figure 8.13: Comparison of our different methods in dimension 3 with the Sobol’ sequence.

Values are scaled by 𝑛/log3(𝑛).

8.8 Conclusion
This section introduced or developed greedy construction methods in low dimen-

sions, with the aim of obtaining low 𝐿∞ star discrepancy sequences. While the

results for the greedy 𝐿∞ method are poor, they provide an answer to a relatively

common question (i.e. how to add a point optimally to a set), but more importantly

seem to open the possibility of doubling the number of points inside a set. Indeed,

model (8.2) can easily be extended to add any number of points, and not just one.

Preliminary experiments show that very good sets of size 2𝑛 can be obtained by

starting with a good 𝑛 point set and optimizing the placement of another 𝑛. While

this project is only in its infancy, such decomposition methods could provide useful

in all contexts.

For the Krizinger sequence, we provided a set of methods to compute it, both to

greatly extend the number of points in one dimension and to give the first results

in higher dimensions. Our exact and heuristic approaches seem to confirm first

observations from [Kri22], in that the Kritzinger sequence appears to be a low-

discrepancy sequence. In particular, our one-dimensional results suggest it could be

even better than some of the best sequences known. For higher dimensions, further

work will be required to make heuristics more precise and prevent the deviations

we observe when 𝑛 increases. Indeed, while exact optimization of 𝐹 (𝑦, 𝑃) seems to

outperform the Sobol’ sequence, heuristic approximations are “only” comparable.

Identifying feasible methods of solving the polynomials to obtain exact minima of

the 𝐹𝑖, 𝑗 (𝑦, 𝑃) could be an interesting direction.

Nevertheless, the sequences resulting from these deviations are still excellent.

This suggests that the greedy 𝐿2 discrepancy construction is robust: given a starting

set, this construction method will provide a good low-discrepancy sequence rela-

141

Chapter 8 Greedy Sequence Constructions

tively quickly. In particular, it should be possible to “fix” any unbalanced set with

greedy point additions, as we showed in one dimension. Both the robustness and

the correction power, that one can naturally associate with sequences, should make

such methods based on the 𝐿2 discrepancy more important for 𝐿∞ constructions in

the future.

142

9 Black-Box Optimizers for 𝑳∞
Star Discrepancy Computation

This chapter and the next present a different focus than the rest of the thesis, in that
rather than trying to construct high quality low 𝐿∞ star discrepancy sets, we will try to
highlight potential uses of black-box optimizers for discrepancy-related problems. This
chapter corresponds to [Clé+23c] and it is joint work with Diederick Vermetten, Jacob
de Nobel, Alexandre D. Jesus, Carola Doerr and Luís Paquete. In particular, Alexandre
D. Jesus was responsible for the implementation of the parallel DEM algorithm.

9.1 Summary of Results

This chapter describes the use of black-box optimizers to compute the 𝐿∞ star

discrepancy of a given set. As described in Chapter 1, point sets of low discrepancy

are required for a multitude of applications. Some of these require discrepancy

calculations in much higher dimensions, in some cases 𝑑 ≥ 100, far out of reach of

the exact algorithms presented in Chapter 3 for the moment. Despite the complexity

of finding the global maximum, evaluating the local discrepancy in a given point 𝑞

can be done very efficiently. Black-box optimization approaches can therefore be

used to tackle this problem, as even making a very large number of local evaluations

is feasible.
60

We apply eight classical optimizers described in Section 9.3 on three different

point set types, for varying dimensions and set sizes. We show in Section 9.4

that these default popular numerical black-box optimizers are unsuccessful in

computing the 𝐿∞ star discrepancy, even for instances that can be solved within

a second with naïve methods. The relative performance rapidly decreases with

increasing dimension, whereas the size of the point sets only seems to have a

minor impact on the overall (bad) quality of the solvers, which might be surprising

given that the differences in the local star discrepancy values at the discontinuities

become smaller with increasing set size (inverse linear relationship). The sampler

type used to generate the point sets has relatively little importance, if any, on the

performance of the optimizers.

60 This is also what makes the Threshold Accepting algorithm in Section 3.4 work in any dimension.

143

Chapter 9 Black-Box Optimizers for 𝐿∞ Star Discrepancy Computation

We observe that uniform i.i.d. random search seems to be the best performing

optimizer over the vast majority of the instances, yet still fails to come close

to the exact value, as highlighted by a relative performance comparison with

the known exact values. We suspect that state-of-the-art numerical black-box

optimization techniques fail to capture the global structure of the problem, an

important shortcoming that may guide their future development.

To have a better point of comparison in moderate dimensions, we first provide a

new parallel implementation of the DEM algorithm [DEM96] in Section 9.2. We

show that our parallel implementation has a speed-up factor of up to 17 on 32

threads, while enabling better evaluations of the quality of the results obtained by

the optimizers.

Finally, our implementations can be found in a Zenodo repository [Clé+23b],

along with past implementations of the DEM algorithm and TA heuristic by the

authors of [GWW12]. The repository also contains all code and data used for

the analysis of the black-box optimization algorithms, as well as the code used to

process this and create the figures included in [Clé+23c].

9.2 Parallelizing DEM
We recall that the original DEM algorithm was described in Section 3.3, and refer

the reader to this section for details on the algorithm.

To parallelize the DEM algorithm, we start by noting that after computing

the boxes for a given dimension we can continue the recursive decomposition

independently for each box. This naturally gives way to a parallel-task construct

where each task that can be scheduled to an available CPU corresponds to the

decomposition in dimension 𝑗 + 1 of a given box 𝐵 𝑗 .

At this point, it is worth noting that another option initially considered was to

parallelize the dynamic programming algorithm that is used to compute the worst

local discrepancy for a box after 𝑑 steps. However, this idea was discarded since

the dynamic programming algorithm was very fast in practice and preliminary

attempts did not yield significant speedups.

To implement the parallel-tasks construct we considered OpenMP

Tasks [Ayg+09] and we adapted the implementation of the DEM algorithm

by the authors of [GWW12]. In particular, one relevant change was that the

sequential implementation reused the set of points between recursive calls, with a

possible resorting of the points in the current dimension after each recursive call.

However, in the parallel variant, we cannot efficiently share the set of points since

sorting operations on the set of points in a thread could potentially affect tasks

144

Parallelizing DEM Section 9.2

running in other threads. Instead, in the parallel DEM we opted to copy the set of

points before entering a recursive call. Although this requires an extra copy before

each recursive call, we observed that in some cases copying the vector was faster

than resorting after each recursive call, suggesting that the non-parallel DEM

implementation could be slightly improved by taking this into account.

Finally, in order to avoid thread starvation with a recursive parallel-tasks con-

struct, it is often useful to consider a cut-off value related to the problem size to

switch to a non-parallel variant. In this case, we define the cut-off with respect

to the complexity of the DEM algorithm, i.e., 𝑂 (𝑛1+𝑑/2). In particular, when de-

composing a box 𝐵 𝑗 with 𝑛 𝑗 points in dimension 𝑗 , we switch to the non-parallel

DEM algorithm if 𝑛 𝑗
1+(𝑑− 𝑗)/2 < 1𝑒8. This cut-off value was defined empirically by

experimenting with different values up to 1𝑒15.

Table 9.1 gives the CPU time in seconds for the parallelized DEM on several

instances generated with the GNU Scientific Library (using the indicated sequence)

and considering different numbers of threads. For a single thread, the best time

between the non-parallel and parallel implementations is shown. Experiments were

run on a machine with two Intel(R) Xeon(R) Silver 4210R CPUs clocked at 2.40GHz,

comprising a total of 20 cores and 40 threads. We can see that for 32 threads we

have speedups that range from a factor of 7.4 to a factor of 17.4. These results

show that parallelization is generally successful and can give a significant boost.

However, we believe that there is still room for improvement by further tuning the

cut-off between the parallel and non-parallel variants, and by further analyzing

when it is best to copy or resort the set of points.

145

C
hapter

9
B
lack-B

ox
O
ptim

izers
for

𝐿
∞
Star

D
iscrepancy

C
om

putation

Table 9.1: CPU time in seconds and corresponding speedup in parenthesis for the parallelized DEM algorithm

CPU time (speedup) per number of threads

𝑑 𝑛 Sequence 1 2 4 8 16 32

2 50 000

Halton 2.54 (1.0) 1.56 (1.6) 0.88 (2.9) 0.53 (4.8) 0.38 (6.7) 0.32 (7.9)

Niederreiter 2.50 (1.0) 1.56 (1.6) 0.87 (2.9) 0.54 (4.6) 0.34 (7.4) 0.31 (8.1)

Reversehalton 2.37 (1.0) 1.59 (1.5) 0.86 (2.8) 0.53 (4.5) 0.40 (5.9) 0.32 (7.4)

Sobol 2.39 (1.0) 1.58 (1.5) 0.86 (2.8) 0.53 (4.5) 0.41 (5.8) 0.31 (7.7)

3 10 000

Halton 15.70 (1.0) 8.19 (1.9) 4.31 (3.6) 2.37 (6.6) 1.52 (10.3) 1.13 (13.9)

Niederreiter 15.77 (1.0) 8.09 (1.9) 4.36 (3.6) 2.39 (6.6) 1.65 (9.6) 1.16 (13.6)

Reversehalton 15.57 (1.0) 7.99 (1.9) 4.37 (3.6) 2.37 (6.6) 1.54 (10.1) 1.17 (13.3)

Sobol 15.74 (1.0) 8.19 (1.9) 4.38 (3.6) 2.39 (6.6) 1.44 (10.9) 1.14 (13.8)

4 3 000

Halton 49.66 (1.0) 26.40 (1.9) 13.97 (3.6) 7.38 (6.7) 3.99 (12.4) 2.89 (17.2)

Niederreiter 50.31 (1.0) 26.82 (1.9) 14.33 (3.5) 7.42 (6.8) 3.96 (12.7) 2.89 (17.4)

Reversehalton 50.42 (1.0) 26.53 (1.9) 14.11 (3.6) 7.44 (6.8) 4.05 (12.4) 2.96 (17.0)

Sobol 50.41 (1.0) 27.20 (1.9) 14.31 (3.5) 7.32 (6.9) 4.06 (12.4) 2.92 (17.3)

5 1 000

Halton 58.87 (1.0) 32.54 (1.8) 16.70 (3.5) 9.18 (6.4) 5.10 (11.5) 3.83 (15.4)

Niederreiter 62.32 (1.0) 33.39 (1.9) 17.78 (3.5) 9.67 (6.4) 5.34 (11.7) 4.08 (15.3)

Reversehalton 62.08 (1.0) 32.77 (1.9) 17.54 (3.5) 9.64 (6.4) 6.88 (9.0) 3.90 (15.9)

Sobol 63.80 (1.0) 33.89 (1.9) 17.73 (3.6) 9.77 (6.5) 5.34 (11.9) 4.04 (15.8)

6 600

Halton 175.79 (1.0) 103.74 (1.7) 53.04 (3.3) 28.82 (6.1) 17.12 (10.3) 12.57 (14.0)

Niederreiter 196.24 (1.0) 109.22 (1.8) 57.99 (3.4) 30.44 (6.4) 17.94 (10.9) 12.71 (15.4)

Reversehalton 187.99 (1.0) 114.35 (1.6) 58.75 (3.2) 31.56 (6.0) 19.12 (9.8) 13.49 (13.9)

Sobol 200.76 (1.0) 112.53 (1.8) 59.18 (3.4) 30.91 (6.5) 18.34 (10.9) 13.32 (15.1)

7 300

Halton 160.25 (1.0) 94.43 (1.7) 48.22 (3.3) 27.10 (5.9) 15.64 (10.2) 11.70 (13.7)

Niederreiter 167.32 (1.0) 96.85 (1.7) 51.36 (3.3) 28.40 (5.9) 15.80 (10.6) 12.66 (13.2)

Reversehalton 149.43 (1.0) 88.79 (1.7) 50.57 (3.0) 29.72 (5.0) 16.63 (9.0) 12.49 (12.0)

Sobol 169.70 (1.0) 102.12 (1.7) 52.72 (3.2) 29.68 (5.7) 16.20 (10.5) 12.41 (13.7)

146

Numerical Black-Box Optimization Approaches Section 9.3

Figure 9.1: Local discrepancy values of the first 5 instances of the 2-dimensional version of

F31: Uniform sampler with 20 points. The red points indicate the originally sampled points.

9.3 Numerical Black-Box Optimization Approaches
Figure 9.1 illustrates the local 𝐿∞ star discrepancy values for an instance in 𝑑 = 2.

We highlight two properties of the 𝐿∞ star discrepancy function which, while

probably clear to the reader who has reached this chapter, we prefer to underline.

• It is a multimodal problem, i.e., there can be several local optima in which

the solvers can get trapped (this problem becomes worse with increasing

dimension);

• Discontinuous discrepancy values. Slightly increasing one coordinate can

result in a point falling inside the considered box, causing a 1/|𝑃 | difference in
the local star discrepancy value. Figure 9.2 shows that the problem structure

also depends strongly on the point set considered.

The 𝐿∞ star discrepancy problem was included as a black-box benchmark prob-

lem in IOHexperimenter (version 0.3.7) [Nob+24], using three different point set

generators:

1. uniform random sampling,

2. Halton [Hal60],

3. Sobol’ [Sob67].

For the uniform sampler, a standard Mersenne Twister 19937 pseudo-random

number generator was used, provided by the C++ STL. The Halton sequence was

generated using a classic Sieve of Eratosthenes prime number generating algorithm,

and the Sobol’ sequence was generated with a third-party library based on the

FORTRAN implementation of [Fox86].

147

Chapter 9 Black-Box Optimizers for 𝐿∞ Star Discrepancy Computation

Figure 9.2: Comparison of the 3 samplers for 1000 points in 2D, and the corresponding

discrepancy landscapes (instance 1 for F39, F49 and F59 respectively).

In addition to the generator, the number of points to be sampled can be selected,

which along with the dimensionality, controls the complexity of the problem.

We define a default suite, which includes for every generator a fixed number of

samples 𝑆 ∈ {10, 25, 50, 100, 150, 200, 250, 500, 750, 1000}. This includes a total of 30
benchmark problems, where for each problem the dimension and instance can be

varied arbitrarily. Instances are controlled by a unique instance identifier, which

is a positive integer that determines the random seed used to generate the point

set. The problems can be accessed through both the Python and C++ interfaces

of IOHexperimenter, with problem ids {30, . . . , 39}, {40, . . . , 49}, and {50, . . . , 59}
for the problems generated with the uniform, Sobol’, and Halton generators,

respectively.

We test a total number of eight algorithms, all taken from the Nevergrad plat-

form [RT18]:
61

1. Diagonal Covariance Matrix Adaptation Evolution Strategy (dCMA-

ES) [HO01]

2. NGOpt14, Nevergrad’s algorithm selection wizard [Meu+21]

3. Estimation of Multivariate Normal Algorithm (EMNA) [LL01]

4. Differential Evolution [SP97]

5. Constrained Optimization BY Linear Approximation (Cobyla) [Pow94]

6. Random Search

61 See Section 10.3 for a short description of the CMA-ES and NGOpt optimizers.

148

Results Section 9.4

0 0.05 0.1 0.15 0.2
5

1
2

5

10
2

5

100
2

5

1e+3
2

5

1e+4
2

5

1e+5
2

5

1e+6

DiagonalCMA DifferentialEvolution EMNA NGOpt14 PSO RandomSearch RCobyla

SPSA

Best-so-far f(x)-value

Fu
nc

tio
n

Ev
al

ua
tio

ns

Figure 9.3: Expected running time (ERT) of the 8 optimization algorithms on the discrep-

ancy calculation for the uniform sampler with 100 samples (F33) in 3 dimensions. ERT is

calculated based on 10 runs on 10 instances with a budget of 7 500. Figure generated using

IOHanalyzer [Wan+22].

7. Particle Swarm Optimization (PSO) [KE95]

8. Simultaneous Perturbation Stochastic Approximation algorithm

(SPSA) [Spa92].

The algorithms are chosen “as they are” fromNevergrad. That is, we did not perform

any hyper-parameter tuning nor did we change any of their components. Each

algorithm is given a total budget of 2 500 ·𝑑 local discrepancy evaluations, where as

always 𝑑 is the dimensionality of the problem. For each instance, 10 independent

runs of the algorithm are performed. This is repeated for 10 instances, resulting in

a total of 100 runs per function, for each of the 30 functions, with dimensionality

𝑑 ∈ {2, 3, 4, 6, 8, 10, 15}.
We run all our experiments in the IOHprofiler environment [Doe+18]. This allows

us to track not only the final performance, but also the trajectory of the algorithms

in the objective space. It furthermore allows a straightforward visualization and

analysis of the data using the IOHanalyzer module [Wan+22].

For all instances in dimensions 2, 3 and 4, and for all the instances in dimensions

6, 8, 10, and 15 with 𝑛 not larger than 750, 200, 50 and 10 points respectively, we

computed the exact discrepancy values using the parallel DEM algorithm proposed

in Section 9.2. For all other instances, we computed a lower bound for the star

discrepancy value using the TA algorithm described in Section 3.4.

149

Chapter 9 Black-Box Optimizers for 𝐿∞ Star Discrepancy Computation

9.4 Results

We can compare the performance of the used optimization algorithms by consider-

ing the expected running time (ERT) to reach increasing discrepancy values. This

analysis shows the convergence behavior on the selected function. In Figure 9.3,

we show the ERT on the 3-dimensional version of F33: the uniform sampler with

𝑛 = 100. From this figure, we can clearly see that the algorithms struggle to optimize

this function. Particularly noticeable is the SPSA algorithm, which seems to fail

to find even slightly improved discrepancy values. On the other side, we notice

that Random Search is surprisingly outperforming all other optimizers. This seems

to indicate that even for this relatively simple setting of 𝑛 = 100 and 𝑑 = 3, the

high level of multi-modality combined with discontinuities in the landscape cause

problems for all of the considered optimization algorithms.

To check whether this is a consistent problem, or something specific to the

settings chosen in Figure 9.3, we can look in more detail at the final solutions

found by each optimizer across a wider set of scenarios. In order to create a fair

comparison, we canmove from the original discrepancy values to a relative measure,

based on the bounds found by the TA and DEM algorithms. Specifically, we consider

the following measure:

𝑅(𝑥) = 𝑂𝑃𝑇 (𝑥) − 𝑓 (𝑥)
𝑂𝑃𝑇 (𝑥) ,

where 𝑓 (𝑥) is the final value found after the optimization run, and 𝑂𝑃𝑇 (𝑥) is the
bound calculated by the parallel DEM or TA algorithms, depending on the instance

size.

Using this relative measure, we can compare the final solutions found by each op-

timization algorithm across a set of different 𝑛 and 𝑑 . This is visualized in Figure 9.4.

In this figure, we see that the observations made based on ERT from Figure 9.3

seem to hold across scenarios: the SPSA algorithm is clearly performing poorly,

while Random Search seems to be competitive with, if not superior to, all other

algorithms for every scenario. In addition to the ranking between algorithms, we

also note a clear increase in problem difficulty as the dimensionality increases.

Conversely, the number of samples seems to have a rather limited impact on the

relative difficulty. This suggests that the structure of the point set has little influence

on the performance of the optimizers.

