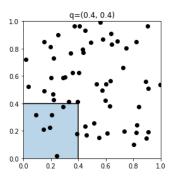
An Optimization Perspective on the Construction of Low Discrepancy Point Sets

François Clément

PhD Defense, 18/07/2024

The L_{∞} star discrepancy

Approximate volume of boxes $[0,q) \subseteq [0,1)^d$ by the proportion of points inside.

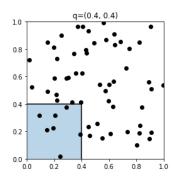


The L_{∞} star discrepancy

L_{∞} star discrepancy

For P a point set in $[0;1]^d$,

$$d_{\infty}^*(P) = \sup_{q \in [0;1)^d} \left| \frac{\left| P \cap [0,q) \right|}{|P|} - \lambda([0,q)) \right|.$$



Local discrepancy:

$$D(q, P) = |7/60 - 0.16| = 0.044$$

The L_{∞} star discrepancy: Heatmap

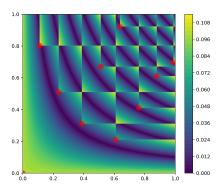


Figure: Discrepancy heatmap for 10 points in dimension 2

Why discrepancy?

- Covering a search space uniformly: design of experiments, non-adaptive black-box optimization, Quasi-Monte Carlo methods
- Koksma-Hlawka inequality: Discrepancy is a bound for the error of approximating an integral

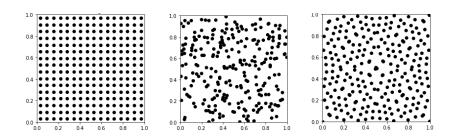
$$\left| \int_{[0,1]^d} f(x) d\lambda^d(x) - \frac{1}{|P|} \sum_{p \in P} f(p) \right| \le Var(f) d_{\infty}^*(P)$$

How many samples do you need for a desired error bound?

Summary

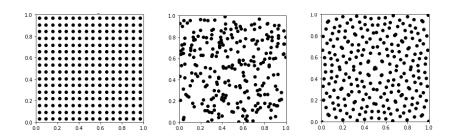
- Background
- Optimal constructions and beyond
- Set extraction and heuristic construction
- From sets to sequences

Some point sets



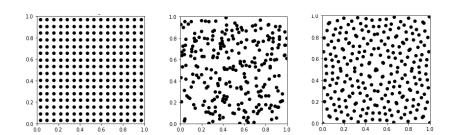
• Grid points: $O(n^{-1/d})$

Some point sets



• Random points: $\Theta(\sqrt{d/n})$

Some point sets



• Sobol' (and low-discrepancy sequences in general): $O\left(\frac{\log^d(n)}{n}\right)$

Sets vs Sequences

- Sequence: Infinite sequence of points. Any prefix big enough has low discrepancy
- Set: Finite set of points, good only for a specific n

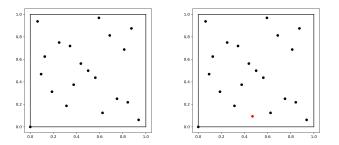


Figure: The Sobol' sequence for 20 and 21 points

A specific construction: the Fibonacci set

- Kronecker sequence: Given $\alpha \in \mathbb{R} \setminus \mathbb{Q}$, we define the sequence $(x_n)_{n \in \mathbb{N}} = \{\{i\alpha\} : i \in \mathbb{N}\}$. These sequences are uniformly distributed [Weyl, 1916]
- Among these, one of the best is for $\alpha = \phi := (1 + \sqrt{5})/2$: the Fibonacci sequence
- We can then associate it to a two-dimensional lattice of fixed size n, $P = \{(i/n, \{\phi i\}) : i \in \{0, ..., n-1\}\}$