As a final comparison, we can consider the differences in the difficulty of the op-

timization problem when different samplers are used. As we observed in Figure 9.2,

the landscape is clearly impacted by the choice of the sampler. To see whether

this also impacts the performance of the optimization algorithms, we consider

150

Results Section 9.4

alg
0.0

0.5

1.0

n=
10

alg alg alg alg

alg
0.0

0.5

n=
50

alg alg alg alg

alg0.0

0.5

n=
10

0

alg alg alg alg

alg0.0

0.5

n=
50

0

alg alg alg alg

Di
ag

on
al
CM

A

SP
SA

Ra
nd

om
Se

ar
ch

RC
ob

yl
a

PS
O

EM
NA

NG
Op

t1
4

Di
ffe

re
nt
ia
lE
vo

lu
tio

n

D=2

0.0

0.5

n=
10

00

Di
ag

on
al
CM

A

SP
SA

Ra
nd

om
Se

ar
ch

RC
ob

yl
a

PS
O

EM
NA

NG
Op

t1
4

Di
ffe

re
nt
ia
lE
vo

lu
tio

n

D=4

Di
ag

on
al
CM

A

SP
SA

Ra
nd

om
Se

ar
ch

RC
ob

yl
a

PS
O

EM
NA

NG
Op

t1
4

Di
ffe

re
nt
ia
lE
vo

lu
tio

n

D=6

Di
ag

on
al
CM

A

SP
SA

Ra
nd

om
Se

ar
ch

RC
ob

yl
a

PS
O

EM
NA

NG
Op

t1
4

Di
ffe

re
nt
ia
lE
vo

lu
tio

n

D=8

Di
ag

on
al
CM

A

SP
SA

Ra
nd

om
Se

ar
ch

RC
ob

yl
a

PS
O

EM
NA

NG
Op

t1
4

Di
ffe

re
nt
ia
lE
vo

lu
tio

n
D=15

Figure 9.4: Relative final discrepancy value found by each of the used optimizers. Values of

0 correspond to finding the optimal solution, while 1 corresponds to the worst achievable

value (the solver believes the set has a discrepancy of 0). Box-plots are aggregations of 10

runs on 10 instances, all for the uniform sampler.

151

Chapter 9 Black-Box Optimizers for 𝐿∞ Star Discrepancy Computation

sampler
0.0

0.5

1.0

D=
2

sampler sampler sampler sampler sampler sampler sampler

sampler0.0

0.5D=
4

sampler sampler sampler sampler sampler sampler sampler

sampler0.0

0.5D=
6

sampler sampler sampler sampler sampler sampler sampler

sampler0.0

0.5D=
8

sampler sampler sampler sampler sampler sampler sampler

Un
ifo

rm

So
bo

l

Ha
lto

n

DiagonalCMA

0.0

0.5

D=
15

Un
ifo

rm

So
bo

l

Ha
lto

n

SPSA

Un
ifo

rm

So
bo

l

Ha
lto

n

RandomSearch

Un
ifo

rm

So
bo

l

Ha
lto

n

RCobyla

Un
ifo

rm

So
bo

l

Ha
lto

n

PSO

Un
ifo

rm

So
bo

l

Ha
lto

n

EMNA

Un
ifo

rm

So
bo

l

Ha
lto

n

NGOpt14

Un
ifo

rm

So
bo

l

Ha
lto

n

DifferentialEvolution

Figure 9.5: Relative final discrepancy value found by each of the used optimizers, compared

between different samplers. Values of 0 correspond to finding the optimal solution, while 1

corresponds to the worst achievable value (the solver believes the set has a discrepancy of

0). Boxplots are aggregations of 10 runs on 10 instances, all for 𝑛 = 500.

the relative final discrepancy found on the grids with 𝑛 = 500, for a few selected

dimensions. The resulting distributions are visualized in Figure 9.5. From this

figure, we can see that, while the choice of sampler often has a low impact on the

performance of most algorithms, some tendencies can still be observed. In most

cases, the Halton sampler seems to be the most challenging, especially in lower

dimensions. However, the ordering is not fully consistent between algorithms or

even between dimensions.

9.5 Conclusions

We have studied the efficiency of numerical black-box optimization approaches for

maximizing the local 𝐿∞ star discrepancy values for a given point set 𝑃 . The results

are underwhelming; the obtained results cannot be used as reliable estimates for

the overall 𝐿∞ star discrepancy of 𝑃 .

The results indicate that off-the-shelf black-box optimization approaches have

difficulties coping with the multi-modal nature of the problem and/or with the dis-

152

Conclusions Section 9.5

continuities in the genotype-phenotype mapping. We believe that this combination

makes the problem an interesting use case for comparing diversity mechanisms

with or without restarts. In particular, we expect that approaches such as quality-
diversity (originally introduced in [PSS16; Pug+15], but see [Cha+20] for a more

recent survey) or niching [Shi12] could improve the quality of the search algorithms.

The focus of our work has been on the numerical black-box solvers. However, an

interesting aspect of the star discrepancy computation problem is that it can also be

studied as a discrete problem, using the grid structure described in Section 3.1. This

grid structure is exploited by the TA algorithm from [GWW12] (see Section 3.4). We

suspect that merging some of the problem-specific components of this algorithm

(e.g., the snapping rounding routines) into evolutionary algorithms operating on

discrete search spaces of the type [1..𝑛]𝑑 could be worthwhile.

More importantly, the multimodularity of the problem seems to be a major

hindrance to the performance of the tested black-box optimizers. Recent develop-

ments
62
suggest a better choice of optimizers lead to much better results. Indeed,

Olivier Teytaud was able to compute exact values for all tried instances
63
in dimen-

sions lower than 8. To our knowledge, this was based on a modified version of the

NGOpt optimizer (see Section 10.3), tailored to multimodal problems. A deeper look

into this could provide excellent results and a better alternative to the TA heuristic.

62 This is based on work by, and discussions with, Olivier Teytaud, posterior to the publication of

the paper this chapter is based on.

63 These were taken from a GECCO competition organised in relation with our submission.

153

10 Black-box Optimizers for Strat-
ified Sampling Optimization

This final chapter is a truncated version of [CKP24], where only the part relevant to
our work is described. It is joint work with Nathan Kirk and Florian Pausinger.

10.1 Summary of Results
We describe in this short chapter our use of some common black-box optimizers

to compute optimal stratifications with respect to the expected 𝐿2 discrepancy.

Section 10.2 recalls the definition of jittered sampling, the difference with stratified

sampling and, more importantly, describes both the key questions preluding this

work and the equivolume constructions with strata orthogonal to the diagonal

suggested by Kirk and Pausinger in a preliminary version of [CKP24].
64
We will

only list the major results that are relevant for our optimization comparison in Sec-

tion 10.4. A reader interested in the mathematical proofs and methods involved in

the constructions can find these in the original paper [CKP24].

Section 10.3 describes the three optimizers used, before Section 10.4 presents a

comparison of the stratifications returned by the different optimizers, those obtained

mathematically and known constructions with jittered sampling. Our optimization

does not cover all possible stratifications, only all stratifications where each stratum

is orthogonal to the main diagonal. We show that all three optimizers perform

similarly, and the resulting kernel density plots suggest the optimal stratifications

should not be equivolume, but alternating between clusters of thin strata and a

large stratum. One of the limits during this optimization was the noise on the

expected 𝐿2 discrepancy value: the verified value with the returned set is always

higher than the value it obtained during the run.

Even with this caveat, we obtain better results than the equivolume partitions

on all tested instances in dimensions 2 and 3, for 𝑛 ≤ 20. We observe that, in

two dimensions, the equivolume stratification S(𝑁, 2) improves the uniformly

distributed random point sets by a factor of 2 for the 𝐿2 discrepancy, which is

proven in [Pau23], and approximations of S∗(𝑁, 2), for which we relax the equiv-

olume condition, improve S(𝑁, 2) by up to 8% for the smallest values of 𝑛. In

64 This is an essential part of [CKP24] but predates the optimization approach.

154

Stratified Sampling Section 10.2

three dimensions, we see that approximations of S∗(𝑁, 3) provide a slightly larger

improvement of up to 10% over the equivolume stratification.

10.2 Stratified Sampling

10.2.1 Jittered Sampling
Classical jittered sampling provides𝑑-dimensional point sets with small discrepancy

in [0, 1]𝑑 consisting of 𝑛 = 𝑚𝑑
points for a positive integer 𝑚 ≥ 2. As briefly

mentioned in Section 2.2.1, the main idea is to partition the unit cube into 𝑛 axis-

parallel cubes of volume 1/𝑚𝑑
and to pick a uniform random point from each cube.

This construction avoids local clusters one usually obtains when considering 𝑛 i.i.d

uniformly sampled points from [0, 1]𝑑 .
Equation (2.4) showing that jittered points have lower expected star discrepancy

than random ones is our motivation to look for other constructions of partitions. In

particular, we aim to find a construction that works for arbitrary 𝑛 while improving

the expected (star) discrepancy of a set of 𝑛 i.i.d. uniform random points. In fact,

for 1 < 𝑝 < ∞, a stratified set derived from a partition into 𝑛 > 2 equivolume sets

always has a smaller expected 𝐿𝑝-discrepancy than a set consisting of 𝑛 i.i.d. random

points. This strong partition principle was proven in [KP21, Theorem 1]
65
and raises

the question of which partition yields the stratified sample with the smallest mean

𝐿𝑝-discrepancy – if such a partition exists. Or, as a more modest goal, which

construction works well in general?

10.2.2 An Equivolume Construction in Dimension 2
There are several straightforward ways to partition the 𝑑-dimensional unit cube

[0, 1]𝑑 into 𝑛 sets of equal volume. We could for example partition the interval [0, 1]
into 𝑛 subintervals of equal length and use this to define 𝑛 slices of equal volume.

In fact, we can partition an arbitrary number of the 𝑑 generating unit intervals into

subintervals of equal length to generate grid-type partitions of the 𝑑-dimensional

unit cube. In every such example it is straightforward to characterise the sets in

the partition (since they are axis-parallel rectangles) and to prove that these sets

have indeed all the same volume. However, any such construction only works for a

restricted number of points and not for arbitrary 𝑛.

In this section, we characterise another family of equivolume partitions that was

recently studied in the context of jittered sampling [KP21]. Given the unit square

65 See also [PS16] for a weaker form.

155

Chapter 10 Black-box Optimizers for Stratified Sampling Optimization

[0, 1]2 and 𝑛 − 1 parallel lines 𝐻𝑖 with 𝑖 = 1, . . . , 𝑛 − 1, which are orthogonal to the

main diagonal, 𝐷 , of the square, we would like to arrange the lines such that we

obtain an equivolume partition of the unit square; see Figure 10.1.

•
𝑝1

•
𝑝2𝑎1

𝑎2

Figure 10.1: Partition of the unit square into 𝑛 = 6 equivolume slices that are orthogonal

to the diagonal.

We denote the intersection 𝐻𝑖 ∩ 𝐷 of a line with the diagonal with 𝑝𝑖 . It is

straightforward to calculate all points 𝑝𝑖 for arbitrary 𝑛. In fact, note that 𝐻𝑖 splits

the unit square into two sets of volume 𝑖/𝑛 and 1 − 𝑖/𝑛. If 𝑖 ≤ 𝑛/2, we just need
to look at the isosceles right triangle that 𝐻𝑖 forms with (0, 0). We know that this

triangle has volume 𝑖/𝑛. Denote the length of the two equal sides with 𝑎𝑖 > 0, then

𝑎2𝑖 /2 = 𝑖/𝑛 and 𝑝𝑖 = 𝑎𝑖/
√
2. Therefore, we get that

𝑝𝑖 =

√︂
𝑖

𝑛
, (10.1)

for all 𝑖 ≤ 𝑛/2. By symmetry, we also get the points 𝑝𝑖 with 𝑖 > 𝑛/2. The question
behind the part of the paper not presented here is how to generalise this simple

characterisation of equivolume partitions of the unit square to dimensions 𝑑 > 2.

To state this problem formally, we introduce further notation. Let 𝐻+
𝑟 be the

positive half space defined as the set of all x ∈ ℝ𝑑
satisfying

𝑥1 + 𝑥2 + . . . + 𝑥𝑑 ≥ 𝑟 ; (10.2)

accordingly let 𝐻−
𝑟 be the corresponding negative half space and let 𝐻𝑟 be the

hyperplane of all points x ∈ ℝ𝑑
satisying 𝑥1 + 𝑥2 + . . . + 𝑥𝑑 = 𝑟 . For a given 𝑛, we

would like to find the values 0 < 𝑟1 < . . . < 𝑟𝑛−1 < 𝑑 such that the corresponding

hyperplanes 𝐻𝑟1, . . . , 𝐻𝑟𝑛−1 define a partition of [0, 1]𝑑 into 𝑛 equivolume sets. We

call the set

S(𝑛,𝑑) := {𝑟𝑖 : 𝑖 = 1, . . . , 𝑛 − 1}

156

Stratified Sampling Section 10.2

the generating set of the partition. Using Equation (10.1) we see that

S(𝑛, 2) =
{√︂

2𝑖

𝑛
: 1 ≤ 𝑖 ≤ /2

}
∪

{
2 −

√︂
2𝑖

𝑛
: 1 ≤ 𝑖 < 𝑛/2

}
.

Note that for even 𝑛 the point {1} is in the set, while it is not for odd 𝑛.

Problem 1. For given dimension 𝑑 and number of sets 𝑛, characterise the set S(𝑛,𝑑).

10.2.3 Widening the Stratification Search Space
Our approach is motivated by [KP21, Examples 2 and 3]. It was shown that among all

partitions of the unit square into two sets of equal-volume, the dividing hyperplane

orthogonal to the diagonal and going through the center of the square gives the

smallest discrepancy. Furthermore, it was observed that moving the dividing

hyperplane along the diagonal and thus relaxing the equivolume constraint can

further improve the expected discrepancy; see Figure 10.2. This motivates our

second question. For a given 𝑛, we would like to find the values 0 < 𝑟1 < . . . <

𝑟𝑛−1 < 𝑑 such that the corresponding hyperplanes 𝐻𝑟1, . . . , 𝐻𝑟𝑛−1 define a partition

of [0, 1]𝑑 into 𝑛 sets minimizing the expected discrepancy of the corresponding

stratified sample. We call the set

S∗(𝑛,𝑑) := {𝑟𝑖 : 𝑖 = 1, . . . , 𝑛 − 1}

the minimal set of the parameter pair (𝑛,𝑑).
Problem 2. For given dimension 𝑑 and number of sets 𝑛, determine or approximate
the minimal set S∗(𝑛,𝑑).

•

0.05 0.0490

Figure 10.2: Left: Best partition into two sets of equal volume and illustration of one-

parameter family of partitions obtained from moving hyperplane along diagonal. Right:

The partition of this family with the smallest expected discrepancy.

While Problem 1 was the precursor of the work, Problem 2 will be the one

interesting us in this chapter.

157

Chapter 10 Black-box Optimizers for Stratified Sampling Optimization

Without going into details
66
, it was shown that:

S(𝑛,𝑑) ≈
{
𝑑

2

+
√
𝑑

2

√
3

𝛷−1
(
𝑖

𝑛

)
: 𝑖 = 1, . . . , 𝑛 − 1

}
. (10.3)

We now tackle the problem of verifying if the partitions given by this formula

match up against excellent, ideally optimal, partitions without the equivolume

condition.

10.3 Three Common Optimizers
We quickly introduce in this section the three optimizers that will be used for our

experiments, CMA-ES, NGOpt and a (1+1)-Evolutionary Strategy.

Black-box optimizers present two advantages for our problem. The first is that

it is a very difficult task to directly compute the expected 𝐿2−discrepancy of a

general stratification. Recent approaches have always studied square boxes aligned

with the axes [KP22] or used numerical experiments [KP21]; note that finding the

best positions for 3 points was already an involved process, see [KP21]. Black-box

optimizers, in contrast, do not require us to obtain new results on the structure of
the function but directly try to find good intersection points for the given setting

through a systematic trial and error process.

The second advantage is that for each intersection point, we only need to keep a

single parameter since we know the hyperplanes are orthogonal to the diagonal,

regardless of the dimension 𝑑 . We can model the problem as an 𝑛 − 1 dimensional

optimization problem (𝑝1, . . . , 𝑝𝑛−1), where for each element 𝑝𝑖 we have the bounds

𝑝𝑖 ∈ [0,
√
𝑑], as well as the ordering constraints on the different parameters, i.e.

𝑝1 ≤ 𝑝2 ≤ . . . ≤ 𝑝𝑛−1.

CMA-ES The Covariance Matrix Adaptation Evolution Strategy, also known as

CMA-ES is a family of heuristic optimization techniques for numerical optimization.

It was initially introduced in [HO96] (with an extension in [HO01]), but modifica-

tions have been suggested over the years, leading to many different variants (see for

example [Rij+16] for some popular modifications). We give here a brief description

of the general principle, more details can be found in a tutorial paper by Hansen

[Han16] as well as in a more recent presentation by Akimoto and Hansen [AH22].

In our experiments, we use the Diagonal-CMA version, described in [AH20].

66 We refer the interested reader to the full paper [CKP24].

158

Three Common Optimizers Section 10.3

The general principle behind CMA-ES is to introduce a covariance matrix associ-

ated to a multivariate Gaussian distribution and to learn second order information

on this distribution. The mean of this distribution represents the current best guess

while the covariance matrix determines the shape of the distribution ellipsoid. At

each step, this covariance matrix is used to generate a number of solution candi-

dates. These candidates are evaluated for the function we are trying to optimize and

then used to update the mean and covariance matrix of the multivariate Gaussian

distribution. The step size for each update is also changed during the algorithm,

by comparing the current path length - how much we change the mean of the

distribution - with the expected one if steps were independent. If the path length

is shorter, the steps are anti-correlated and the step size should be decreased, if

the path length is longer it should be increased. To update the mean, a weighted

sum of part (or all) of the new samples is done, where weights are higher for better

samples and the chosen step size is taken into account. For the covariance, the new

covariance matrix will depend both on a weighted sum of the new samples and on

the evolution path, the sum of past steps for the mean.

NGOpt: The second black-box optimizer we used is NGOpt. An older version

was presented in [Meu+21] (in which NGOpt8 is called ABBO), more recent modifi-

cations haven’t been documented in peer-reviewed papers but were incorporated

in the NGOpt optimizer available in the Nevergrad Python module. NGOpt is

an algorithm selection technique, which will select the best algorithm to run on a

problem. It selects the algorithm(s) to run based on features known in advance -

dimension of the problem, type of variables, bounds for the variables or the eval-

uation budget for example - as well as based on information obtained during the

execution of the algorithms. It can run multiple algorithms in parallel before only

continuing with the best one, or run multiple algorithms sequentially. CMA-ES is

one of the algorithms that NGOpt can select, but given our problem setting (dimen-

sion below 10, budget 1000), it does not call the same version of CMA as our CMA

experiment. Given the lack of information on the function we are minimizing as

well as our lack of budget for hyperparameter tuning and algorithm configuration,

using NGOpt’s intrinsic algorithm choice is a valuable help in guaranteeing that

our chosen optimizers should be good.

In our problem formulation, potential solutions are of the shape (𝑝𝑖)𝑖∈{1,...,𝑘}
where, for all 𝑖 ∈ {1, . . . , 𝑛 − 1}, 𝑖 < 𝑗 implies 𝑝𝑖 ≤ 𝑝 𝑗 . CMA-ES and a large part of

the algorithms in NGOpt try to learn some relation between the variables. For this,

they use several evaluated points and update the sampling distribution. Most of

these optimizers do not work well with constraints (they typically sample points

159

Chapter 10 Black-box Optimizers for Stratified Sampling Optimization

until they fit the constraints, potentially spending a lot of time), therefore our

approach was to reorder the solution parameters to always have a sorted point

set. After evaluating the fitness of a sorted candidate point, the optimizer would

consider this to be the fitness of the non-sorted original point. The distribution

update could then be misled by this sorting.

(1+1)-Evolutionary Strategy: To limit the impact of the above problem, we also

run our experiments with a more traditional (1+1)-Evolutionary Strategy (ES). At

each step, the current solution is modified by adding a random variable (in our case a

Gaussian random variable) to each element of the solution, scaled by a varying step

size. The best solution between the new one and the old solution is then kept for the

next step. The step size is modified depending on the mutation success, according

to the 1/5-th rule [SS68]: if too many steps are successful, the step size is increased,

and it is decreased otherwise. This iterative process continues until we reach the

given budget. There are many different versions of (1+1)-Evolutionary Strategies

generally changing the mutation rates. We will be using here the Parametrized(1+1)

implementation from the Nevergrad package with a Gaussian mutation.