A specific construction: the Fibonacci set

$$P = \{(i/n, \{\phi i\}) : i \in \{0, \dots, n-1\}\}$$

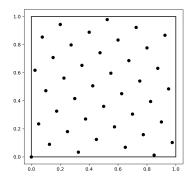


Figure: The Fibonacci set for 40 points

The minimal star discrepancy

- The optimal discrepancy order is unknown
- The asymptotic order is $O\left(\frac{\log^d(n)}{n}\right)$ for sequences, or $O\left(\frac{\log^{d-1}(n)}{n}\right)$ for sets. What happens for smaller n?
- The minimal star discrepancy, $d_{\infty}^*(n,d)$, is the best possible L_{∞} star discrepancy value for a point set of size n in dimension d
- There is a bound by [Heinrich et al, 2001] showing that $d_{\infty}^*(n,d) \le C\sqrt{d/n}$ for some constant C
- In general there is no constructive approach to obtain point sets matching these bounds

Very small instances: optimal values

- $d_{\infty}^{*}(n,d)$ is explicitly known in only a few specific cases
- [White, 1977] gave point sets for $n \le 6$ in dimension 2
- 1-point sets for any d have been solved by [Pillard, Cools and Vandewoestyne, 2006], extended to 2 points by [Larcher and Pillichshammer, 2007]
- For the periodic L_2 discrepancy, [Hinrichs and Oettershagen, 2016] solved the problem for $n \le 16$

Can we provide point sets matching $d_{\infty}^*(n,d)$?

Computing the star discrepancy

Calculating the discrepancy is a discrete problem, maximal values can only be reached on a grid defined by the points [Niederreiter, 1972].

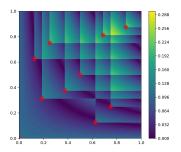


Figure: Critical boxes defined by a given point set in two dimensions.

Computing the star discrepancy

- From the discrete "positions-grid": $O(n^d)$, $O(n^d/d!)$ if we only count **critical boxes**
- Best known algorithm: $O\left(n^{1+d/2}\right)$ by [Dobkin, Eppstein and Mitchell, 1996]
- New parallel implementation by Alexandre D. Jesus as part of a GECCO paper¹. It is based on the original work of Magnus Wahlström
- Best heuristic in higher dimensions: Threshold Accepting algorithm by [Gnewuch, Wahlström and Winzen, 2012]

Too expensive to evaluate!

¹F. C., D. Vermetten, J. de Nobel, A. D. Jesus, C. Doerr, L. Paquete. Computing Star

Summary

- Background
- Optimal constructions and beyond
- Set extraction and heuristic construction
- From sets to sequences

Optimal constructions²

Optimal L_{∞}^* star discrepancy set

Given an integer $n \ge 1$ and a dimension $d \ge 2$, find a set P of size n in dimension d of discrepancy $d_{\infty}^*(n,d)$.

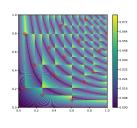
• Our two non-linear programming formulations rely on the grid structure of the discrepancy calculation

 $^{^2}$ Constructing Optimal L_∞ Star Discrepancy Sets, F.C, C. Doerr, K. Klamroth and L. Paquete, submitted. 2023

- Objective z is the discrepancy value
- Variables correspond to the points' coordinates (x_{2i-1}, x_{2i}) , plus some ordering variables y_{ij}
- Add constraints for each box that could define the discrepancy, always lower-bounding z

min z

s.t.
$$\frac{1}{n} \sum_{u=1}^{i} y_{uj} - x_{2i-1} x_{2j} \le z + (1 - y_{ij})$$
$$\frac{-1}{n} \left(\sum_{u=1}^{i-1} y_{uj} - 1 \right) + x_{2i-1} x_{2j} \le z + (1 - y_{ij})$$

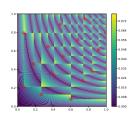


For each box, we need:

- the number of points inside: $\sum_{u=1}^{i} y_{uj}$
- its volume: $x_{2i-1}x_{2j}$
- to verify it is critical: $1 y_{ij}$

min z

s.t.
$$\frac{1}{n} \sum_{u=1}^{i} y_{uj} - x_{2i-1} x_{2j} \le z + (1 - y_{ij})$$
$$\frac{-1}{n} \left(\sum_{u=1}^{i-1} y_{uj} - 1 \right) + x_{2i-1} x_{2j} \le z + (1 - y_{ij})$$