10.4 Finding Minimal Sets

In this section, we use several different black-box optimizers to look for approxi-

mations of the minimal sets S∗(𝑛, 2) and S∗(𝑛, 3), which we then compare to our

equivolume stratification. We will consider values 0 ≤ 𝑝1 ≤ · · · ≤ 𝑝𝑛−1 ≤
√
𝑑 .

These values correspond to the Euclidean distance between the origin and the

intersection points of the chosen hyperplanes with the diagonal, and are more

convenient to use with the optimizers than the hyperplane parameters appearing

in the mathematical formulas. Black-box optimizers generate a number of samples,

evaluate the target function for these samples (in this case, the expected 𝐿2 discrep-

ancy) and then update some information on the problem. This depends heavily on

the type of optimizer, it can be only the best solution found so far or an underlying

distribution which can be used to find the best solution.

10.4.1 Experiment Setup

Regardless of the chosen optimizer, the general model is identical. In dimension

𝑑 , we have an 𝑛 − 1 dimensional problem, where each parameter is in the interval

160

Finding Minimal Sets Section 10.4

Table 10.1: A percentage change comparison of the expected 𝐿2 discrepancies of different

point sets with respect to the equivolume stratification: uniformly distributed random

points 𝑅(𝑛, 2), the equivolume partition corresponding to S(𝑛, 2) and the best sets obtained
by the three black-box optimizers. Expected 𝐿2 discrepancy values are done with 10 000

repetitions to guarantee higher accuracy. We refer to Table 12.20 in Section 12.3 for the

exact expected discrepancy values.

Original Data

0.04614 0.02917 0.02696 0.02682 0.03061
0.03441 0.02035 0.01883 0.01891 0.023
0.02774 0.0156 0.01453 0.01464 0.01472
0.02327 0.01272 0.01191 0.01195 0.01192

0.0199 0.0107 0.01007 0.01006 0.0108
0.01714 0.009202 0.008722 0.008668 0.008866
0.01547 0.008138 0.007738 0.007764 0.007829
0.01492 0.007266 0.006961 0.006939 0.007051
0.00932 0.004746 0.004668 0.004668 0.004647

0.006955 0.003532 0.003541 0.003558 0.003478

N R(N, 2) S(N, 2) CMA-ES NGOpt (1+1)-ES
3 58.18% - -7.58% -8.06% 4.94%
4 69.09% - -7.47% -7.08% 13.02%
5 77.82% - -6.86% -6.15% -5.64%
6 82.94% - -6.37% -6.05% -6.29%
7 85.98% - -5.89% -5.98% 0.93%
8 86.26% - -5.22% -5.80% -3.65%
9 90.10% - -4.92% -4.60% -3.80%

10 105.34% - -4.20% -4.50% -2.96%
15 96.38% - -1.64% -1.64% -2.09%
20 96.91% - 0.25% 0.74% -1.53%

[0,
√
𝑑]. The optimizer is given a budget of 1000 evaluations

67
where each evalua-

tion consists in approximating the expected 𝐿2 discrepancy of the corresponding

stratification. To approximate this function, we first sort the different parameters

to obtain a valid stratification. We sample randomly a point in each stratum then

compute the 𝐿2 discrepancy of the resulting point set. This is repeated 1500 times

and averaged to obtain an approximation of the expected 𝐿2 discrepancy.

All experiments were run in dimension 2 and 3 in a low-fidelity setting, with a

high-fidelity correction at the end. Indeed, since the optimizers are tracking only

the best value found so far, it is possible that the returned point sets have slightly

higher discrepancy and the calculation during the optimizer run was one with a

high variance. To correct for this phenomenon, we recompute the expected 𝐿2
discrepancies of the corresponding point sets, this time with 10 000 repetitions to

guarantee higher accuracy. No initialization is provided to the optimizers and 10

runs are made for each instance.

Note that we could extend our experiments beyond dimension 3. The main

difficulty is sampling uniformly from given hypercube slices. In our experiments,

we define a slice based on the distance between two successive points 𝑝𝑖 and 𝑝𝑖+1,
sample a point in it before rotating and translating this slice into the right position

67 While this may seem low to practitioners, there appears to be very quick convergence. The

solution is within noise range of the optimal after 100 evaluations.

161

Chapter 10 Black-box Optimizers for Stratified Sampling Optimization

to obtain the desired point. Note that re-sampling may be necessary as usually not

all of the slice is indeed contained in the unit cube. However, this is in general

not a problem. For 𝑑 = 3 we use quaternions to define the rotations. In higher

dimensions this gets more involved.

Both the ioh [Nob+24] and Nevergrad [RT18] Python packages were used for

the optimizers, the implementations are taken from the Nevergrad package. Ex-

periments were run in Python, using the random module to generate the points.

The kernel density estimations were obtained using the sklearn package and in

particular Kernel Density.

10.4.2 Experimental Results

Table 10.1 gives a percentage comparison of the expected 𝐿2 discrepancy of the

equivolume partitionS(𝑛, 2), of uniformly distributed random points 𝑅(𝑛, 2), and of
the best distributions found by the different optimizers, using S(𝑛, 2) as a baseline.
The discrepancy estimation is obtained with 10 000 repetitions.

As proven in [Pau23], the expected 𝐿2 discrepancy of the equivolume partition

is (asymptotically) smaller by a factor of 2 than the discrepancy of uniformly

distributed random points for all different set sizes tested. All three black-box

optimizers return very similar values, which are about 7% smaller for the lowest

values of 𝑛 after re-evaluation of the expected 𝐿2 discrepancy. Since all three

optimizers return similar values, this suggests that the point ordering in the problem

structure was not an issue, at least for these low values of 𝑛. The only outliers

are for very low values of 𝑛, where the (1+1)-ES is struggling: this seems to be

largely due to the low-fidelity optimization, the best discrepancy values found were

around 0.025 for 𝑛 = 3 before correction. We also note that for 𝑛 = 4, both the

discrepancy values and the point sets returned are quite similar to the improved

construction given in [KP21] (see Table 10.2 for the point sets). The equivolume

partition performs better than the optimizers for𝑛 = 20 and its relative performance

improves when 𝑛 increases in general.

As mentioned previously, discrepancy values for the point sets returned by the

optimizers were recomputed with a higher precision. This implies that point sets

with potentially smaller discrepancy may be overlooked during the optimization be-

cause of the imprecision in the expected 𝐿2 discrepancy calculations. The gradually

decreasing gap, both for the returned discrepancy value and the corrected one, also

suggests that our optimizers may be struggling if the number of points is increased.

Table 10.2 gives examples of the obtained point sets (see also Section 12.3).

Interestingly, all the sets returned by the three optimizers have a similar structure

162

Finding Minimal Sets Section 10.4

Table 10.2: Optimal partitioning points returned by CMA-ES. Note that we need 𝑛 − 1

hyperplanes for a set of 𝑛 points.

𝑛 Point set obtained by CMA-ES

3 [0.525326, 1.094506]

4 [0.416424, 0.880939, 0.995149]

5 [0.394111, 0.617818, 0.967749, 1.021636]

6 [0.346292, 0.547769, 0.833453, 0.916769, 1.066748]

7 [0.325707, 0.506785, 0.6853, 0.876577, 0.97997, 1.087066]

8 [0.322496, 0.482121, 0.583169, 0.863154, 0.874371, 0.981856, 1.066117]

9 [0.293892, 0.448608, 0.525631, 0.728415, 0.864673, 0.902607, 0.992526, 1.097269]

10 [0.295754, 0.447257, 0.49142, 0.603255, 0.805188, 0.88467, 0.923663, 1.005221, 1.120071]

15 [0.279248, 0.27951, 0.434256, 0.541966, 0.560045, 0.623614, 0.7019,

0.79564, 0.798366, 0.814506, 0.931907, 0.958269, 1.010601, 1.333425]

20 [0.14877, 0.239469, 0.432346, 0.471298, 0.487274, 0.50509, 0.545568, 0.58021, 0.612064,

0.737669, 0.802694, 0.856641, 0.889084, 0.921972, 0.946705, 0.977818, 1.009777, 1.022098, 1.259538]

once 𝑛 is big enough (𝑛 ≥ 5). This structure can be visualised using a kernel density
estimate with a Gaussian kernel as illustrated in Figure 10.3.

Figure 10.3: Kernel density estimate plots with Gaussian kernels for the best partitioning

points obtained by the optimizers in dimension 2 as well as the equivolume sets for 𝑛 =

10, 15, 20.

The point sets seem to have two clusters of points on the diagonal. The spread

of the points seems bigger meaning that the first point has a smaller value than

the first of the equivolume set, while the last point has a larger value than the

corresponding point of the equivolume set.

Turning to dimension 3, Table 10.3 gives the percentage comparison of the

expected 𝐿2 discrepancy of the different methods with S(𝑛, 3) as the baseline. The
results are quite similar to the𝑑 = 2 case, where all three black-box optimizers return

similar values, all outperforming the equivolume stratification and with the (1+1)-

ES giving the worst results. Once again, we notice that the relative performance

of the equivolume strategy improves as 𝑛 increases. The plots in Figure 10.4 are

163

Chapter 10 Black-box Optimizers for Stratified Sampling Optimization

similar to corresponding plots in dimension 2: there are clusters of strata and the

spread of the points seems larger. However, the last diagonal point 𝑝𝑛−1 in the

optimizers’ sets is not always larger than the last diagonal point for S∗(𝑛, 3). We

visualise the point sets again with a kernel density estimate in Figure 10.5.

Table 10.3: A percentage change comparison of the expected 𝐿2−discrepancy values of

different point sets using S(𝑛, 3) as a baseline. Discrepancy values are done with 10 000

repetitions; we refer to Table 12.21 in Section 12.3 for the exact expected discrepancy values.

N R(N, 3) S(N, 3) CMA-ES NGOpt (1+1)-ES
3 34.09% - -10.91% -10.55% -10.05%
4 41.67% - -8.14% -8.27% -8.14%
5 45.45% - -8.51% -8.76% -8.02%
6 48.45% - -9.90% -9.94% -8.58%
7 49.52% - -8.68% -7.68% -7.66%
8 51.31% - -7.84% -7.68% -7.28%
9 54.53% - -6.67% -7.05% -6.77%

10 53.33% - -6.32% -6.21% -6.44%
15 57.98% - -5.08% -5.29% -4.81%
20 57.86% - -3.32% -3.86% -3.29%

Overall, while the equivolume stratification provides smaller expected 𝐿2 dis-

crepancy than random uniformly distributed points, our results suggest that it can

still be improved. Finally, it is important to note that our black-box optimizers seem

to return sets with similar structure as illustrated in Figure 10.3 and Figure 10.5

while the individual points in the respective sets are quite different; see the tables

in Section 12.3. This suggests a plateau-like structure of the underlying space which

is a blessing and a curse at the same time. On the one hand, we can safely assume

that we found almost optimal solutions, on the other hand it leaves little hope to

actually determine the minimal set.

164

Finding Minimal Sets Section 10.4

0.0 0.5 1.0 1.5
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

NGOpt
S(15,3)

0.0 0.5 1.0 1.5
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

NGOpt
S(20,3)

Figure 10.4: Best partitions generating stratified point sets obtained by the optimizers in

dimension 3 compared to the equivolume partition for 𝑛 = 5, 7, 9, 10, 15, 20.

Figure 10.5: Kernel density estimate plots with Gaussian kernels for the best partitioning

points obtained by the optimizers in dimension 3 as well as the equivolume sets for 𝑛 =

5, 7, 9, 10, 15, 20.

165

Chapter 10 Black-box Optimizers for Stratified Sampling Optimization

Open questions This chapter presents results on optimal stratification of [0, 1]2
and [0, 1]3 for the class of partitions whose partitioning hyperplanes are orthogonal
to the main diagonal of the unit cube. Hence,

1. how much can one improve upon the expected discrepancy values of the

stratified point sets obtained in this text by relaxing some, or all of the

constraints on the partitioning lines?

2. what is the optimal partition (with respect to the expected discrepancy of the

resulting stratified point set) of [0, 1]𝑑 for 𝑑 ≥ 2? Are the optimizers close to

the mark, or are they missing a different class of solutions?

166

11 Future Work

In this thesis, we have proposed multiple computational approaches to tackle a

number of discrepancy-related problems. Our key objective is dual: provide new

empirical evidence to essential questions which have puzzled mathematicians for a

long time, and introduce new optimization methods and tools to the discrepancy

community. Our main focus has been on constructing new low-discrepancy point

sets, in a wide variety of dimensions.

For smaller point sets in dimensions 2 and 3, we introduced non-linear program-

ming formulations in Chapter 5 to provide exact constructions for the 𝐿∞ star

discrepancy and a set of other measures. We also showed that these methods could

still be used to construct good points sets for up to 100 points. Subset selection

increases the range for which we can obtain excellent sets, either via exact methods,

Chapter 6, or via heuristics, Chapter 7. For exact methods, we can obtain good

low-discrepancy sets in dimensions 2 and 3 up to 120 points. With the heuristic

approaches, we are not limited by the dimension. We observe a 10 to 30% improve-

ment on the initial set for all (𝑛,𝑑) combinations tried, though the results are poorer

when 𝑛 becomes too large compared to the number of points removed 𝑘 . Finally,

greedy approaches with the 𝐿∞ or 𝐿2 star discrepancy described in Chapter 8 enable

the adaptation of a given set to a more sequence-oriented setting, allowing the

addition of one or multiple points at a time to this set. This does remain applicable

only to one, two or three dimensions for the moment.

Our methods should also not be seen as separate. While our work so far has

kept them isolated, it is possible to generate a good set of points via the Kritzinger

construction or from an unfinished optimization run, on which we can then use

subset selection. We conclude this thesis with a short description of some open

questions.

Optimal point sets: Our results are so far limited to around 20 points in di-

mension 2 and less than 10 in dimension 3. While we do not expect to push this

much further, excellent (but not necessarily optimal) point sets can be obtained by

simplifying the model. For example, our current work with the same co-authors

as [Clé+23a] suggests that one can enforce the chosen permutation of points in

model (5.6), i.e. fix the 𝑎𝑖, 𝑗 variables. In this way, we are able to obtain point sets

of 100 points in dimension 2 with discrepancy 0.01525 with preliminary experi-

167

Chapter 11 Future Work

ments, against 0.027485 for the Fibonacci set and 0.01933 with our optimal model

interrupted after 40 000 seconds (see Table 5.4).

A different direction is one mentioned to me by Nathan Kirk,
68
and that has also

come up multiple times in questions in workshops and conference: using machine

learning models for our numerous optimization problems. It appears that machine

learning models based on a smoothed 𝐿2 discrepancy
69
are able to give excellent

point sets in a wide variety of dimensions and with point sets up to hundreds of

points. Once again, the strong performance of a model based on the 𝐿2 discrepancy

reinforces our belief that the Kritzinger sequence is a low-discrepancy sequence (as

the numerical evidence in Chapter 8 suggests for low dimensions.). It would not be

surprising to see machine learning methods be successful in tackling a number of

the problems introduced in this thesis. Albeit in a limited scope, our results with

black-box optimizers in Chapter 10 already show that some approaches are able to

learn structures relevant to discrepancy.

It will also be very interesting to see if the new point sets that can be generated

with the methods described in this thesis actually translate to better empirical

performances for the different applications, of which numerical integration is

naturally the first. The sets obtained via subset selection did not perform noticeably

better than the Sobol’ sequence for numerical integration, and were less regular

when projected to lower-dimensions. Do we also observe the same performance

on applications with the sets obtained via optimization methods, or is there a

qualitative difference compared to previous sets? Perhaps 𝐿2-based approaches and

their greater smoothness could provide more flexibility in the point sets than 𝐿∞
approaches.

Multiple-corner discrepancy: Continuing on this last point, we introduced

in Section 5.3.3.3 the multiple-corner discrepancy, to provide more symmetry to

the optimal sets obtained. We showed that we could compute optimal sets for this

measure at very little added cost relative to the original 𝐿∞ star discrepancy setting.

Should the new optimal constructions not perform as well as their excellent

discrepancy might suggest, it could be very promising to research this measure

further. It would also naturally be more adapted to any problem with symmetries,

and be far less costly to compute (or design point sets for) than the extreme

discrepancy. From a construction perspective, very simple experiments have

allowed us to construct excellent 𝐿∞ star discrepancy sets with a larger number of

68 This paragraph is based on personal communication with Nathan Kirk, whose work was not yet

available online at time of writing

69 The smoothing comes from the minima appearing in the formula, as the model requires a

derivable function.

168

Future Work Chapter 11

points from the optimal multiple-corner discrepancy sets. Multiple copies of the

optimal 16 point multiple-corner set placed together, with some rotations, allowed

us to build sets of 64 points competitive or better than the Fibonacci set of similar

size.

Subset selection: In a similar vein as for optimal sets, the main challenge for

point sets obtained via subset selection is to make a difference in applications. Can

one find an application where these sets are noticeably better than traditional sets

and sequences (and, maybe soon, than the machine learning/optimized sets)? Some

quick experiments on numerical integration did not show a clear improvement. In

particular, as we focus on a single discrepancy measure when optimizing, the point

sets tend to be less regular for other measures. For example, the discrepancy of the

lower-dimensional projections of our sets is more often than not worse than that

of the projections of the Sobol’ sequence.
70

This should be relatively easy to correct: one could explore a multi-objective

approach in the subset selection heuristic,
71
or consider a weighted discrepancy

function. The weighted discrepancy consists in a weighted sum of the discrepancies

of all the different projections of the point set, introduced in [SW98]. For example,

in dimension 3, there would be 3 terms corresponding to the one-dimensional

discrepancy of the one-dimensional projections, 3 for the two-dimensional dis-

crepancies of the two-dimensional projections and one for the discrepancy of the

original set. Weights can be set as desired to simplify the formula (for example

keeping only the two-dimensional terms and the original one) or to emphasize the

importance of desired terms. As the 𝐿∞ star discrepancy, the general weighted star

discrepancy is still very expensive to compute. Nevertheless, there exist methods

linked to lattice constructions that consider this measure when constructing the

lattice, for example [LEc+22]. In our case, considering only a small specific set of

projections such as all the two-dimensional ones could already be interesting.

The subset selection heuristic should not be seen as a rigid method, but as

a general approach. In low and moderate dimensions, it is possible to run the

heuristic with a tailored (weighted) discrepancy function for each experiment for

a relatively low cost. This adaptation should also be possible in general when

optimizing point sets. Multi-objective methods can be efficiently represented via

constraints, or penalties in the objective function. Initial experiments suggest

these methods work very well, with a lot of flexibility on the choice of these

70 It even seems that sets obtained with Steinerberger’s functional are better in this regard.

71 This could take into account other objectives such as the worst 2-dimensional projection discrep-

ancy value, the 𝐿2 discrepancy or simply geometric characteristic of the points selected such as

the dispersion or the average distance between points.

169

Chapter 11 Future Work

constraints.
72

Nevertheless, we expect subset selection to be more flexible with

respect to other discrepancy measures and higher dimensions.

Algorithmic questions: From our work, there remain two complexity questions

wewere not able to solve: is𝐿∞ subset selectionW[1]-hard, and is𝐿2 subset selection

NP-hard? We expect the first to be true, and we admit not much time was put

into this. Simply showing that at least one discrepancy calculation is necessary to

solve subset selection would suffice to show it is W[1]-hard. We also expect the

second to be true, as it seems that the linear dependency on the dimension would

make this problem far too powerful in higher dimensions. The difficulty is not so

much in finding NP-hard problems that can describe the problem, but in showing

that the instances resulting from this representation are hard ones for the NP-hard

problems.

On the discrepancy calculation side, we provided a parallelized version of the

DEM algorithm. It seems unlikely to us that this algorithm could be improved much

further, despite some recent minor improvements in [Cha13] to the complexity of

solving Klee’s Measure Problem, that had initially led to the development of the

DEM algorithm. On the other hand, there seems to be plenty of improvement room

on the heuristics side. As a continuation of Chapter 9, discussions with Olivier

Teytaud suggest that multi-modal black-box optimizers perform extremely well,

at least up to dimension 10. It remains to be seen exactly how far these can be

pushed, and whether they can provide good solutions with a decent runtime. We

also expect that the TA heuristic itself can be improved. Indeed, much progress has

been made on multi-modal algorithms since its creation. This question would be of

great practical and theoretical interest.