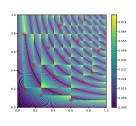


For each box, we need:

- the number of points inside: $\sum_{u=1}^{i} y_{uj}$
- its volume: $x_{2i-1}x_{2j}$
- to verify it is critical: $1 y_{ij}$

min z

s.t.
$$\frac{1}{n} \sum_{u=1}^{i} y_{uj} - x_{2i-1} x_{2j} \le z + (1 - y_{ij})$$
$$\frac{-1}{n} \left(\sum_{u=1}^{i-1} y_{uj} - 1 \right) + x_{2i-1} x_{2j} \le z + (1 - y_{ij})$$



For each box, we need:

- the number of points inside: $\sum_{u=1}^{i} y_{uj}$
- its volume: $x_{2i-1}x_{2j}$
- to verify it is critical: $1 y_{ij}$

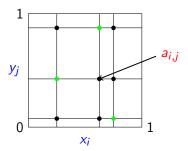
Bonus constraints: Breaking symmetries

Proposition [CDKP, 2023]

- There is an optimal configuration in two dimensions with the points in general position
- Lower bound on the discrepancy of 1/n if $n \ge 4$ for $d \ge 2$
- There is an optimal configuration in general position where no coordinate is smaller than 1/n if $n \ge 4$
- Transitivity of the ordering variables

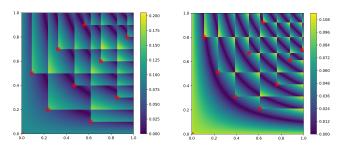
A second formulation

We split the problem in two parts: finding the coordinates and finding an assignment.



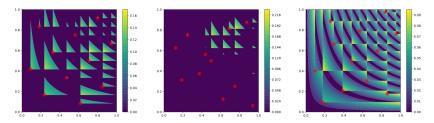
Results: a visible difference

 First model better in 2D, second better in 3D: solutions up to n = 21 points in 2D and n = 8 in 3D.



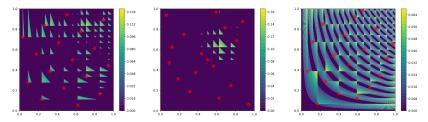
Left: 10 point Fibonacci set; Right: 10 optimally placed points.

Fibonacci vs Sobol' vs Optimal



Left: Fibonacci 12; Middle: Sobol' 12; Right: Optimal 12

Fibonacci vs Sobol' vs Optimal



Left: Fibonacci 18; Middle: Sobol' 18; Right: Optimal 18

Better point sets... and a new search direction for constructions?

The multiple-corner discrepancy

- Our models are not limited to the L_{∞} star discrepancy.
- Star discrepancy breaks symmetries: one corner of $[0,1)^d$ is more important.
- Possible counter-measure: take each corner as an anchor, then take the worst star discrepancy.
- This multiple-corner discrepancy is an intermediate step between star and extreme discrepancies.
- In 2D, we need to introduce 3 more sets of "box constraints".

Comparison to our star optimal set

Optimizing the multiple-corner discrepancy leads to very little loss for the star discrepancy.

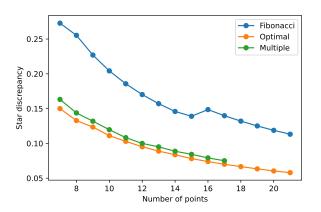


Figure: Comparison of our optimal sets with the Fibonacci set

Comparison to our star optimal set

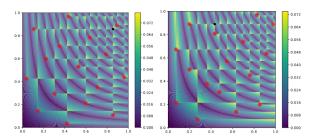


Figure: Optimal multiple-corner and star discrepancy sets for the star discrepancy.

Comparison to our star optimal set

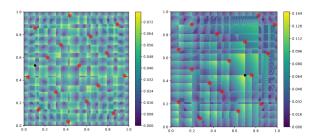
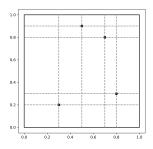


Figure: Optimal multiple-corner and star discrepancy sets for the multiple-corner discrepancy.

How to obtain good solutions for higher n?

- Our models find excellent solutions quickly. Difficulty is proving optimality
- Two simple options: fixing the coordinates, or fixing the permutation, then solving the remaining problem



$$\pi(P) = (1,4,3,2)$$

³Transforming the Challenge of Constructing Low-Discrepancy Point Sets into a Permutation Selection Problem. F. C., C. Doerr, K. Klamroth and L. Paquete, arxiv 2024

The better choice: fixing the permutation

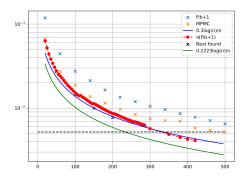


Figure: Best L_{∞} star discrepancy values obtained by taking the permutation from the Fibonacci set *offset by 1*, compared with MPMC⁴ and the Ostromoukhov upper bound⁵

⁴ T. Konstantin Rusch, N. Kirk, M. M. Bronstein, C. Lemieux and D. Rus, Message-Passing Monte Carlo: Generating low-discrepancy point sets via Graph Neural Networks, 2024

⁵V. Ostromoukhov, Recent Progress in Improvement of Extreme Discrepancy and Star Discrepancy

(Nearly?) Optimal sets: Conclusion

- Best point sets known to this day in 2D
- New structure observed for low-discrepancy point sets
- Changing the paradigm: from a point construction problem to a permutation selection one

Summary

- Background
- Optimal constructions and beyond
- Set extraction and heuristic construction
- From sets to sequences

Subset Selection⁶

Star Discrepancy Subset Selection

Given two integers $n \ge 1$ and $k \le n$, and a point set P, find a subset $P' \subseteq P$ of size k such that $P' := \arg\min_{P_k \subseteq P, |P_k| = k} d^*_{\infty}(P_k)$.

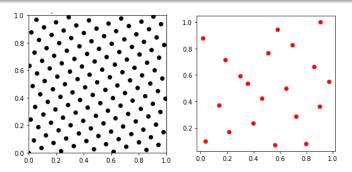


Figure: Selecting 20 points out of 140 from the Fibonacci set.

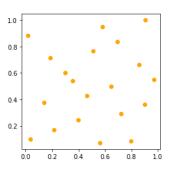
⁶F. C., C. Doerr, and L. Paquete. Star discrepancy subset selection: Problem formulation and efficient approaches for low dimensions. Journal of Complexity, 2022

A difficult problem

Proposition [CDP 2022]

The Star Discrepancy Subset Selection Problem is NP-hard.

 Given n, the best subset of size k is not necessarily contained in the best subset of size h > k

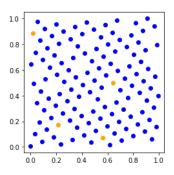


A difficult problem

Proposition [CDP 2022]

The Star Discrepancy Subset Selection Problem is NP-hard.

 Given n, the best subset of size k is not necessarily contained in the best subset of size h > k

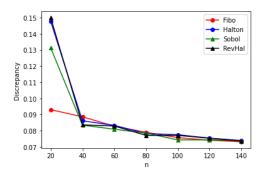


MILP and Branch-and-Bound

- Mixed Integer Linear Programming formulation is very similar to the one for optimal sets!
- Simply add a binary variable term to each point variable
- Branch-and-Bound: how good could our future point set theoretically be, given choices made so far?

MILP and Branch-and-Bound

- Both algorithms give substantially better low-discrepancy points sets than the well-known ones in lower dimensions (dimension 2 here)
- Similar plots for other values of n



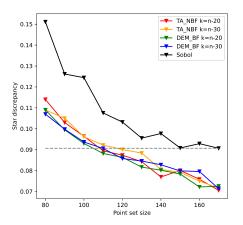
Best subset discrepancies for k = 20

Tackling higher dimensions: Swap heuristic⁷

- Keep a current best subset
- At each step try to replace a selected point by a non-selected point
- Main Limitation: computing star discrepancies

⁷F. C., C. Doerr, and L. Paquete. Heuristic approaches to obtain low-discrepancy point sets via subset selection. Journal of Complexity. 2024

Results



Best discrepancy values obtained in dimension 6 for k = 80 to 170.