The Kritzinger sequence: We presented in Chapter 8 extended numerical

results on the Kritzinger sequence. The natural question is what is its asymptotic

discrepancy order. Having such a different construction method compared to other

low-discrepancy sequences is fascinating, and obtaining a formal proof of the

discrepancy order for this function or, even better, a class of functions, would be a

great development in our understanding of uniformly distributed point sets. From

a computational perspective, we would also not be surprised if better methods

were available to compute the sequence. The 𝐹 (𝑦, 𝑃) function seems to be very

smooth in two dimensions when 𝑦 varies, and simple local search algorithms could

72 One can for example find the optimal set such that the minimum distance between two points is

maximal, or enforce that no two points are within a certain distance of each other.

170

Future Work Chapter 11

perform well. We expect this smoothness to persist in higher dimensions.

To conclude, we point out that there has been growing interest in metrics de-

signed to compare distributions, largely led by applications in machine learning. In

particular, the field of optimal transport and the associated Wasserstein metrics has

seen renewed interest, with a few hundred related preprints in the last few months.

It would be of great interest to find the relations between the discrepancy measures

studied in this thesis and these other measures. Indeed, the result on the Kritzinger

sequence by Steinerberger in [Ste24] shows that the different approaches are not

entirely dissimilar.

171

12 Appendix

This final chapter groups together a large set of data tables associated with the

previous chapters.

12.1 Computational Results of Chapter 6
The tables on the following pages present the details of the observations summarized

in the main body of Chapter 6.

Table 12.1: CPU-time (minimum, median, maximum and number of successful runs out of

10) taken by branch and bound, for several values of 𝑛 and 𝑘 for iLHS and unif point sets
in the 3𝑑 case, where “-” indicates that the approach did not terminate before the time limit

of 1800 seconds.

𝑘 𝑛
iLHS sequences unif sequences

min med max (𝑠𝑢𝑐𝑐) min med max (𝑠𝑢𝑐𝑐)

20 40 0 161 1742 (9) 1 31 464 (9)

60 86 620 1305 (8) 140 305 569 (7)

80 567 567 567 (1) 966 966 966 (1)

100 - - - (0) - - - (0)

40 60 253 872 1492 (2) - - - (0)

80 - - - (0) - - - (0)

100 - - - (0) - - - (0)

60 80 92 806 1519 (2) 25 86 147 (2)

100 - - - (0) - - - (0)

80 100 - - - (0) . - - (0)

172

Computational Results of Chapter 6 Section 12.1

Table 12.2: Integrality gap of the LP relaxation of MILP for two-dimensional deterministic

sequences and sets with respect to the optimal found and, when not available, with respect

to the best solution found (marked with “*”).

𝑘 sequence 𝑛 = 40 𝑛 = 60 𝑛 = 80 𝑛 = 100 𝑛 = 120 𝑛 = 140

20 Faure 1.3556 1.6926 2.5039 2.4591 2.4024 4.3098

Sobol 1.3556 2.2080 2.3290 2.7040 3.6873 4.6088

Halton 1.2828 1.5105 2.8167 2.7912 2.7148 3.6817

RevHal 1.6044 1.9179 2.7750 2.7750 2.7111 4.9240

Fibon 2.1678 2.9110 3.6353 4.4520 5.1599 5.8107

40 Faure 1.1263 1.5811 1.5055 1.4535 *2.6538

Sobol 1.4267 1.4695 1.7000 *2.2972 *2.7916

Halton 1.0000 1.7417 1.7000 *1.6681 *2.2615

RevHal 1.2107 1.7750 1.6889 1.6458 *3.0579

Fibon 1.8513 2.2650 2.7402 3.1938 *3.5181

60 Faure 1.1971 1.1570 *1.1285 *2.0154

Sobol 1.1304 1.2942 *1.6949 *2.1389

Halton 1.3167 1.2833 *1.2750 *1.7231

RevHal 1.3439 1.3063 *1.4222 *2.2702

Fibon 1.6114 2.0355 *2.4153 *2.7430

80 Faure 1.0543 *1.0016 1.6392

Sobol 1.1004 *1.4218 *1.5409

Halton 1.0718 *1.0194 *1.4077

RevHal 1.1250 *1.0222 *1.8906

Fibon 1.6066 *1.9283 *2.2117

100 Faure 1.0000 1.4063

Sobol 1.2469 *1.2034

Halton 1.0000 *1.2434

RevHal 1.0000 *1.5956

Fibon 1.6097 *1.8532

120 Faure 1.2055

Sobol 1.0000

Halton 1.1077

RevHal 1.3565

Fibon 1.5534

173

Chapter 12 Appendix

Table 12.3: CPU-time in seconds obtained by the ILP solver on the MILP formulation and

by BB, for several values of 𝑛 and 𝑘 for 2𝑑 low-discrepancy sequences and sets, where “-”

indicates that the approach did not terminate before the time limit.

𝑘 sequence

𝑛 = 40 𝑛 = 60 𝑛 = 80 𝑛 = 100 𝑛 = 120 𝑛 = 140

MILP BB MILP BB MILP BB MILP BB MILP BB MILP BB

20 Faure 4 0 25 0 82 2 967 11 - 19 - 83

Sobol 5 0 19 0 114 2 740 5 - 15 - 60

Halton 6 0 26 0 89 2 - 14 - 44 - 72

RevHal 4 0 28 0 87 1 - 10 - 32 - 102

Fibon 4 0 45 0 - 2 - 26 - 20 - 67

40 Faure 43 1 169 24 - 215 - 1795 - -

Sobol 19 0 479 45 - 374 - - - -

Halton 9 8 294 13 - 216 - - - -

RevHal 10 1 214 15 1560 216 - 1235 - -

Fibon 53 0 284 18 - 187 - - - -

60 Faure 33 14 - 496 - - - -

Sobol 41 56 - 200 - - - -

Halton 135 8 - 1106 - - - -

RevHal 47 10 - 761 - - - -

Fibon 143 7 - 518 - - - -

80 Faure 161 1194 - - - -

Sobol 254 123 - - - -

Halton 843 161 - - - -

RevHal 517 305 - - - -

Fibon 1608 45 - - - -

100 Faure 19 - - -

Sobol 1538 847 - -

Halton 12 - - -

RevHal 12 - - -

Fibon - 104 - -

120 Faure 321 -

Sobol 127 -

Halton 1332 -

RevHal 491 1253

Fibon - 915

174

Computational Results of Chapter 6 Section 12.1

Table 12.4: CPU-time (minimum, median, maximum and number of successful runs out

of 10) of the ILP solver on the MILP formulation, and BB, for several values of 𝑛 and 𝑘

for iLHS and unif point sets in the 2𝑑 case, where “-” indicates that the approach did not

terminate before the time limit of 1800 seconds.

iLHS sequences unif sequences

𝑘 𝑛
MILP BB MILP BB

min med max (𝑠𝑢𝑐𝑐) min med max (𝑠𝑢𝑐𝑐) min med max (𝑠𝑢𝑐𝑐) min med max (𝑠𝑢𝑐𝑐)

20 40 2 2 4 (10) 0 0 0 (10) 0 1 1 (10) 0 0 11 (10)

60 18 30 45 (10) 0 0 0 (10) 1 16 41 (10) 0 2 201 (10)

80 71 140 190 (9) 1 2 5 (10) 15 86 458 (10) 2 12 134 (10)

100 689 913 1323 (7) 8 13 231 (10) 281 1122 1375 (6) 4 21 230 (10)

120 1486 1486 1486 (1) 15 30 49 (10) 1343 1555 1768 (2) 21 91 252 (10)

140 - - - (0) 75 107 185 (10) - - - (0) 35 210 348 (10)

40 60 5 17 26 (10) 0 0 3 (10) 0 2 4 (10) 2 192 922 (6)

80 101 160 247 (10) 5 12 19 (10) 3 6 20 (10) 81 94 107 (2)

100 - - - (0) 64 143 265 (10) 11 111 1045 (9) 3 615 1227 (2)

120 - - - (0) 413 1089 1488 (7) 7 376 1424 (8) 185 185 185 (1)

140 - - - (0) - - - (0) 8 8 8 (1) 678 678 678 (1)

60 80 15 31 62 (10) 3 7 104 (10) 2 3 51 (10) 0 287 1691 (3)

100 355 501 1707 (10) 110 195 643 (10) 3 9 66 (10) - - - (0)

120 - - - (0) 1030 1220 1411 (2) 4 95 500 (10) - - - (0)

140 - - - (0) - - - (0) 76 227 1349 (8) - - - (0)

80 100 75 127 273 (10) 22 59 652 (10) 3 4 7 (10) 0 3 4 (3)

120 292 881 1459 (6) 759 1423 1774 (4) 4 14 233 (10) - - - (0)

140 - - - (0) - - - (0) 7 28 191 (9) - - - (0)

100 120 23 167 324 (10) 24 120 365 (6) 3 5 18 (10) 5 5 5 (1)

140 565 1017 1703 (3) - - - (0) 6 10 18 (10) 27 27 27 (1)

120 140 35 259 528 (10) 796 853 1114 (4) 5 8 19 (10) - - - (0)

175

C
hapter

12
A
ppendix

Table 12.5: 2𝑑 , low-discrepancy sequences and sets: best found star discrepancy values found by 𝑟𝑎𝑛𝑑𝑜𝑚 subset sampling, by

the 𝑔𝑟𝑒𝑒𝑑𝑦 heuristic, compared to the optimal or the best found (marked with *) values returned by MILP or BB (column 𝑠𝑢𝑏𝑠𝑒𝑡),

for all tested combinations of 𝑛 and 𝑘 . Best star discrepancy values for each (𝑛,𝑘) combination are underlined, and the minimum

for each 𝑘 is highlighted in boldface.

𝑘 seq. 𝑛 = 𝑘
𝑛 = 40 𝑛 = 60 𝑛 = 80 𝑛 = 100 𝑛 = 120 𝑛 = 140

𝑟𝑎𝑛𝑑. 𝑔𝑟𝑒𝑒𝑑. 𝑠𝑢𝑏𝑠𝑒𝑡 𝑟𝑎𝑛𝑑. 𝑔𝑟𝑒𝑒𝑑. 𝑠𝑢𝑏𝑠𝑒𝑡 𝑟𝑎𝑛𝑑. 𝑔𝑟𝑒𝑒𝑑. 𝑠𝑢𝑏𝑠𝑒𝑡 𝑟𝑎𝑛𝑑. 𝑔𝑟𝑒𝑒𝑑. 𝑠𝑢𝑏𝑠𝑒𝑡 𝑟𝑎𝑛𝑑. 𝑔𝑟𝑒𝑒𝑑. 𝑠𝑢𝑏𝑠𝑒𝑡 𝑟𝑎𝑛𝑑. 𝑔𝑟𝑒𝑒𝑑. 𝑠𝑢𝑏𝑠𝑒𝑡

20 Faure 0.2094 0.0911 0.1169 0.0834 0.0994 0.1656 0.0785 0.0922 0.1305 0.0776 0.1036 0.1305 0.0762 0.1018 0.1554 0.0745 0.1038 0.1554 0.0738

Sobol’ 0.1313 0.0938 0.1254 0.0834 0.0960 0.1656 0.0809 0.1000 0.1472 0.0785 0.1014 0.1472 0.0743 0.1029 0.1554 0.0743 0.1031 0.1905 0.0738

Halton 0.1477 0.0944 0.1681 0.0861 0.1000 0.1463 0.0833 0.0979 0.1537 0.0782 0.0965 0.1537 0.0775 0.1025 0.1315 0.0754 0.1029 0.1315 0.0739

RevHal 0.1500 0.0935 0.1375 0.0836 0.0977 0.1639 0.0829 0.1000 0.1241 0.0771 0.1012 0.1421 0.0771 0.1059 0.1335 0.0753 0.1039 0.1481 0.0736

Fibon 0.0930 0.0931 0.1257 0.0866 0.0971 0.1390 0.0828 0.1000 0.1598 0.0790 0.1023 0.1779 0.0757 0.1009 0.1506 0.0741 0.1038 0.1449 0.0731

40 Faure 0.0836 0.0590 0.0747 0.0523 0.0656 0.0832 0.0490 0.0691 0.0945 0.0467 0.0722 0.1154 0.0451 0.0714 0.1154 *0.0454

Sobol’ 0.0836 0.0613 0.0695 0.0522 0.0666 0.0899 0.0495 0.0656 0.0899 0.0467 0.0697 0.1154 *0.0463 0.0687 0.1117 *0.0447
Halton 0.0993 0.0611 0.1162 0.0552 0.0656 0.0972 0.0484 0.0696 0.1157 0.0472 0.0729 0.1157 *0.0463 0.0719 0.1157 *0.0454

RevHal 0.0866 0.0628 0.0880 0.0523 0.0667 0.0841 0.0493 0.0699 0.0841 0.0469 0.0703 0.1021 0.0457 0.0730 0.0985 *0.0457

Fibon 0.0545 0.0583 0.0726 0.0498 0.0656 0.1008 0.0485 0.0669 0.0807 0.0475 0.0713 0.0862 0.0463 0.0714 0.0742 *0.0449

60 Faure 0.0645 0.0464 0.0705 0.0371 0.0522 0.0726 0.0359 0.0540 0.0872 *0.0350 0.0564 0.0937 *0.0345

Sobol’ 0.0484 0.0472 0.0659 0.0381 0.0510 0.0807 0.0356 0.0540 0.0820 *0.0341 0.0562 0.0917 *0.0343

Halton 0.0654 0.0453 0.0644 0.0366 0.0516 0.0625 0.0357 0.0539 0.0604 *0.0354 0.0561 0.0609 *0.0346

RevHal 0.0626 0.0468 0.0646 0.0391 0.0500 0.0583 0.0363 0.0530 0.0667 *0.0354 0.0561 0.0661 *0.0339
Fibon 0.0363 0.0436 0.0826 0.0364 0.0498 0.0925 0.0345 0.0531 0.0866 *0.0345 0.0537 0.0720 *0.0344

80 Faure 0.0452 0.0397 0.0472 0.0327 0.0432 0.0468 *0.0311 0.0448 0.0433 0.0281

Sobol’ 0.0506 0.0398 0.0432 0.0302 0.0424 0.0439 *0.0286 0.0461 0.0546 *0.0285

Halton 0.0375 0.0387 0.0500 0.0298 0.0424 0.0454 *0.0283 0.0435 0.0454 *0.0282

RevHal 0.0454 0.0387 0.0426 0.0313 0.0430 0.0556 *0.0284 0.0439 0.0521 *0.0282

Fibon 0.0272 0.0349 0.0674 0.0282 0.0395 0.0683 *0.0280 0.0432 0.0551 *0.0279

100 Faure 0.0461 0.0340 0.0471 0.0310 0.0348 0.0386 0.0241

Sobol’ 0.0398 0.0323 0.0471 0.0262 0.0365 0.0471 *0.0253

Halton 0.0502 0.0329 0.0432 0.0299 0.0364 0.0532 *0.0250

RevHal 0.0416 0.0330 0.0488 0.0299 0.0334 0.0566 *0.0238

Fibon 0.0232 0.0298 0.0463 0.0230 0.0349 0.0531 *0.0232

120 Faure 0.0372 0.0273 0.0332 0.0211

Sobol’ 0.0251 0.0277 0.0329 0.0227

Halton 0.0423 0.0292 0.0323 0.0222

RevHal 0.0417 0.0279 0.0298 0.0213

Fibon 0.0210 0.0254 0.0379 0.0199

176

C
om

putationalR
esults

ofC
hapter

6
Section

12.1
Table 12.6: 2𝑑 , iLHS: Minimum, median, and maximum of the best star discrepancy values found for ten independently generated

iLHS point sets per each combination of 𝑘 and 𝑛 in 𝑑 = 2. We show values returned by 𝑟𝑎𝑛𝑑𝑜𝑚, by 𝑔𝑟𝑒𝑒𝑑𝑦, and by the exact

strategies (column 𝑠𝑢𝑏𝑠𝑒𝑡). Where none of MILP or BB converged within the given time frame of 1800 seconds, the best found

upper bound is shown (marked by a *); the number in parenthesis counts the point sets for which the optimal value could be

computed by at least one of the two exact solvers. The best value found for a given instance is the minimum obtained by all

exact approaches. The minimum value for each𝑚 is in boldface.

𝑘
𝑘 = 𝑛

𝑛
𝑟𝑎𝑛𝑑𝑜𝑚 𝑔𝑟𝑒𝑒𝑑𝑦 𝑠𝑢𝑏𝑠𝑒𝑡

min med max min med max min med max min med max (𝑠𝑢𝑐𝑐)

20 0.1022 0.1403 0.1714 40 0.0892 0.0936 0.0956 0.1201 0.1406 0.1647 0.0838 (𝑀 ,𝐵) 0.0866 0.0894 (10)

60 0.0953 0.0969 0.0992 0.1186 0.1364 0.1580 0.0786 (𝑀 ,𝐵) 0.0817 0.0825 (10)

80 0.0942 0.0993 0.1009 0.1226 0.1465 0.2022 0.0774 (𝑀 ,𝐵) 0.0785 0.0800 (10)

100 0.0970 0.1022 0.1035 0.1256 0.1493 0.1897 0.0756 (𝐵) 0.0770 0.0778 (10)

120 0.0993 0.1042 0.1071 0.1146 0.1471 0.1952 0.0734 (𝐵) 0.0748 0.0762 (10)

140 0.1001 0.1034 0.1070 0.1293 0.1394 0.1876 0.0731 (𝐵) 0.0742 0.0747 (10)

40 0.0682 0.0779 0.1004 60 0.0588 0.0621 0.0640 0.0763 0.0889 0.0994 0.0507 (𝑀 ,𝐵) 0.0520 0.0556 (10)

80 0.0601 0.0658 0.0676 0.0693 0.0900 0.1284 0.0478 (𝑀 ,𝐵) 0.0486 0.0496 (10)

100 0.0663 0.0683 0.0711 0.0793 0.0975 0.1264 0.0465 (𝑀 ,𝐵) 0.0470 0.0477 (10)

120 0.0696 0.0708 0.0724 0.0743 0.0905 0.1209 0.0452 (𝐵) 0.0460 0.0465 (7)

140 0.0719 0.0725 0.0743 0.0864 0.1041 0.1323 *0.0445 (𝐵) 0.0450 0.0539 (1)

60 0.0508 0.0619 0.0680 80 0.0450 0.0466 0.0481 0.0562 0.0665 0.0882 0.0380 (𝑀 ,𝐵) 0.0396 0.0427 (10)

100 0.0498 0.0504 0.0527 0.0606 0.0736 0.0919 0.0356 (𝑀 ,𝐵) 0.0363 0.0368 (10)

120 0.0529 0.0541 0.0562 0.0555 0.0795 0.0974 *0.0343 (𝑀 ,𝐵) 0.0348 0.0354 (2)

140 0.0543 0.0565 0.0581 0.0673 0.0760 0.1053 *0.0338 (𝐵) 0.0345 0.0350 (0)

80 0.0389 0.0447 0.0567 100 0.0376 0.0386 0.0391 0.0460 0.0530 0.0616 0.0304 (𝑀 ,𝐵) 0.0317 0.0340 (10)

120 0.0408 0.0425 0.0434 0.0474 0.0578 0.0876 0.0288 (𝑀) 0.0291 0.0297 (7)

140 0.0430 0.0449 0.0467 0.0512 0.0615 0.0715 *0.0280 (𝐵) 0.0287 0.0300 (0)

100 0.0301 0.0388 0.04833 120 0.0322 0.0335 0.0341 0.0380 0.0433 0.0479 0.0259 (𝑀 ,𝐵) 0.0270 0.0290 (10)

140 0.0355 0.0366 0.0378 0.0395 0.0460 0.0604 0.0246 (𝑀) 0.0252 0.0257 (3)

120 0.0280 0.0368 0.0436 140 0.0279 0.0294 0.0304 0.0314 0.0383 0.0462 0.0229 (𝑀 ,𝐵) 0.0240 0.0270 (10)

177

C
hapter

12
A
ppendix

Table 12.7: 2𝑑 , unif: Minimum, median, and maximum of the best star discrepancy values found for ten independently sampled

unif point sets per each combination of 𝑘 and 𝑛 in 𝑑 = 2. We show values returned by 𝑟𝑎𝑛𝑑𝑜𝑚, by 𝑔𝑟𝑒𝑒𝑑𝑦, and by the exact

strategies (column 𝑠𝑢𝑏𝑠𝑒𝑡). Where none of MILP or BB converged within the given time frame of 1800 seconds, the best found

upper bound is shown (marked by a *); the number in parenthesis counts the point sets for which the optimal value could be

computed by at least one of the two exact solvers. The best value found for a given instance is the minimum obtained by all

exact approaches for any of the ten point sets. The minimum value for each 𝑘 is in boldface.