Extracting sets: Conclusion

- We provide a way of solving a common problem for practitioners, in a wide range of (n,d) settings
- At the same time, the resulting sets have the lowest discrepancy values known in the majority of tested settings

Summary

- Background
- Optimal constructions and beyond
- Set extraction and heuristic construction
- From sets to sequences

The L_2 discrepancy

L₂ star discrepancy

For P a point set in $[0;1]^d$,

$$d_2^*(P) = \left(\int_{[0,1)^d} D(q,P)^2 dq\right)^{1/2},$$

where D(q, P) is the local discrepancy.

• The main advantage of the L_2 discrepancy is that it is very easy to compute using the Warnock formula [Warnock, 1972].

$$(d_2^*)^2(P) = \frac{1}{3^d} - \frac{n}{2^{d-1}} \sum_{i=1}^n \prod_{k=1}^d (1 - (x_k^{(i)})^2) + \sum_{i,j=1}^n \prod_{k=1}^d (1 - \max(x_k^{(i)}, x_k^{(j)}))$$

The Warnock formula

$$(d_2^*)^2(P) = \frac{1}{3^d} - \frac{n}{2^{d-1}} \sum_{i=1}^n \prod_{k=1}^d (1 - (x_k^{(i)})^2) + \sum_{i,j=1}^n \prod_{k=1}^d (1 - \max(x_k^{(i)}, x_k^{(j)}))$$

Individual point weights

The Warnock formula

$$(d_2^*)^2(P) = \frac{1}{3^d} - \frac{n}{2^{d-1}} \sum_{i=1}^n \prod_{k=1}^d (1 - (x_k^{(i)})^2) + \sum_{i,j=1}^n \prod_{k=1}^d (1 - \max(x_k^{(i)}, x_k^{(j)}))$$

Interaction between pairs of points

The Kritzinger sequence

Kritzinger, 2022

Given a starting point p_1 , we define the sequence $P = (p_i)_{i \in \mathbb{N}}$, such that

$$p_k := \arg\min_{p \in [0,1)^d} d_2^* (P_{k-1} \cup \{p\}),$$

where $P_{k=1}$ is the set containing the first k-1 elements of P.

In 1d, this comes down to finding

$$\arg\min_{p\in[0,1)}(n+1)(1-p^2)+(1-p)+2\sum_{i=1}^n(1-\max(x_i,p))$$

Computing the Kritzinger sequence

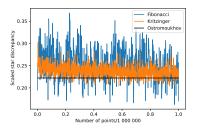
• [Kritzinger, 2022] Points have a very specific structure. Computations up to around 1500 points

Proposition [F.C. 2024]

There exists an algorithm to compute the next point in the Kritzinger sequence in linear time.

 I also introduced exact and heuristic methods for higher dimensions

A million points



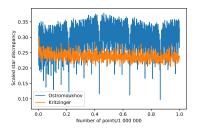


Figure: One million points with the Kritzinger sequence, compared to the Fibonacci sequence and the Ostromoukhov sequence.

Going forward: L_2 subset selection

- Same problem as before: optimizing for L_2 instead of L_{∞}
- Only linear dependency on d
- Flexibility: Any measure where a point's contribution can be identified
- Very good initial results for low dimensions

A measure for the future?

- L_2 allows for the construction of low-discrepancy L_{∞} sequences
- It can easily be adapted: weighted, multiple-corner, periodic...
- Now even making good L_{∞} sets! MPMC, L_2 subset selection

Is the L_2 discrepancy a good surrogate for the L_{∞} discrepancy?

Conclusion

- We have introduced methods to construct sets, extend sequences or extract from a given set
- For any n and d combination, at least one of the methods presented can be applied
- Resulting sets are far better, discrepancy-wise, than previous constructions

Further work

- Can we generalize these constructions to obtain new construction methods?
- Can we prove a better relationship between L_2 and L_{∞} for sets used in practice? Or obtain a separate surrogate for L_{∞} ?
- Is the star discrepancy really what we should optimize? Is multiple-corner a good compromise?
- How to know which measure and point sets should be used for which applications?

Further work

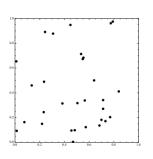
- Can we generalize these constructions to obtain new construction methods?
- Can we prove a better relationship between L_2 and L_{∞} for sets used in practice? Or obtain a separate surrogate for L_{∞} ?
- Is the star discrepancy really what we should optimize? Is multiple-corner a good compromise?
- How to know which measure and point sets should be used for which applications?

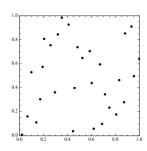
Thank you for your attention!

Steinerberger's energy functional

By gradient descent, minimize:

$$E[X] = \sum_{\substack{1 \le m, n \le N \\ m \ne n}} \prod_{k=1}^{d} (1 - \log(2\sin(|x_{m,k} - x_{n,k}|\pi)))$$





Kritzinger in 2D and 3D

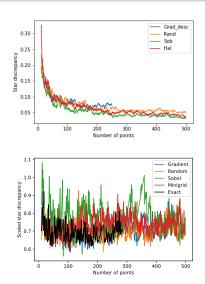


Figure: Kritzinger sequence in 2D and 3D

Kritzinger in 2D and 3D

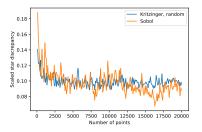


Figure: 20K points in 2D for the Kritzinger sequence

Exact approaches: Branch-and-Bound

- Upper-bound: Best set found so far.
- Lower-bound 1:

$$LB_{1}(P_{A}, P_{R}, P_{N}) := \max_{q \in \Gamma(P_{A})} \left\{ \lambda(q) - \frac{1}{k} \min \left\{ k, D(q, P_{A}) + D(q, P_{N}) \right\}, 0 \right\}$$

Exact approaches: Branch-and-Bound

Lower-bound 2:

$$LB_2(P_A, P_R, P_N) := \max_{q \in \Gamma(P_A)} \left\{ \frac{1}{k} \overline{D}(q, P_A) - \lambda(q), 0 \right\}.$$

- When we reach a candidate subset, this will give us the local discrepancy for all closed boxes without recomputing.
- Only the first lower bound needs to be updated when rejecting a point.

Bracketing covers

- Most recent paper by Gnewuch, Pasing and Weiss, based on a generalization of the Faulhaber inequality.
- $N_{[],\delta} \le \max(1.1^{d-101},1) \frac{d^d}{d!} (\delta^-1+1)^d$.
- Improved bounds from Thiémard's algorithm by Gnewuch:

$$N_{[],\delta} \le \frac{d^d}{d!} \epsilon^{-d}$$

(t, m, d)-nets

(t, m, d)-net

For a given dimension d, integer base b, a positive integer m and an integer $0 \le t \le m$, a point set P of size b^m in $[0,1)^d$ is called a (t,m,d)-net in base b if each b-adic elementary interval of order m-t contains b^t points of P.

• Elementary interval of order k: $J = \prod_{i=1}^{d} \left[\frac{a_i}{b^{d_i}}, \frac{a_i+1}{b^{d_i}} \right]$, where $\sum_{i=1}^{d} d_i = k$ and $0 \le a_i < b^{d_i}$

(t, m, d)-net

(t, m, d)-net

For a given dimension d, integer base b, a positive integer m and an integer $0 \le t \le m$, a point set P of size b^m in $[0,1)^d$ is called a (t,m,d)-net in base b if each b-adic elementary interval of order m-t contains b^t points of P.

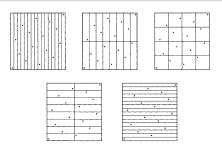


Figure: Order 4 dyadic intervals for a binary net in d = 2

Digital (t, m, d)-nets

- One of the methods to build (t, m, d) nets in base b.
- Introduce d matrices over \mathbb{F}_b : C_1, \ldots, C_d .
- Given an integer n, write its b-adic expansion: $n = \sum_{i=0}^{m-1} a_{n,j} b^j$ and a_n the vector with the $a_{n,j}$.
- $x_{n,i} = \sum_{j=0}^{m-1} (C_i a_n)_j b^{-j}$ is the i-th coordinate of the n-th point of our set.
- Some well-known digital nets in base 2: Hammersley sequence and Sobol' sequence.