𝑘
𝑘 = 𝑛

𝑛
𝑟𝑎𝑛𝑑𝑜𝑚 𝑔𝑟𝑒𝑒𝑑𝑦 𝑠𝑢𝑏𝑠𝑒𝑡

min med max min med max min med max min med max (𝑠𝑢𝑐𝑐)

20 0.1836 0.2773 0.3450 40 0.1014 0.1143 0.1272 0.1403 0.1621 0.1943 0.0992 (𝑀 ,𝐵) 0.1139 0.1272 (10)

60 0.1026 0.1081 0.1398 0.1288 0.1546 0.2334 0.0865 (𝑀 ,𝐵) 0.0956 0.1398 (10)

80 0.1001 0.1053 0.1141 0.1405 0.1542 0.2080 0.0821 (𝑀 ,𝐵) 0.0854 0.0925 (10)

100 0.0999 0.1049 0.1086 0.1232 0.1540 0.1947 0.0787 (𝑀 ,𝐵) 0.0803 0.0833 (10)

120 0.1020 0.1055 0.1114 0.1366 0.1519 0.2259 0.0765 (𝐵) 0.0778 0.0798 (10)

140 0.1014 0.1083 0.1107 0.1218 0.1472 0.1777 0.0753 (𝐵) 0.0763 0.0775 (10)

40 0.1369 0.1648 0.2625 60 0.0771 0.0856 0.1077 0.0973 0.1293 0.1685 0.0678 (𝑀 ,𝐵) 0.0830 0.1077 (10)

80 0.0757 0.0801 0.0938 0.0931 0.1094 0.1534 0.0624 (𝑀 ,𝐵) 0.0704 0.0938 (10)

100 0.0757 0.0805 0.0846 0.0923 0.1133 0.1765 0.0531 (𝑀 ,𝐵) 0.0586 0.0643 (9)

120 0.0753 0.0791 0.0835 0.0753 0.1048 0.1431 0.0498 (𝑀) 0.0552 0.0737 (8)

140 0.0749 0.0792 0.0846 0.0836 0.1105 0.1221 *0.0479 (𝐵) 0.0494 0.0666 (2)

60 0.1205 0.1583 0.2123 80 0.0678 0.0750 0.1016 0.0838 0.1011 0.1231 0.0629 (𝑀 ,𝐵) 0.0745 0.1016 (10)

100 0.0661 0.0712 0.1047 0.0790 0.1009 0.1474 0.0496 (𝑀) 0.0580 0.1047 (10)

120 0.0637 0.0683 0.0882 0.0754 0.0901 0.1114 0.0422 (𝑀) 0.0527 0.0882 (10)

140 0.0623 0.0687 0.0713 0.0849 0.0993 0.1244 0.0404 (𝑀) 0.0442 0.0498 (8)

80 0.0913 0.1343 0.2101 100 0.0569 0.0651 0.0853 0.0628 0.0825 0.1047 0.0569 (𝑀) 0.0632 0.0853 (10)

120 0.0565 0.0617 0.0836 0.0696 0.0817 0.1236 0.0427 (𝑀) 0.0502 0.0787 (10)

140 0.0565 0.0624 0.0645 0.0645 0.0789 0.1124 0.0399 (𝑀) 0.0450 0.0577 (9)

100 0.0946 0.1172 0.1774 120 0.0547 0.0706 0.1030 0.0732 0.0954 0.1316 0.0452 (𝑀) 0.0706 0.1030 (10)

140 0.0546 0.0595 0.0748 0.0701 0.0756 0.1081 0.0481 (𝑀) 0.0509 0.0748 (10)

120 0.0662 0.1116 0.1511 140 0.0557 0.0604 0.0692 0.0580 0.0721 0.0890 0.0557 (𝑀) 0.0588 0.0692 (10)

178

C
om

putationalR
esults

ofC
hapter

6
Section

12.1

Table 12.8: 3𝑑 , low-discrepancy sequences: best found star discrepancy values found by 𝑟𝑎𝑛𝑑𝑜𝑚 subset sampling, by the 𝑔𝑟𝑒𝑒𝑑𝑦

heuristic, compared to the optimal or the best found (marked with *) values returned by MILP or BB (column 𝑠𝑢𝑏𝑠𝑒𝑡), for all

tested combinations of 𝑛 and 𝑘 . Best star discrepancy values for each (𝑛,𝑘) combination are underlined, and the minimum for

each 𝑘 is highlighted in boldface.

𝑘 sequence 𝑛 = 𝑘
𝑛 = 40 𝑛 = 60 𝑛 = 80 𝑛 = 100

𝑟𝑎𝑛𝑑𝑜𝑚 𝑔𝑟𝑒𝑒𝑑𝑦 𝑠𝑢𝑏𝑠𝑒𝑡 𝑟𝑎𝑛𝑑𝑜𝑚 𝑔𝑟𝑒𝑒𝑑𝑦 𝑠𝑢𝑏𝑠𝑒𝑡 𝑟𝑎𝑛𝑑𝑜𝑚 𝑔𝑟𝑒𝑒𝑑𝑦 𝑠𝑢𝑏𝑠𝑒𝑡 𝑟𝑎𝑛𝑑𝑜𝑚 𝑔𝑟𝑒𝑒𝑑𝑦 𝑠𝑢𝑏𝑠𝑒𝑡

20 Faure 0.1795 0.1559 0.2206 0.1316 0.1612 0.2518 0.1205 0.1664 0.3428 *0.1223 0.1714 0.3193 *0.1225

Sobol’ 0.1774 0.1493 0.1758 0.1268 0.1616 0.1817 0.1220 0.1590 0.2028 *0.1202 0.1692 0.2028 *0.1263

Halton 0.2079 0.1635 0.1800 0.1311 0.1664 0.1917 *0.1240 0.1663 0.1912 *0.1214 0.1648 0.1990 *0.1244

RevHal 0.1870 0.1511 0.1767 0.1300 0.1509 0.1956 0.1250 0.1635 0.1633 0.1207 0.1678 0.1801 *0.1242

40 Faure 0.1836 0.1007 0.1239 *0.0805 0.1024 0.1654 *0.0778 0.1073 0.1781 *0.0801

Sobol’ 0.1066 0.1039 0.1172 *0.0817 0.1114 0.1323 *0.0810 0.1144 0.1311 *0.0786

Halton 0.1475 0.1028 0.1425 0.0854 0.1015 0.1464 *0.0809 0.1083 0.1470 *0.0807

RevHal 0.1333 0.1091 0.1441 0.0817 0.1091 0.1441 *0.0799 0.1119 0.14371 *0.0812

60 Faure 0.1107 0.0744 0.0900 *0.0606 0.0857 0.0874 *0.0666

Sobol’ 0.0736 0.0834 0.0892 *0.0674 0.0875 0.0948 *0.0643

Halton 0.1081 0.0775 0.0917 *0.0642 0.0842 0.0878 *0.0648

RevHal 0.0866 0.0778 0.0883 *0.0654 0.0839 0.0882 *0.0648

80 Faure 0.0640 0.0661 0.0846 *0.0638

Sobol’ 0.0828 0.0655 0.0637 *0.0605

Halton 0.0700 0.0640 0.0618 *0.0550

RevHal 0.0747 0.0644 0.0792 *0.0547

179

C
hapter

12
A
ppendix

Table 12.9: 3𝑑 , iLHS: Minimum, median, and maximum of the best star discrepancy values found for ten independently sampled

iLHS point sets per each combination of 𝑘 and 𝑛 in 𝑑 = 3. We show values returned by 𝑟𝑎𝑛𝑑𝑜𝑚, by 𝑔𝑟𝑒𝑒𝑑𝑦, and by the exact

strategies (column 𝑠𝑢𝑏𝑠𝑒𝑡). Where none of MILP or BB converged within the given time frame of 1800 seconds, the best found

upper bound is shown (marked by a *); the number in parenthesis counts the point sets for which the optimal value could be

computed by at least one of the two exact solvers. The best value found for a given instance is the minimum obtained by all

exact approaches for any of the ten point sets. The minimum value for each 𝑘 is in boldface.

𝑘
𝑘 = 𝑛

𝑛
𝑟𝑎𝑛𝑑𝑜𝑚 𝑔𝑟𝑒𝑒𝑑𝑦 𝑠𝑢𝑏𝑠𝑒𝑡

min med max min med max min med max min med max (𝑠𝑢𝑐𝑐)

20 0.3946 0.4325 0.4721 40 0.2008 0.2158 0.2759 0.1936 0.2261 0.2459 0.1462 0.1678 0.2184 (9)

60 0.1911 0.2184 0.2421 0.1917 0.2132 0.2654 0.1388 0.1503 0.1933 (7)

80 0.1958 0.2081 0.2333 0.1665 0.1918 0.2455 *0.1290 0.1368 0.1553 (1)

100 0.1974 0.2093 0.2221 0.1754 0.1984 0.2143 *0.1296 0.1383 0.1976 (0)

40 0.3003 0.3364 0.4545 60 0.1990 0.2441 0.2739 0.1618 0.1993 0.2303 *0.1515 0.1752 0.2302 (2)

80 0.1896 0.2139 0.2395 0.1348 0.1543 0.1675 *0.1026 0.1211 0.1577 (0)

100 0.1955 0.2013 0.2180 0.1283 0.1427 0.1667 *0.0977 0.1333 0.1600 (0)

60 0.3352 0.3673 0.4173 80 0.2314 0.2583 0.2747 0.1639 0.1943 0.2336 0.1639 0.1906 0.2336 (2)

100 0.1945 0.2211 0.2537 0.1061 0.1192 0.1547 *0.1056 0.1157 0.1547 (0)

80 0.2851 0.3630 0.3792 100 0.2087 0.2640 0.2795 0.1709 0.2143 0.2305 *0.1709 0.2143 0.2305 (0)

180

C
om

putationalR
esults

ofC
hapter

6
Section

12.1

Table 12.10: 3𝑑 , unif: Minimum, median, and maximum of the best star discrepancy values found for ten independently sampled

unif point sets per each combination of 𝑘 and 𝑛 in 𝑑 = 2. We show values returned by 𝑟𝑎𝑛𝑑𝑜𝑚, by 𝑔𝑟𝑒𝑒𝑑𝑦, and by the exact

strategies (column 𝑠𝑢𝑏𝑠𝑒𝑡). Where none of MILP or BB converged within the given time frame of 1800 seconds, the best found

upper bound is shown (marked by a *); the number in parenthesis counts the point sets for which the optimal value could be

computed by at least one of the two exact solvers. The best value found for a given instance is the minimum obtained by all

exact approaches for any of the ten point sets. The minimum value for each 𝑘 is in boldface.

𝑘
𝑘 = 𝑛

𝑛
𝑟𝑎𝑛𝑑𝑜𝑚 𝑔𝑟𝑒𝑒𝑑𝑦 𝑠𝑢𝑏𝑠𝑒𝑡

min med max min med max min med max min med max (𝑠𝑢𝑐𝑐)

20 0.4089 0.4923 0.5606 40 0.2063 0.2423 0.2802 0.1952 0.2272 0.2603 0.1693 0.2017 0.2603 (9)

60 0.1955 0.2109 0.2442 0.1657 0.2112 0.2487 0.1363 0.1452 0.1598 (7)

80 0.1977 0.2126 0.2219 0.1686 0.2101 0.2975 *0.1338 0.1406 0.1813 (1)

100 0.1999 0.2091 0.2272 0.1755 0.1966 0.2398 *0.1292 0.1415 0.1470 (0)

40 0.3375 0.3889 0.4524 60 0.2100 0.2659 0.2921 0.1850 0.2358 0.2578 *0.1499 0.2358 0.2578 (0)

80 0.2136 0.2219 0.2645 0.1279 0.1558 0.2601 *0.1168 0.1369 0.1748 (0)

100 0.1898 0.2209 0.2504 0.1419 0.1712 0.2150 *0.1127 0.1404 0.1691 (0)

60 0.3378 0.3992 0.4491 80 0.2354 0.2533 0.3181 0.1855 0.2367 0.3181 *0.1855 0.2367 0.3181 (0)

100 0.2324 0.2599 0.2953 0.1234 0.1660 0.2625 *0.1187 0.1614 0.2161 (0)

80 0.3190 0.3510 0.4197 100 0.2279 0.2795 0.3176 0.1872 0.2410 0.2801 *0.1872 0.2410 0.2801 (0)

181

Chapter 12 Appendix

12.2 Computational Results for Chapter 7
We include in this section some of the discrepancy values obtained with the different

methods in Chapter 7. Unless they are in bold, values from TA sets were verified

with the DEM algorithm. This could lead to higher discrepancy values than those

obtained during the subset selection heuristic, and possibly that this heuristic

missed better sets because of those mistakes. The corrected values for the TA

heuristics only include those from concluded runs. A large number of the bold

values simply correspond to sets where the best run was interrupted and the stored

set was clearly poorer.

182

Computational Results for Chapter 7 Section 12.2

Table 12.11: Discrepancy values obtained in dimension 4 for the different heuristics, the

DEM_NBF version was not run for 𝑛 ≥ 200.

Set size Subset size 𝑘 DEM_BF DEM_NBF TA_BF TA_NBF

𝑛 = 50 𝑘 = 50 0.13422 0.13422 0.13422 0.13422

40 0.12236 0.12520 0.13406 0.14090

30 0.14020 0.14924 0.15431 0.15471

20 0.17660 0.18494 0.17883 0.20066

𝑛 = 100 𝑘 = 100 0.092688 0.092688 0.092688 0.092688

90 0.070093 0.075315 0.076933 0.075315

80 0.071985 0.082731 0.084182 0.08625

70 0.078701 0.087342 0.09545 0.088841

60 0.087650 0.095528 0.103849 0.100801

50 0.097189 0.110063 0.119433 0.118624

𝑛 = 150 𝑘 = 150 0.061738 0.061738 0.061738 0.061738

140 0.052081 0.054116 0.056260 0.054268
130 0.051702 0.057176 0.060173 0.060173

120 0.056405 0.062694 0.065592 0.065592

110 0.059261 0.063807 0.067161 0.070707

100 0.061478 0.068499 0.077275 0.077275
𝑛 = 200 𝑘 = 200 - 0.050215 0.050215 0.050215

190 - 0.045960 0.054374 0.045960

180 - 0.046837 - 0.046848

170 - 0.048267 0.054912 0.052956

160 - 0.051588 0.065464 0.054244

150 - 0.053195 - 0.055839
𝑛 = 250 𝑘 = 250 - 0.038216 0.038216 0.038216

240 - 0.036286 0.040657 0.037994

230 - 0.037675 0.040731 0.040603

220 - 0.037972 - 0.043796
210 - 0.039900 - 0.042615

200 - 0.043015 - 0.046989

𝑛 = 500 𝑘 = 500 - 0.022901 - 0.022901

490 - 0.021662 - 0.021187
480 - 0.021572 - 0.022823
470 - 0.021211 - 0.024016

460 - 0.022744 - 0.025268

450 - 0.023916 - 0.027314

183

Chapter 12 Appendix

Table 12.12: Discrepancy values obtained in dimension 5 for the different heuristics, the

DEM_NBF version was not run for 𝑛 ≥ 200. The - in the DEM column indicate that not a

single run finished.

Set size Subset size 𝑘 DEM_BF DEM_NBF TA_BF TA_NBF

𝑛 = 50 𝑘 = 50 0.165488 0.165488 0.165488 0.165488

40 0.138741 0.149003 0.148836 0.147256

30 0.161715 0.171163 0.17149 0.17149

20 0.211900 0.214233 0.234375 0.23438

𝑛 = 100 𝑘 = 100 0.120707 0.120707 0.120707 0.120707

90 0.086374 0.092956 0.090522 0.091191

80 0.090923 0.095958 0.099937 0.097624
70 0.099563 0.105703 0.109832 0.116787

60 0.107044 0.117161 0.125410 0.118965
50 0.118428 0.129599 0.135023 0.134716

𝑛 = 150 𝑘 = 150 0.074899 0.074899 0.074899 0.074899

140 0.064423 0.054116 0.054163 0.054268
130 0.064549 0.057176 0.060173 0.060173
120 0.068790 0.062694 0.063046 0.063046
110 0.073173 0.063807 0.067161 0.067161
100 0.077755 0.068499 0.077275 0.077275

𝑛 = 200 𝑘 = 200 - 0.058292 0.058292 0.058292

190 - 0.053908 0.059209 0.053496
180 - 0.055425 0.061967 0.058496
170 - 0.059826 0.067392 0.062506

160 - 0.061195 0.075936 0.065796

150 - 0.064438 - 0.067725
𝑛 = 250 𝑘 = 250 - 0.053507 0.053507 0.053507

240 - 0.044187 0.048002 0.048310
230 - 0.046281 0.046463 0.046463

220 - 0.048236 0.053760 0.052865

210 - 0.049783 - 0.055719
200 - 0.052454 0.062576 0.055284

𝑛 = 500 𝑘 = 500 - 0.029117 - 0.029117

490 - 0.028160 - 0.029485

480 - 0.029255 - 0.030663

470 - 0.030951 - 0.031702

460 - - - 0.034878

450 - - - 0.036084

184

Computational Results for Chapter 7 Section 12.2

Table 12.13: Discrepancy values obtained in dimension 6 for the different heuristics, the

DEM_NBF version was not run for 𝑛 ≥ 200. Other - correspond to unfinished runs.

Set size Subset size 𝑘 DEM_BF DEM_NBF TA_BF TA_NBF

𝑛 = 50 𝑘 = 50 0.225548 0.225548 0.225548 0.225548

40 0.162600 0.166336 0.166522 0.169385

30 0.186518 0.197138 0.197326 0.194999

20 0.232082 0.246097 0.26041 0.253279

𝑛 = 100 𝑘 = 100 0.124451 0.124451 0.124451 0.124451

90 0.100532 0.102214 0.100660 0.11364

80 0.109108 0.114143 0.113169 0.114344
70 0.120823 0.120817 0.133813 0.120032

60 0.128823 0.134782 0.140478 0.131683
50 0.139858 0.149740 0.161732 0.150491

𝑛 = 150 𝑘 = 150 0.090827 0.090827 0.090827 0.090827

140 - 0.081020 0.078646 0.082801
130 - 0.085759 0.078646 0.084272
120 - 0.089289 0.091492 0.090094
110 - 0.090785 0.103782 0.097381
100 - 0.100891 0.104589 0.107580

𝑛 = 200 𝑘 = 200 - 0.087784 - 0.087784

190 - 0.068581 0.078203 0.065424
180 - 0.070267 0.077221 0.065122
170 - - 0.081820 0.071578
160 - 0.077993 - 0.072786
150 - 0.084923 - 0.079571

𝑛 = 250 𝑘 = 250 - 0.088941 - 0.088941

240 - 0.064764 - 0.057167
230 - - - 0.060105
220 - - - 0.064285
210 - - - 0.062227
200 - 0.073417 - 0.068424

𝑛 = 500 𝑘 = 500 - 0.040529 - 0.040529

490 - - - 0.036165

480 - - - 0.034287
470 - - - 0.038244
460 - - - 0.042268

450 - - - 0.035382

185

Chapter 12 Appendix

Table 12.14: Discrepancy values obtained in dimension 8, 10, 15 and 25 for TA. DEM_NBF

could finish only for the smallest 𝑘 in dimension 8 and is omitted here. None of the values
were verified with the exact algorithm.

Set size Subset size 𝑘 TA_NBF 𝑑 = 8 TA_NBF 𝑑 = 10 TA_NBF 𝑑 = 15 TA_NBF 𝑑 = 25

𝑛 = 50 𝑘 = 50 0.248547 0.298001 0.388598 0.483923

40 0.207029 0.293720 0.340869 0.459241

30 0.236120 0.270010 0.342629 0.459946

20 0.293341 0.339852 0.404245 0.522859

𝑛 = 100 𝑘 = 100 0.160793 0.208052 0.258440 0.339362

90 0.137759 0.167185 0.233544 0.316399

80 0.140670 0.168474 0.232660 0.316893

70 0.147338 0.177223 0.238510 0.329086

60 0.156791 0.193031 0.253804 0.342430

50 0.173767 0.209863 0.274870 0.367155

𝑛 = 150 𝑘 = 150 0.106714 0.150029 0.193065 0.273853

140 0.100294 0.126767 0.175397 0.251457

130 0.099135 0.124570 0.175082 0.255210

120 0.106236 0.136273 0.177053 0.250421

110 0.116722 0.142494 0.190030 0.263972

100 0.125779 0.146189 0.204310 0.282990

𝑛 = 200 𝑘 = 200 0.095888 0.120527 0.167833 0.228047

190 0.085177 0.107770 0.150436 0.218568

180 0.084830 0.107667 0.145002 0.215581

170 0.091665 0.118012 0.150607 0.208230

160 0.097845 0.110122 0.157870 0.220264

150 0.095667 0.124148 0.163522 0.229887

𝑛 = 250 𝑘 = 250 0.078968 0.097270 0.163522 0.207971

240 0.070861 0.089403 0.141638 0.194531

230 0.076617 0.094512 0.126737 0.192541

220 0.076390 0.096894 0.127134 0.194215

210 0.084471 0.098762 0.129550 0.198693

200 0.079550 0.105629 0.144049 0.201951

𝑛 = 500 𝑘 = 500 0.047839 0.061573 0.086172 0.147068

490 0.047199 0.060665 0.082243 0.135416

480 0.046720 0.061057 - -

470 0.049966 - - -

460 - 0.063294 - -

450 0.053917 0.066657 - -

186

Computational Results of Chapter 10 Section 12.3

12.3 Computational Results of Chapter 10
This last section contains several additional tables which give further numerical

results relating to the work in Section 10.4.

Optimal Point Sets: Table 10.2 in the main text gives the approximations to the

optimal point set S∗(𝑛, 2) for 3 ≤ 𝑛 ≤ 10 returned by CMA-ES. The tables below

show analogous information returned by the two other optimizers as well as the

results in dimension 3.

Table 12.15: Optimal partitioning points returned by NGOpt in dimension 2.

n Point set obtained by NGOpt

3 [0.548808, 1.055807]

4 [0.418457, 0.882434, 1.007727]

5 [0.391263, 0.620868, 0.956307, 1.037225]

6 [0.347313, 0.560015, 0.857877, 0.882838, 1.118863]

7 [0.347991, 0.489339, 0.669577, 0.908221, 0.983918, 1.036891]

8 [0.316077, 0.478213, 0.570470, 0.852702, 0.907686, 0.932709 1.067521]

9 [0.285198, 0.470163, 0.568636, 0.610603, 0.871406, 0.926506, 1.012885, 1.141138]

10 [0.272273, 0.443108, 0.532019, 0.631543, 0.819876, 0.864991, 0.925215, 1.008189, 1.132356]

15 [0.19888, 0.3777, 0.444808, 0.543373, 0.546997, 0.575153, 0.63604,

0.690127, 0.892686, 0.909171, 1.058866, 1.128335, 1.159531, 1.271836]

20 [0.223799, 0.287984, 0.324687, 0.485897, 0.499846, 0.54175, 0.57198, 0.589029, 0.615946,

0.7925, 0.817158, 0.858417, 0.908158, 0.938206, 0.960501, 0.982925, 1.101553, 1.159329, 1.319433]

Table 12.16: Optimal partitioning points returned by (1+1)-ES in dimension 2.

n Point set obtained by (1+1)-ES

3 [0.385772, 1.414214]

4 [0.361702, 0.612305, 1.414214]

5 [0.417516, 0.605697, 0.93214, 1.135903]

6 [0.372617, 0.566202, 0.858476, 0.872371, 1.057533]

7 [0.361215, 0.476081, 0.69005, 0.956802, 0.961292, 0.997134]

8 [0.331794, 0.448127, 0.615812, 0.762824, 0.936691, 0.948517, 1.194328]

9 [0.272122, 0.50579, 0.579889, 0.631461, 0.841224, 0.872, 1.029753, 1.189806]

10 [0.300137, 0.411182, 0.477082, 0.713986, 0.775226, 0.810514, 0.878079, 1.002694, 1.203619]

15 [0.190774, 0.388459, 0.388733, 0.455958, 0.596142, 0.601442, 0.606818,

0.828665, 0.83254, 0.873472, 1.012516, 1.022808, 1.121645, 1.174104]

20 [0.249813, 0.325112, 0.359365, 0.461931, 0.483501, 0.574615, 0.5808, 0.584061, 0.606904,

0.75478, 0.84873, 0.911128, 0.916237, 0.93133, 0.942195, 0.967771, 1.009936, 1.137893, 1.363866]

187

Table 12.17: Optimal partitioning points returned by NGOpt in dimension 3.

n Point set obtained by NGOpt

3 [0.795798, 1.286294]

4 [0.640472, 1.117247, 1.310707]

5 [0.566418, 1.047576, 1.083171, 1.150805]

6 [0.489396, 0.98104, 1.013217, 1.048558, 1.087265]

7 [0.448206, 0.878266, 0.91581, 0.982795, 1.063735, 1.125645]

8 [0.42716, 0.800013, 0.863311, 0.910579, 1.006799, 1.11747, 1.242571]

9 [0.408185, 0.77803, 0.830785, 0.882296, 0.890503, 1.011247, 1.169372, 1.43053]

10 [0.399794, 0.603748, 0.89242, 0.913219, 0.926596, 0.926902, 0.967523, 1.16262, 1.287299]

15 [0.351117, 0.478768, 0.688796, 0.796136, 0.821815, 0.862973, 0.879195,

0.90137, 0.9374, 0.946849, 1.045653, 1.094707, 1.186683, 1.571684]

20 [0.34235, 0.389883, 0.57646, 0.680487, 0.762054, 0.793333, 0.822658, 0.827348, 0.886069,

0.899673, 0.902049, 0.906803, 0.948087, 0.955605, 1.031147, 1.078856, 1.323314, 1.470775, 1.546017]

Table 12.18: Optimal partitioning points returned by (1+1)-ES in dimension 3.

n Point set obtained by (1+1)-ES

3 [0.828487, 1.184358]

4 [0.688084, 0.995426, 1.23835]

5 [0.556585, 0.958897, 1.08893, 1.166941]

6 [0.504186, 0.890861, 1.01977, 1.070676, 1.220425]

7 [0.483307, 0.846026, 0.928213, 1.011243, 1.053627, 1.264038]

8 [0.438463, 0.755186, 0.855466, 0.965389, 0.971452, 1.108291, 1.364404]

9 [0.432133, 0.683787, 0.857462, 0.900443, 0.985954, 0.99401, 1.036843, 1.513559]

10 [0.433714, 0.571719, 0.82941, 0.873472, 0.954025, 0.983681, 1.123199, 1.166486, 1.190781]

15 [0.320788, 0.546152, 0.656237, 0.732797, 0.733517, 0.851861, 0.859568,

0.958379, 0.997855, 1.003527, 1.044023, 1.112383, 1.3169, 1.538414]

20 [0.308744, 0.45028, 0.612212, 0.618609, 0.652708, 0.769147, 0.791116, 0.831432, 0.852191,

0.877652, 0.927507, 0.950297, 0.997164, 1.051177, 1.070492, 1.172144, 1.212012, 1.531995, 1.640873]

Exact Discrepancy Values: Table 10.1 in the main text gives a percentage com-

parison of the expected 𝐿2 discrepancies of the various point sets. For completeness

sake and as a final attachment, Table 12.20 gives the exact expected discrepancy of

the point same point sets.

188

Table 12.19: Optimal partitioning points returned by CMA-ES in dimension 3.

n Point set obtained by CMA-ES

3 [0.852603, 1.229802]

4 [0.649511, 1.103493, 1.233462]

5 [0.557872, 0.993939, 1.111959, 1.191173]

6 [0.47672, 0.960814, 1.033193, 1.088396, 1.110393]

7 [0.450648, 0.878901, 0.905647, 1.027906, 1.096725, 1.127983]

8 [0.417508, 0.804702, 0.962827, 0.972907, 0.985132, 0.995874, 1.222424]

9 [0.385481, 0.824133, 0.863861, 0.864913, 0.950659, 0.968246, 1.027493, 1.284941]

10 [0.386811, 0.644514, 0.887476, 0.897878, 0.900528, 0.936027, 0.949786, 1.220786, 1.309354]

14 [0.358027, 0.497384, 0.609137, 0.81638, 0.875619, 0.901655, 0.904081,

0.95021, 0.959341, 0.975178, 1.012549, 1.015003, 1.248424, 1.633825]

19 [0.283066, 0.444381, 0.588593, 0.67853, 0.741726, 0.756299, 0.785411, 0.793158, 0.891821,

0.901059, 0.918331, 0.928474, 0.947623, 1.036847, 1.039228, 1.125772, 1.135725, 1.294058, 1.436106]

Table 12.20: Comparison of the expected 𝐿2 discrepancies of different point sets: uniformly

distributed random points 𝑅(𝑛, 2), the equivolume partition corresponding to S(𝑛, 2) and
the best sets obtained by the three black-box optimizers. The discrepancy values are

evaluated with 10 000 repetitions.

𝑛 𝑅(𝑛, 2) S(𝑛, 2) CMA-ES NGOpt (1+1)-ES

3 0.04614 0.02917 0.02696 0.02682 0.03061

4 0.03441 0.02035 0.01883 0.01891 0.023

5 0.02774 0.01560 0.01453 0.01464 0.01472

6 0.02327 0.01272 0.01191 0.01195 0.01192

7 0.01990 0.01070 0.01007 0.01006 0.0108

8 0.01714 0.009202 0.008722 0.008668 0.008866

9 0.01547 0.008138 0.007738 0.007764 0.007829

10 0.01492 0.007266 0.006961 0.006939 0.007051

15 0.009320 0.004746 0.004668 0.004668 0.004647

20 0.006955 0.003532 0.003541 0.003558 0.003478

189

Table 12.21: Comparison of the expected 𝐿2 discrepancies of different point sets: uniformly

distributed random points 𝑅(𝑛, 3), the equivolume partition corresponding to S(𝑛, 3) and
the best sets obtained by the three black-box optimizers. The expectation is approximated

with 10 000 repetitions of the 𝐿2 discrepancy calculation.

𝑛 𝑅(𝑛, 3) S(𝑛, 3) CMA-ES NGOpt (1+1)-ES

3 0.0295 0.0220 0.01960 0.01968 0.01979

4 0.0221 0.0156 0.01433 0.01431 0.01433

5 0.0176 0.0121 0.01107 0.01104 0.01113

6 0.0148 0.00997 0.008983 0.008979 0.009115

7 0.0125 0.00836 0.007634 0.007718 0.007720

8 0.011 0.00727 0.0067 0.006712 0.006741

9 0.00989 0.00640 0.005973 0.005949 0.005967

10 0.00876 0.005713 0.005352 0.005358 0.005345

15 0.00594 0.00376 0.003569 0.003561 0.003579

20 0.00442 0.0028 0.002707 0.002692 0.002708

190

12Bibliography

[Aar49] T. van Aardenne-Ehrenfest. On the impossibility of a just distribution.
Proc. Koninklijke Nederlandse Akademie van Wetenschappen 52 (1949), 734–

739 (see page 13).

[AH20] Y. Akimoto and N. Hansen.Diagonal Acceleration for CovarianceMatrix
Adaptation Evolution Strategies. Evol. Comput. 28:3 (2020), 405–435 (see
page 158).

[AH22] Y. Akimoto and N. Hansen. CMA-ES and advanced adaptation mecha-
nisms. GECCO ’22: Genetic and Evolutionary Computation Conference, COm-
panion Volume, ACM (2022), 1243–1268 (see page 158).

[Ais11] C. Aistleitner. Covering numbers, dyadic chaining and discrepancy.
Journal of Complexity 27 (2011), 531–540 (see page 14).

[Ata86] M. J. Atallah. Computing the convex hull of line intersections. Journal
of Algorithms 7:2 (1986), 285–288. issn: 0196-6774. doi: https://doi.org/10.
1016/0196-6774(86)90010-6. url: https://www.sciencedirect.com/science/

article/pii/0196677486900106 (see page 122).

[Ayg+09] E. Ayguade, N. Copty, A. Duran, J. Hoeflinger, Y. Lin, F. Massaioli, X. Teruel,

P. Unnikrishnan, and G. Zhang. The Design of OpenMP Tasks. IEEE Trans-
actions on Parallel and Distributed Systems 20:3 (Mar. 2009), 404–418. issn:

1558-2183. doi: 10.1109/TPDS.2008.105 (see page 144).

[BC87] J. Beck and W.L. Chen. Irregularities of distribution. Cambridge: Cam-

bridge University Press, 1987 (see page 14).

[BG02] B. Beachkofski and R. Grandhi. “Improved Distributed Hypercube Sampling.”

In: 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and
Materials Conference. American Institute of Aeronautics and Astronautics,

2002, 1–7. doi: 10.2514/6.2002-1274 (see pages 14, 20).

[BLV08] D. Bilyk, M.T. Lacey, and A. Vagharshakyan. On the small ball inequality
in all dimensions. J. Funct. Anal. 254 (2008), 2470–2502. doi: https://doi.
org/10.1016/j.jfa.2007.09.010 (see pages 14, 40).

[Bou+17] O. Bousquet, S. Gelly, K. Kurach, O. Teytaud, and D. Vincent.Critical Hyper-
Parameters: No Random, No Cry. CoRR abs/1706.03200 (2017). arXiv:

1706.03200 (see pages 2, 66).

191

https://doi.org/https://doi.org/10.1016/0196-6774(86)90010-6
https://doi.org/https://doi.org/10.1016/0196-6774(86)90010-6
https://www.sciencedirect.com/science/article/pii/0196677486900106
https://www.sciencedirect.com/science/article/pii/0196677486900106
https://doi.org/10.1109/TPDS.2008.105
https://doi.org/10.2514/6.2002-1274
https://doi.org/https://doi.org/10.1016/j.jfa.2007.09.010
https://doi.org/https://doi.org/10.1016/j.jfa.2007.09.010
https://arxiv.org/abs/1706.03200

[BTY12] D. Bilyk, V.N. Temlyakov, and R. Yu. Fibonacci sets and symmetrization
in discrepancy theory. J. Complex. 28:1 (2012), 18–36. doi: 10.1016/j.jco.
2011.07.001 (see page 95).

[BW79] E. Braaten and G. Weller. An Improved Low-Discrepancy Sequence for
Multidimensional Quasi-Monte Carlo Integration. J. of Comput. Phys.
33:2 (1979), 249–258. doi: 10.1016/0021-9991(79)90019-6 (see page 95).

[BZ93] P. Bundschuh and Y.C. Zhu. Amethod for exact calculation of the dis-
crepancy of low-dimensional point sets. I. Abh. Math. Sem. univ. Hamburg
63 (1993), 115–133 (see page 23).

[Cau+20] M.-L. Cauwet, C. Couprie, J. Dehos, P. Luc, J. Rapin, M. Rivière, F. Tey-

taud, O. Teytaud, and N. Usunier. Fully Parallel Hyperparameter Search:
Reshaped Space-Filling. In: Proc. of the 37th International Conference on
Machine Learning, ICML. Vol. 119. Proceedings of Machine Learning Research.

PMLR, 2020, 1338–1348. url: http://proceedings.mlr.press/v119/cauwet20a.

html (see pages 2, 66).

[CDP22] F. Clément, C. Doerr, and L. Paquete. Star discrepancy subset selection:
Problem formulation and efficient approaches for low dimensions.
Journal of Complexity 70 (2022), 101645. doi: 10.1016/j.jco.2022.10164 (see

pages 4, 17, 22, 66, 68).

[CDP24] F. Clément, C. Doerr, and L. Paquete. Heuristic approaches to obtain
low-discrepancy point sets via subset selection. Journal of Complexity 83

(2024), 101852. issn: 0885-064X. doi: https://doi.org/10.1016/j.jco.2024.101852.

url: https://www.sciencedirect.com/science/article/pii/S0885064X24000293

(see pages 4, 98).

[Cha+20] K. I. Chatzilygeroudis, A. Cully, V. Vassiliades, and J.-B. Mouret. Quality-
Diversity Optimization: a Novel Branch of Stochastic Optimization.
CoRR abs/2012.04322 (2020). arXiv: 2012.04322. url: https://arxiv.org/abs/

2012.04322 (see page 153).

[Cha00] B. Chazelle. The Discrepancy method. Cambridge University Press (Cam-
bridge) (2000) (see page 11).

[Cha13] T.M. Chan. Klee’s Measure ProblemMade Easy. In: 2013 IEEE 54th Annual
Symposium on Foundations of Computer Science. 2013, 410–419. doi: 10.1109/
FOCS.2013.51 (see page 170).

[CKP24] F. Clément, N. Kirk, and F. Pausinger. Monte Carlo Methods and Applications
(2024). doi: doi:10.1515/mcma-2023-2025. url: https://doi.org/10.1515/mcma-

2023-2025 (see pages 5, 154, 158).

[Clé] F. Clément. https://github.com/frclement/ (see page 130).

192

https://doi.org/10.1016/j.jco.2011.07.001
https://doi.org/10.1016/j.jco.2011.07.001
https://doi.org/10.1016/0021-9991(79)90019-6
http://proceedings.mlr.press/v119/cauwet20a.html
http://proceedings.mlr.press/v119/cauwet20a.html
https://doi.org/10.1016/j.jco.2022.10164
https://doi.org/https://doi.org/10.1016/j.jco.2024.101852
https://www.sciencedirect.com/science/article/pii/S0885064X24000293
https://arxiv.org/abs/2012.04322
https://arxiv.org/abs/2012.04322
https://arxiv.org/abs/2012.04322
https://doi.org/10.1109/FOCS.2013.51
https://doi.org/10.1109/FOCS.2013.51
https://doi.org/doi:10.1515/mcma-2023-2025
https://doi.org/10.1515/mcma-2023-2025
https://doi.org/10.1515/mcma-2023-2025
https://github.com/frclement/

[Clé+23a] F. Clément, C. Doerr, K. Klamroth, and L. Paquete. Constructing Optimal
L∞ Star Discrepancy Sets. CoRR abs/2311.17463 (2023). doi: 10 .48550/

ARXIV.2311.17463. arXiv: 2311.17463. url: https://doi.org/10.48550/arXiv.

2311.17463 (see pages 4, 17, 37, 136, 167).

[Clé+23b] F. Clément, D. Vermetten, J. de Nobel, A. D. Jesus, L. Paquete, and C. Doerr.

Reproducibility files and additional figures. https://doi.org/10.5281/zenodo.
7630260. Feb. 2023 (see pages 103, 144).

[Clé+23c] F. Clément, D. Vermetten, J. de Nobel, A.D. Jesus, C. Doerr, and L. Paquete.

Computing Star Discrepancies with Numerical Black-Box Optimiza-
tion Algorithms. Proc. of GECCO’23 (2023), 1330–1338. url: https://dl.acm.

org/doi/10.1145/3583131.3590456 (see pages 5, 143, 144).

[Clé23] F. Clément. Extending the Kritzinger sequence: more points and higher
dimensions (2023). https://webia.lip6.fr/~fclement/fclement (see pages 5, 7,

118).

[Cor35] J.G. van der Corput. Verteilungsfunktionen II. Akad. Wetensch. Amsterdam
Proc. 38 (1935), 1058–1066 (see page 18).

[CST14] William Chen, Anand Srivastav, and Giancarlo Travaglini. A Panorama
of Discrepancy Theory. Vol. 2107. Jan. 2014. isbn: 978-3-319-04695-2. doi:
10.1007/978-3-319-04696-9 (see page 11).

[Cyg+15] M. Cygan, F.V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M.

Pilipczuk, and S. Saurabh. Parameterized Complexity. Springer Publishing
Company, Incorporated, 2015 (see page 24).

[Dav56] H. Davenport. Note on irregularities of distribution. Mathematika 3

(1956), 131–135 (see page 15).

[DDG18] B. Doerr, C. Doerr, and M. Gnewuch. “Probabilistic Lower Bounds for the

Discrepancy of Latin Hypercube Samples.” In: Contemporary Computational
Mathematics - A Celebration of the 80th Birthday of Ian Sloan. Ed. by Josef

Dick, Frances Y. Kuo, and Henryk Woźniakowski. Springer, 2018, 339–350.

isbn: 978-3-319-72456-0. doi: 10.1007/978-3-319-72456-0_16 (see page 14).

[DEM96] D.P. Dobkin, D. Eppstein, and D.P. Mitchell. Computing the Discrepancy
with Applications to Supersampling Patterns. ACM Trans. Graph. 15:4
(1996), 354–376. doi: 10.1145/234535.234536 (see pages 8, 25, 82, 144).

[DGS05] B. Doerr, M. Gnewuch, and A. Srivastav. Bounds and constructions for the
star-discrepancy via 𝜹-covers. Journal of Complexity 21:5 (2005), 691–709.

issn: 0885-064X. doi: https://doi.org/10.1016/j.jco.2005.05.002 (see pages 15,

28).

193

https://doi.org/10.48550/ARXIV.2311.17463
https://doi.org/10.48550/ARXIV.2311.17463
https://arxiv.org/abs/2311.17463
https://doi.org/10.48550/arXiv.2311.17463
https://doi.org/10.48550/arXiv.2311.17463
https://doi.org/10.5281/zenodo.7630260
https://doi.org/10.5281/zenodo.7630260
https://dl.acm.org/doi/10.1145/3583131.3590456
https://dl.acm.org/doi/10.1145/3583131.3590456
https://doi.org/10.1007/978-3-319-04696-9
https://doi.org/10.1007/978-3-319-72456-0_16
https://doi.org/10.1145/234535.234536
https://doi.org/https://doi.org/10.1016/j.jco.2005.05.002

[DGW14] C. Doerr, M. Gnewuch, and M. Wahlström. Calculation of Discrepancy
Measures and Applications in: W. Chen, A. Srivastav, G. Travaglini
(Eds.) A Panorama of Discrepancy Theory, Springer (2014), 621–678 (see

pages 11, 17, 18, 21, 25, 59).

[Doe+08] B. Doerr, M. Gnewuch, P. Kritzer, and F. Pillichshammer. Component-
by-component construction of low-discrepancy point sets of small
size. Monte Carlo Methods and Applications 14:2 (2008), 129–149. doi: doi:
10.1515/MCMA.2008.007. url: https://doi.org/10.1515/MCMA.2008.007 (see

page 15).

[Doe+18] C. Doerr, H. Wang, F. Ye, S. van Rijn, and T. Bäck. IOHprofiler: A Bench-
marking and Profiling Tool for Iterative Optimization Heuristics.
CoRR abs/1810.05281 (2018). Available at http://arxiv.org/abs/1810.05281.

A more up-to-date documentation of IOHprofiler is available at https : / /

iohprofiler.github.io/ (see page 149).

[Doe14] B. Doerr. A lower bound for the discrepancy of a random point set.
Journal of Complexity 30:1 (2014), 16–20. doi: 10.1016/j.jco.2013.06.001 (see

pages 14, 15).

[Doe22] B. Doerr. A sharp discrepancy bound for jittered sampling. Math. Com-
put. 91:336 (2022), 1871–1892 (see page 14).

[DP10] J. Dick and F. Pillichshammer. Digital Nets and Sequences. Cambridge:

Cambridge University Press, 2010 (see pages 2, 17).

[DP14] J. Dick and F. Pillichshammer. Discrepancy Theory and Quasi-Monte
Carlo Integration in: W. Chen, A. Srivastav, G. Travaglini (Eds.) A
Panorama of Discrepancy Theory, Springer (2014), 539–620 (see page 32).

[DR13] C. Doerr and F.-M. de Rainville. Constructing low star discrepancy point
sets with genetic algorithms. In: Proc. of Genetic and Evolutionary Com-
putation Conference (GECCO). ACM, 2013, 789–796 (see pages 16, 28, 30, 65,

110).

[DS90] G. Dueck and T. Scheuer. Threshold accepting: a general purpose op-
timization algorithm appearing superior to simulated annealing. J.
Comput. Phys. 90 (1990), 161–175 (see page 27).

[Dud78] R.M. Dudley. Central Limit Theorems for Empirical Measures. The
Annals of Probability 6:6 (1978), 899–929. doi: 10.1214/aop/1176995384. url:

https://doi.org/10.1214/aop/1176995384 (see page 28).

[Dwi+19] R. Dwivedi, O.N. Feldheim, O. Gurel-Gurevich, and A. Ramdas. The power of
online thinning in reducing discrepancy. Probability Theory and Related
Fields 174 (2019), 103–131 (see pages 66, 67).

194

https://doi.org/doi:10.1515/MCMA.2008.007
https://doi.org/doi:10.1515/MCMA.2008.007
https://doi.org/10.1515/MCMA.2008.007
http://arxiv.org/abs/1810.05281
https://iohprofiler.github.io/
https://iohprofiler.github.io/
https://doi.org/10.1016/j.jco.2013.06.001
https://doi.org/10.1214/aop/1176995384
https://doi.org/10.1214/aop/1176995384

[ET48a] P. Erdős and P. Turán. On a problem in the theory of uniform distribu-
tion I. Nederl. Akad. Wetensch. 51 (1948), 1146–1154 (see pages 16, 17).

[ET48b] P. Erdős and P. Turán. On a problem in the theory of uniform distribu-
tion II. Nederl. Akad. Wetensch. 51 (1948), 1262–1269 (see pages 16, 17).

[Fau82] H. Faure. Discrepancy of sequences associated with a number system
(in dimension s). Acta. Arith 41:4 (1982). In French., 337–351 (see page 18).

[Fox86] B. Fox. Algorithm 647:Implementation and Relative Efficiency of
Quasirandom Sequence Generators. ACM Transactions on Mathematical
Software 12:4 (1986), 362–376 (see page 147).

[GH21] M. Gnewuch and N. Hebbinghaus. Discrepancy bounds for a class of neg-
atively dependent random points including Latin hypercube samples.
Annals of Applied Probability (2021). To appear. Available at https://imstat.

org/journals-and-publications/annals-of-applied-probability/annals-of-

applied-probability-future-papers/ (see pages 14, 15).

[Gia+12] P. Giannopoulos, C. Knauer, M. Wahlström, and D. Werner. Hardness of
discrepancy computation and 𝝐-net verification in high dimension.
Journal of Complexity 28 (2012), 162–176 (see page 24).

[GJ90] M.R. Garey and D.S. Johnson. Computers and Intractability; A Guide to
the Theory of NP-Completeness. USA: W. H. Freeman & Co., 1990. isbn:

0716710455 (see page 69).

[GJ97] S. Galanti and A. Jung. Low-discrepancy sequences: Monte-Carlo simu-
lation of option prices. J. Deriv (1997), 63–83 (see page 2).

[GLM22] P. Gilibert, T. Lachmann, and C. Müllner. The VC-dimension of axis-
parallel boxes on the torus. Journal of Complexity 68 (2022), 101600 (see

page 61).

[Gne08] M. Gnewuch. Bracketing numbers for axis-parallel boxes and applica-
tions to geometric discrepancy. Journal of Complexity 24:2 (2008), 154–172.

issn: 0885-064X. doi: https://doi.org/10.1016/j.jco.2007.08.003 (see pages 15,

115).

[Gne12] M. Gnewuch. Entropy, Randomization, Derandomization, and Discrep-
ancy. In: Monte Carlo and Quasi-Monte Carlo Methods 2010. Ed. by Leszek

Plaskota and Henryk Woźniakowski. Berlin, Heidelberg: Springer Berlin

Heidelberg, 2012, 43–78. isbn: 978-3-642-27440-4 (see page 28).

[Gne24] M. Gnewuch. Improved bounds for the bracketing number of orthants
or revisiting an algorithm of Thiémard to compute bounds for the
star discrepancy (2024). url: https://arxiv.org/abs/2401.00801 (see page 28).

195

https://imstat.org/journals-and-publications/annals-of-applied-probability/annals-of-applied-probability-future-papers/
https://imstat.org/journals-and-publications/annals-of-applied-probability/annals-of-applied-probability-future-papers/
https://imstat.org/journals-and-publications/annals-of-applied-probability/annals-of-applied-probability-future-papers/
https://doi.org/https://doi.org/10.1016/j.jco.2007.08.003
https://arxiv.org/abs/2401.00801

[GPW20] M. Gnewuch, H. Pasing, and C. Weiß. A generalized Faulhaber inequality,
improved bracketing covers and applications to discrepancy. Mathe-
matics of Computation 90 (2020), 2873–2898 (see pages 14, 15).

[GSW09] M. Gnewuch, A. Srivastav, and C. Winzen. Finding optimal volume subin-
tervals with k points and calculating the star discrepancy are NP-hard
problems. J. Complexity 25:2 (2009), 115–127 (see pages 24, 29, 67, 69, 70).

[Gur23] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual.
https://www.gurobi.com. 2023 (see pages 37, 137).

[GWW12] M. Gnewuch, M. Wahlström, and C. Winzen. A New Randomized Al-
gorithm to Approximate the Star Discrepancy Based on Threshold
Accepting. SIAM J. Numerical Analysis 50:2 (2012), 781–807. doi: 10.1137/
110833865 (see pages 25–27, 144, 153).

[Hal60] J.H. Halton. On the efficiency of certain quasi-random sequences of
points in evaluating multi-dimensional integrals. Numerische Mathe-
matik 2 (1960), 84–90 (see page 147).

[Hal64] J.H. Halton. Algorithm 247: Radical-Inverse Quasi-random Point Se-
quence. Communications of the ACM 7:12 (1964), 701–702 (see page 18).

[Han16] N. Hansen. The CMA Evolution Strategy: A Tutorial (2016). url: https:
//arxiv.org/abs/1604.00772 (see page 158).

[Hei+01] S. Heinrich, E. Novak, G. Wasilkowski, and H. Wozniakowski. The inverse
of the star-discrepancy depends linearly on the dimension. Acta Arith-
metica 96 (Jan. 2001), 279–302. doi: 10.4064/aa96-3-7 (see pages 14, 15).

[Hei96] S. Heinrich. Efficient algorithms for computing the 𝑳2 discrepancy.
Math. Comp 65 (1996), 1621–1633 (see page 31).

[Hin04] A. Hinrichs. Covering numbers, Vapnik-Červonenkis classes and
bounds for the star-discrepancy. J. Complexity 20 (2004), 477–483 (see

page 15).

[Hin13] A. Hinrichs. Discrepancy, Integration and Tractability. In: Monte Carlo
and Quasi-Monte Carlo Methods 2012. Ed. by Josef Dick, Frances Y. Kuo, Gareth
W. Peters, and Ian H. Sloan. Berlin, Heidelberg: Springer Berlin Heidelberg,

2013, 129–172. isbn: 978-3-642-41095-6 (see pages 30, 110).

[Hla61] E. Hlawka. Funktionen von beschränkter Variation in der Theorie der
Gleichverteilung. Ann. Mat. Pum Appl. 54 (1961), 325–333 (see pages iii, 2).

[Hla62] E. Hlawka.Zur angenäherten Berechnungmehrfacher Integrale.Monat-
shefte Math 66 (1962), 140–151 (see page 18).

196

https://doi.org/10.1137/110833865
https://doi.org/10.1137/110833865
https://arxiv.org/abs/1604.00772
https://arxiv.org/abs/1604.00772
https://doi.org/10.4064/aa96-3-7

[HO01] N. Hansen and A. Ostermeier. Completely Derandomized Self-
Adaptation in Evolution Strategies. Evolutionary Computation 9:2 (2001),

159–195. doi: 10.1162/106365601750190398. url: https://doi.org/10.1162/

106365601750190398 (see pages 148, 158).

[HO14] A. Hinrichs and J. Oettershagen. Optimal Point Sets for Quasi-Monte
Carlo Integration of Bivariate Periodic FunctionswithBoundedMixed
Derivatives. In: Monte Carlo and Quasi-Monte Carlo Methods. 2014 (see

pages 14, 16, 53).

[HO96] N. Hansen and A. Ostermeier. Adapting Arbitrary Normal Mutation
Distributions in Evolution Strategies: The Covariance Matrix Adap-
tation. Proceedings of 1996 IEEE International Conference on Evolutionary
Computation (1996), 312–317 (see page 158).

[JK08] S. Joe and F.Y. Kuo. Constructing Sobol Sequences with Better Two-
Dimensional Projections. SIAM Journal on Scientific Computing 30:5 (2008),
2635–2654. doi: 10.1137/070709359. url: https://doi.org/10.1137/070709359

(see page 18).

[Joe12] S. Joe. An Intermediate Bound on the Star Discrepancy. Springer Pro-
ceedings in Mathematics and Statistics 23 (Jan. 2012). doi: 10.1007/978-3-642-
27440-4_25 (see page 17).

[KE95] J. Kennedy and R. Eberhart. Particle swarm optimization. In: Proc. of
ICNN’95 - International Conference on Neural Networks. Vol. 4. 1995, 1942–
1948. doi: 10.1109/ICNN.1995.488968 (see page 149).

[KGV83] S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi. Optimization by Simulated
Annealing. Science 220 (1983), 671–680 (see page 27).

[Koc+14] G. Kochenberger, J.-K. Hao, F. Glover, M. Lewis, Z. Lü, H. Wang, and Y. Wang.

The unconstrained binary quadratic programming problem: A survey.
Journal of Combinatorial Optimization 28 (July 2014). doi: 10.1007/s10878-

014-9734-0 (see pages 96, 97).

[Kok43] J.F. Koksma. A general theorem from the theory of the uniform distri-
butionmodulo 1.Mathematica B (Zutphen) 1 (1942/1943), 7–11 (see pages iii,
2).

[Kok50] J. F. Koksma. Some theorems on diophantine inequalities.Math. Centrum
Amsterdam Scriptum 5 (1950) (see page 16).

[Kor59] N. M. Korobov. The approximate computation of multiple integrals.
Dokl. Akad. Nauk SSSR 124 (1959), 1207–1210 (see page 18).

[KP21] M. Kiderlen and F. Pausinger. Discrepancy of stratified samples from
partitions of the unit cube. Monatshefte für Mathematik 195 (2021), 267–

306 (see pages 9, 155, 157, 158, 162).

197

https://doi.org/10.1162/106365601750190398
https://doi.org/10.1162/106365601750190398
https://doi.org/10.1162/106365601750190398
https://doi.org/10.1137/070709359
https://doi.org/10.1137/070709359
https://doi.org/10.1007/978-3-642-27440-4_25
https://doi.org/10.1007/978-3-642-27440-4_25
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1007/s10878-014-9734-0
https://doi.org/10.1007/s10878-014-9734-0

[KP22] M. Kiderlen and F. Pausinger. On a partition with a lower expected L2-
discrepancy than classical jittered sampling. Journal of Complexity 70

(2022), 101616. issn: 0885-064X. doi: https://doi.org/10.1016/j.jco.2021.101616.

url: https://www.sciencedirect.com/science/article/pii/S0885064X21000716

(see pages 9, 158).

[Kri22] R. Kritzinger. Uniformly distributed sequences generated by a greedy
minimization of the 𝑳2 discrepancy. Moscow Journal of Combinatorics
and Number Theory 11:3 (2022). https://arxiv.org/abs/2109.06298, 215–236

(see pages 4, 8, 32, 33, 118, 129–131, 141).

[LEc+22] P. L’Ecuyer, P. Marion, M. Godin, and F. Puchhammer. A Tool for Custom
Construction of QMC and RQMC Point Sets. Monte Carlo and Quasi-
Monte Carlo Methods (2022), 451–470. doi: https://link.springer.com/chapter/

10.1007/978-3-030-98319-2_3 (see page 169).

[Lev96] V.F. Lev. Translations of nets and relationship between supreme and
𝑳𝒌 discrepancies. Acta Math. Hung. 12 (1996), 1–12 (see page 61).

[LL01] P. Larrañaga and J.A. Lozano. Estimation of distribution algorithms:
A new tool for evolutionary computation. Vol. 2. Springer Science &
Business Media, 2001 (see page 148).

[LP07] G. Larcher and F. Pillichshammer. A note on optimal point distributions
in [0, 1)𝒔 . Journal of Computational and Applied Mathematics 206:2 (2007),
977–985. issn: 0377-0427. doi: https://doi.org/10.1016/j.cam.2006.09.004. url:

https://www.sciencedirect.com/science/article/pii/S0377042706005620 (see

page 15).

[LP16] G. Larcher and F. Puchhammer. An Improved Bound for the Star Discrep-
ancy of Sequences in the Unit Interval. Uniform Distribution Theory 11

(2016), 1–14 (see page 13).

[Mat10] J. Matoušek. Geometric Discrepancy. 2nd edition, Springer Berlin (2010)

(see pages 11, 12, 53).

[Mat98] J. Matoušek. On the L2-discrepancy for anchored boxes. J. Complexity
14 (1998), 527–556 (see page 32).

[MBC79] M.D. McKay, R.J. Beckman, and W.J. Conover. A Comparison of Three
Methods for Selecting Values of Input Variables in the Analysis of
Output from a Computer Code. Technometrics 21 (1979), 239–245. issn:
00401706 (see page 14).

[MC94] W.J. Morokoff and R.E. Caflisch. Quasi-Random Sequences and Their
Discrepancies. SIAM J. Sci. Comput. 15 (1994), 1251–1279. url: https://api.
semanticscholar.org/CorpusID:5051555 (see page 59).

198

https://doi.org/https://doi.org/10.1016/j.jco.2021.101616
https://www.sciencedirect.com/science/article/pii/S0885064X21000716
https://doi.org/https://link.springer.com/chapter/10.1007/978-3-030-98319-2_3
https://doi.org/https://link.springer.com/chapter/10.1007/978-3-030-98319-2_3
https://doi.org/https://doi.org/10.1016/j.cam.2006.09.004
https://www.sciencedirect.com/science/article/pii/S0377042706005620
https://api.semanticscholar.org/CorpusID:5051555
https://api.semanticscholar.org/CorpusID:5051555

[Meu+21] L. Meunier, H. Rakotoarison, P. K. Wong, B. Roziere, J. Rapin, O. Teytaud,

A. Moreau, and C. Doerr. Black-box optimization revisited: Improving
algorithm selection wizards through massive benchmarking. IEEE
Transactions on Evolutionary Computation 26:3 (2021), 490–500 (see pages 148,
159).

[MML14] R. Martins, V. Manquinho, and I. Lynce. Open-WBO: A modular MaxSAT
solver. Theory and Applications of Satisfiability Testing- SAT (2014), 438–445

(see page 80).

[MMM04] H. Maaranen, K. Miettinen, and M.M. Mäkelä. Quasi-random initial popu-
lation for genetic algorithms. Computers & Mathematics with Applications
47:12 (2004), 1885–1895. issn: 0898-1221. doi: https://doi .org/10.1016/j .

camwa.2003.07.011. url: https://www.sciencedirect.com/science/article/pii/

S0898122104840240 (see page 2).

[Neu+18] A. Neumann, W. Gao, C. Doerr, F. Neumann, and M. Wagner. Discrepancy-
based evolutionary diversity optimization. In: Proc. of Genetic and Evo-
lutionary Computation Conference (GECCO’18). ACM, 2018, 991–998. doi:

10.1145/3205455.3205532 (see pages 6, 66).

[Nie72] H. Niederreiter. Discrepancy and Convex Programming. Ann. Mat. Pura
Appl. 93 (1972), 89–97 (see pages 13, 21, 71).

[Nie92] H. Niederreiter. Random Number Generation and Quasi-Monte Carlo
Methods. Vol. 63. SIAM CBMS-NSF Regional Conference Series in Applied

Mathematics. Philadelphia: SIAM, 1992 (see pages 14, 17–19, 59).

[Nob+24] J. de Nobel, F. Ye, D. Vermetten, H. Wang, C. Doerr, and T. Bäck. IOHexperi-
menter: Benchmarking Platform for Iterative Optimization Heuris-
tics. Evolutionary Computation (2024). doi: https://doi.org/10.1162/evco_a_

00342 (see pages 147, 162).

[NW10] E. Novak and H. Woźniakowski. Tractability of Multivariate problems,
Volume 2. Eur. Math. Soc. Publ. House (2010) (see pages 15, 16, 30, 99, 110).

[Ost09] V. Ostromoukhov. Recent Progress in Improvement of Extreme Dis-
crepancy and Star Discrepancy of One-dimensional Sequences. Monte
Carlo and Quasi-Monte Carlo Methods 2008 (2009), 561–572 (see pages 13, 18,
131).

[Owe23] Art B. Owen. Practical Quasi-Monte Carlo Integration. https://artowen.
su.domains/mc/practicalqmc.pdf, 2023 (see page 38).

[Pau+22] L. Paulin, N. Bonneel, D. Coeurjoly, J.-C. Iehl, A. Keller, and V. Ostromoukhov.

MatBuilder: Mastering Sampling Uniformiy over projections. ACM
Transactions on Graphics (proceedings of SIGGRAPH) (2022) (see page 2).

199

https://doi.org/https://doi.org/10.1016/j.camwa.2003.07.011
https://doi.org/https://doi.org/10.1016/j.camwa.2003.07.011
https://www.sciencedirect.com/science/article/pii/S0898122104840240
https://www.sciencedirect.com/science/article/pii/S0898122104840240
https://doi.org/10.1145/3205455.3205532
https://doi.org/https://doi.org/10.1162/evco_a_00342
https://doi.org/https://doi.org/10.1162/evco_a_00342
https://artowen.su.domains/mc/practicalqmc.pdf
https://artowen.su.domains/mc/practicalqmc.pdf

[Pau19] F. Pausinger. On the Intriguing Search for Good Permutations. Uniform
distribution theory 14:1 (2019), 53–86. doi: doi:10.2478/udt-2019-0005. url:

https://doi.org/10.2478/udt-2019-0005 (see page 18).

[Pau21] F. Pausinger. Greedy energy minimization can count in binary: point
charges and the van der Corput sequence. Annali di Matematica 200

(2021), 165–186 (see page 33).

[Pau23] F. Pausinger. On the expected L2-discrepancy of stratified samples
from parallel lines (2023). url: https://arxiv.org/pdf/2310.13927.pdf (see
pages 154, 162).

[Pow94] M. J. D. Powell. “A Direct Search Optimization Method That Models the

Objective and Constraint Functions by Linear Interpolation.” In: Advances
in Optimization and Numerical Analysis. Ed. by S. Gomez and J.-P. Hennart.

Dordrecht: Springer Netherlands, 1994, 51–67. isbn: 978-94-015-8330-5. doi:

10.1007/978-94-015-8330-5_4. url: https://doi.org/10.1007/978-94-015-8330-

5_4 (see page 148).

[PS16] F. Pausinger and S. Steinerberger.On the discrepancy of jittered sampling.
Journal of Complexity 33 (2016), 199–216 (see page 155).

[PSS16] J.K. Pugh, L.B. Soros, and K.O. Stanley. Quality Diversity: A New Frontier
for Evolutionary Computation. Frontiers Robotics AI 3 (2016), 40. doi:

10.3389/frobt.2016.00040. url: https://doi.org/10.3389/frobt.2016.00040 (see

page 153).

[Pug+15] J.K. Pugh, L.B. Soros, P.A. Szerlip, and K.O. Stanley. Confronting the Chal-
lenge of Quality Diversity. In: Proc. of Genetic and Evolutionary Computa-
tion Conference (GECCO). ACM, 2015, 967–974. doi: 10.1145/2739480.2754664.

url: https://doi.org/10.1145/2739480.2754664 (see page 153).

[PVC06] T. Pillards, B. Vandewoestyne, and R. Cools. Minimizing the 𝑳2 and 𝑳∞
star discrepancies of a single point in the unit hypercube. Journal
of Computational and Applied Mathematics 197 (Dec. 2006), 282–285. doi:

10.1016/j.cam.2005.11.005 (see page 15).

[Rij+16] S. van Rijn, H. Wang, M. van Leeuwen, and T. Bäck. Evolving the structure
of Evolution Strategies. 2016 IEEE Symposium Series on Computational
Intelligence, SSCI 2016, (2016) (see page 158).

[Rot54] K.F. Roth. On irregularities of distribution.Mathematika 1:2 (1954), 73–79.
doi: https://doi.org/10.1112/S0025579300000541 (see pages 13, 14).

[Rot79] K.F. Roth. On irregularities of distribution III. Acta Arith. 35 (1979), 373–
384 (see page 15).

[RT18] J. Rapin and O. Teytaud. Nevergrad - A gradient-free optimization platform.

https://GitHub.com/FacebookResearch/Nevergrad. 2018 (see pages 148, 162).

200

https://doi.org/doi:10.2478/udt-2019-0005
https://doi.org/10.2478/udt-2019-0005
https://arxiv.org/pdf/2310.13927.pdf
https://doi.org/10.1007/978-94-015-8330-5_4
https://doi.org/10.1007/978-94-015-8330-5_4
https://doi.org/10.1007/978-94-015-8330-5_4
https://doi.org/10.3389/frobt.2016.00040
https://doi.org/10.3389/frobt.2016.00040
https://doi.org/10.1145/2739480.2754664
https://doi.org/10.1145/2739480.2754664
https://doi.org/10.1016/j.cam.2005.11.005
https://doi.org/https://doi.org/10.1112/S0025579300000541
https://GitHub.com/FacebookResearch/Nevergrad

[SC02] M. Skriganov and W. Chen. Explicit constructions in the classical mean
squares problem in irregularities of point distribution. Journal für die
reine und angewandte Mathematik 2002:545 (2002), 67–95. doi: doi:10.1515/

crll.2002.037. url: https://doi.org/10.1515/crll.2002.037 (see page 15).

[Sch72] W.M. Schmidt. Irregularities of distribution VII. Acta. Arith 21 (1972),

45–50 (see page 13).

[Sha10] M. Shah. Monte Carlo Methods and Applications 16:3-4 (2010), 379–398. doi:
doi:10.1515/mcma.2010.014. url: https://doi.org/10.1515/mcma.2010.014 (see

page 29).

[Shi12] O. Shir. “Niching in Evolutionary Algorithms.” In: Handbook of Natural Com-
puting. Ed. by Grzegorz Rozenberg, Thomas Bäck, and Joost N. Kok. Springer,

2012, 1035–1069. isbn: 978-3-540-92910-9. doi: 10.1007/978-3-540-92910-9_32.

url: https://doi.org/10.1007/978-3-540-92910-9_32 (see page 153).

[SJ94] I.H. Sloan and S. Joe. Lattice Methods for Numerical Integration. Claren-
don Press, Oxford (1994) (see page 17).

[Sob67] I.M. Sobol.On theDistribution of Points in aCube and theApproximate
Evaluation of Integrals. USSR Computational Mathematics and Mathemati-
cal Physics 7:4 (1967), 86–112 (see pages 17, 147).

[SP97] R. Storn and K. Price. Differential Evolution – A Simple and Efficient
Heuristic for Global Optimization over Continuous Spaces. Journal of
Global Optimization 11:4 (1997), 341–359. issn: 0925-5001. doi: 10.1023/A:

1008202821328. url: https://doi.org/10.1023/A:1008202821328 (see page 148).

[Spa92] J.C. Spall.Multivariate stochastic approximation using a simultaneous
perturbation gradient approximation. IEEE Transactions on Automatic
Control 37:3 (1992), 332–341 (see page 149).

[SS68] M. Schumer and K. Steiglitz. Adaptive step size random search. IEEE
Transactions on Automatic Control 13 (1968), 270–276 (see page 160).

[Ste19] S. Steinerberger. A non-local functional promoting low-discrepancy
point sets. Journal of Complexity 54 (2019), 101410 (see pages 7, 17, 32, 33,

98, 110, 130).

[Ste20] S. Steinerberger. Dynamically defined sequences with small discrep-
ancy. Monatshefte Math 191 (2020), 639–655 (see page 32).

[Ste24] S. Steinerberger. On combinatorial properties of greedy Wasserstein
minimization. Journal of Mathematical Analysis and Applications 532:1
(2024), 127940. issn: 0022-247X. doi: https : / / doi . org / 10 . 1016 / j . jmaa .

2023 . 127940. url: https : / /www.sciencedirect . com/science /article /pii /

S0022247X23009435 (see pages 8, 35, 118, 129, 130, 171).

201

https://doi.org/doi:10.1515/crll.2002.037
https://doi.org/doi:10.1515/crll.2002.037
https://doi.org/10.1515/crll.2002.037
https://doi.org/doi:10.1515/mcma.2010.014
https://doi.org/10.1515/mcma.2010.014
https://doi.org/10.1007/978-3-540-92910-9_32
https://doi.org/10.1007/978-3-540-92910-9_32
https://doi.org/10.1023/A:1008202821328
https://doi.org/10.1023/A:1008202821328
https://doi.org/10.1023/A:1008202821328
https://doi.org/https://doi.org/10.1016/j.jmaa.2023.127940
https://doi.org/https://doi.org/10.1016/j.jmaa.2023.127940
https://www.sciencedirect.com/science/article/pii/S0022247X23009435
https://www.sciencedirect.com/science/article/pii/S0022247X23009435

[SW98] I.H. Sloan and H. Woźniakowski. When Are Quasi-Monte Carlo Algo-
rithms Efficient for High Dimensional Integrals? Journal of Complexity
14:1 (1998), 1–33. issn: 0885-064X. doi: https : / / doi . org / 10 . 1006 / jcom .

1997 . 0463. url: https : / / www. sciencedirect . com / science / article / pii /

S0885064X97904635 (see page 169).

[SWN03] T. J. Santner, B.J. Williams, and W. I. Notz. The Design and Analysis of
Computer Experiments. Springer Series in Statistics. Springer, 2003. isbn:

978-1-4419-2992-1. doi: 10.1007/978-1-4757-3799-8 (see page 2).

[Thi00] E. Thiémard. Sur le calcul et la majoration de la discrépance à l’origine.
PhD thesis École polytechnique fédérale de Lausanne EPFL, nbr 2259 (2000).

url: https://infoscience.epfl.ch/record/32735 (see pages 28, 29).

[Thi01a] E. Thiémard. An algorithm to compute bounds for the star discrepancy.
Journal of Complexity 17 (2001), 850–880 (see pages 28, 115).

[Thi01b] E. Thiémard. Optimal volume subintervals with k points and star dis-
crepancy via integer programming. Math. Meth. Oper. Res. 54 (2001), 21–
45 (see pages 28, 29, 65).

[VC06] B. Vandewoestyne and R. Cools. Good permutations for deterministic
scrambled Halton sequences in terms of 𝑳2-discrepancy. Journal of
Computational and Applied Mathematics 189 (2006), 341–361. doi: https :

//doi.org/10.1016/j.cam.2005.05.022 (see pages 18, 67).

[Wan+22] H. Wang, D. Vermetten, F. Ye, C. Doerr, and T. Bäck. IOHanalyzer: Detailed
Performance Analyses for Iterative Optimization Heuristics. ACM
Trans. Evol. Learn. Optim. 2 (2022). issn: 2688-299X. doi: 10.1145/3510426.
url: https://doi.org/10.1145/3510426 (see page 149).

[War72] T.T. Warnock. Computational inverstigations of low-discrepancy point
sets. in Applications of number theory to numerical analysis, ed. by S.K.
Zaremba (Acedemic Press, New York) (1972) (see page 31).

[Wey16] H. Weyl. Über die Gleichverteilung von Zahlen mod. Eins. Math. Ann.
77 (1916), 313–352 (see page 1).

[WF97] P. Winker and K.T. Fang. Applications of Threshold-Accepting to the
evaluation of the discrepancy of a set of points. SIAM J. Numerical
Analysis 34 (1997), 2028–2042 (see pages 23, 27).

[Whi77] B.E. White. On optimal extreme-discrepancy point sets in the square.
Numer. Math. 27 (1976/1977), 157–164 (see pages 5, 15, 37–39, 43).

202

https://doi.org/https://doi.org/10.1006/jcom.1997.0463
https://doi.org/https://doi.org/10.1006/jcom.1997.0463
https://www.sciencedirect.com/science/article/pii/S0885064X97904635
https://www.sciencedirect.com/science/article/pii/S0885064X97904635
https://doi.org/10.1007/978-1-4757-3799-8
https://infoscience.epfl.ch/record/32735
https://doi.org/https://doi.org/10.1016/j.cam.2005.05.022
https://doi.org/https://doi.org/10.1016/j.cam.2005.05.022
https://doi.org/10.1145/3510426
https://doi.org/10.1145/3510426

	Abstract
	Résumé
	Acknowledgments
	Contents
	1 Introduction
	1.1 Why Discrepancy?
	1.2 Objectives of the Thesis
	1.3 Outline of the Thesis
	1.4 Contributions of the Thesis
	1.4.1 Constructing Optimal Star Discrepancy Sets
	1.4.2 Star Discrepancy Subset Selection: Problem Formulation and Efficient Approaches for Low Dimensions
	1.4.3 Heuristic Approaches to Obtain Low-Discrepancy Point Sets via Subset Selection
	1.4.4 Extending the Kritzinger Sequence: More Points and Higher Dimensions
	1.4.5 Computing Star Discrepancies with Numerical Black-Box Optimization Algorithms
	1.4.6 Partitions for Stratified Sampling

	I Background
	2 Discrepancy Theory
	2.1 The L-infty Star Discrepancy
	2.2 Theoretical Bounds
	2.2.1 Asymptotic Orders
	2.2.2 Optimal Sets and the Inverse Star Discrepancy
	2.2.3 Upper-Bounding the Star Discrepancy

	2.3 Well-Known Low-Discrepancy Sets and Sequences

	3 A Computational Perspective on Discrepancy
	3.1 The Grid Structure of the L-infty Star Discrepancy
	3.2 Complexity of Calculating the L-infty Star Discrepancy
	3.3 The Dobkin, Eppstein, Mitchell Algorithm
	3.4 Threshold Accepting
	3.5 Other Approximation Methods of the Star Discrepancy
	3.5.1 Bracketing Covers
	3.5.2 Thiémard's Optimization Method

	3.6 Genetic Approaches

	4 Energy Approaches
	4.1 The L-2 Discrepancy
	4.2 One-Dimensional Greedy Constructions
	4.3 The Kritzinger Sequence

	II Contributions
	5 Optimal Set Construction
	5.1 Summary of Results
	5.2 Problem Formulations in Two Dimensions
	5.2.1 A Generalization of a Result in White
	5.2.2 A ``Classical'' Formulation
	5.2.3 Minimal Point Spacing
	5.2.4 An Assignment Formulation
	5.2.5 Experimental Results
	5.2.6 Structural Differences between Known and Optimal Point Sets

	5.3 Extensions
	5.3.1 An Extension to Three Dimensions
	5.3.2 Optimal Lattice Construction
	5.3.3 Other Discrepancies
	5.3.3.1 Extreme Discrepancy
	5.3.3.2 Periodic Discrepancy
	5.3.3.3 Multiple-corner Discrepancy

	5.4 Conclusion

	6 Subset Selection: Exact approaches
	6.1 Summary of Results
	6.1.1 Motivation
	6.1.2 Our Contribution

	6.2 The Star Discrepancy Subset Selection Problem
	6.2.1 NP-Hardness of the Subset Selection Problem
	6.2.2 Other Basic Properties of the Discrepancy Subset Selection Problem

	6.3 Algorithmic Approaches to Solve the Discrepancy Subset Selection Problem
	6.3.1 A Mixed Integer Linear Programming Formulation
	6.3.2 A Combinatorial Branch-and-Bound Algorithm
	6.3.2.1 Lower Bounds
	6.3.2.2 Lower Bound Computation

	6.3.3 Greedy Heuristic
	6.3.4 The Feasibility Approach
	6.3.5 A Simple Case: Dominated Points

	6.4 Comparison of the Different Algorithms
	6.4.1 Experimental Setup
	6.4.2 Quality of Random Subset Sampling and the Greedy Heuristic
	6.4.3 Comparison between MILPs and Branch-and-Bound

	6.5 Comparison of Star Discrepancy Values
	6.5.1 The Two-Dimensional Case
	6.5.2 The Three-Dimensional Case

	6.6 Conclusions and Future Work
	6.7 The L-2 Version of Subset Selection

	7 Subset Selection: a Heuristic Algorithm
	7.1 Summary of Results
	7.2 A Heuristic Approach for the Star Discrepancy Subset Selection Problem
	7.2.1 Variants of the Algorithm

	7.3 Experimental Study
	7.3.1 Experimental Setup
	7.3.2 Experiment Results
	7.3.3 Improvements for the Inverse Star Discrepancy
	7.3.4 Comparison with the Energy Functional

	7.4 Conclusion and Future Work
	7.5 Complement: Heuristic Proof

	8 Greedy Sequence Constructions
	8.1 Summary of Results
	8.2 Greedy Addition of Points: L-infty Approach
	8.2.1 Boxes Without the New Point
	8.2.2 Optimal Placement Inside a Box of Grid

	8.3 An Optimization Perspective
	8.4 Experimental Results
	8.5 The Kritzinger Sequence: Summary of Results
	8.6 Competitiveness of the Kritzinger Sequence in Dimension 1
	8.6.1 Generating More Points
	8.6.2 Changing the Initialization Point(s)

	8.7 Evaluating the Kritzinger Sequence in Higher Dimensions
	8.7.1 Construction of the Kritzinger Sequence
	8.7.1.1 Exact Construction
	8.7.1.2 Approximate Methods

	8.7.2 Results in Dimensions 2 and 3

	8.8 Conclusion

	9 Black-Box Optimizers for L-infty Star Discrepancy Computation
	9.1 Summary of Results
	9.2 Parallelizing DEM
	9.3 Numerical Black-Box Optimization Approaches
	9.4 Results
	9.5 Conclusions

	10 Black-box Optimizers for Stratified Sampling Optimization
	10.1 Summary of Results
	10.2 Stratified Sampling
	10.2.1 Jittered Sampling
	10.2.2 An Equivolume Construction in Dimension 2
	10.2.3 Widening the Stratification Search Space

	10.3 Three Common Optimizers
	10.4 Finding Minimal Sets
	10.4.1 Experiment Setup
	10.4.2 Experimental Results

	11 Future Work
	12 Appendix
	12.1 Computational Results of Chap6
	12.2 Computational Results for Chap7
	12.3 Computational Results of Chap9

	Bibliography