Negative dependent variable

- Attempt to combine the good asymptotic behaviour of low-discrepancy sequences with that of random points when there are fewer points.
- For the moment: improved constants in the bounds for the star discrepancy of random sets (Monte-Carlo or LHS)

An NLP formulation: quick sketch

min z

s.t.
$$\frac{1}{m} \sum_{u=1}^{i} y_{uj} - x_{2i-1} x_{2j} \le z + (1 - y_{ij}) \qquad \forall i, j = 1, ..., m, j \le i$$

$$\frac{-1}{m} \left(\sum_{u=1}^{i-1} y_{uj} - 1 \right) + x_{2i-1} x_{2j} \le z + (1 - y_{ij}) \qquad \forall i = 2, ..., m, j = 1, ..., i - 1$$

$$(2b)$$

$$\frac{-1}{m} \left(\sum_{u=1}^{m} y_{uj} - 1 \right) + x_{2j} \cdot 1 \le z \qquad \forall j = 1, ..., m \qquad (2c)$$

$$\frac{-(i-1)}{m} + x_{2i-1} \cdot 1 \le z \qquad \forall i = 1, ..., m \qquad (2d)$$

An assignment-like formulation

min z

s.t.
$$\frac{1}{m} \sum_{v=1}^{i} \sum_{v=1}^{j} a_{uv} - x_i y_j \le z$$
 $\forall i, j = 1, ..., m$ (3a)

$$\frac{-1}{m} \sum_{i=1}^{i-1} \sum_{v=1}^{j-1} a_{uv} + x_i y_j \le z \qquad \forall i, j = 1, \dots, m+1$$
 (3b)

$$x_{m+1} = 1, y_{m+1} = 1$$
 (3c)

$$x_{i+1} - x_i \ge \varepsilon$$
 $\forall i = 1, ..., m-1$ (3d)

$$y_{i+1} - y_i \ge \varepsilon$$
 $\forall i = 1, ..., m-1$ (3e)

$$\sum_{i=1}^{m} a_{ij} = 1 \qquad \forall j = 1, \dots, m$$
 (3f)

$$\sum_{i=1}^{m} a_{ij} = 1 \qquad \forall i = 1, \dots, m \tag{3g}$$

$$\forall i=1,\dots,m, x_i, y_i \in [0,1], \ \forall i,j=1,\dots,m; a_{ij} \in \{0,1\} \ z \geq 0.$$

MILP formulation

min
$$z$$

s. t. $z \ge h_{i,j} - \frac{1}{k} \sum_{\ell \in \Delta(P,i,j)} x_{\ell}$ for all $i,j \in [1..n+1]$
 $z \ge -h_{i,j} + \frac{1}{k} \sum_{\ell \in \overline{\Delta}(P,i,j)} x_{\ell}$ for all $i,j \in [1..n]$

$$\sum_{i=1}^{n} x_{i} = k$$

$$x_{i} \in \{0,1\}$$
 for all $i \in [1..n]$

$$z \in \mathbb{R}_{\geq 0}$$

MILP formulation

min
$$z$$

s. t. $z \ge h_{i,j} - \frac{1}{k} \sum_{\ell \in \Delta(P,i,j)} x_{\ell}$ for all $i,j \in [1..n+1]$
 $z \ge -h_{i,j} + \frac{1}{k} \sum_{\ell \in \overline{\Delta}(P,i,j)} x_{\ell}$ for all $i,j \in [1..n]$

$$\sum_{i=1}^{n} x_{i} = k$$

$$x_{i} \in \{0,1\}$$
 for all $i \in [1..n]$

$$z \in \mathbb{R}_{\geq 0}$$

MILP formulation

min s. t.
$$z \geq h_{i,j} - \frac{1}{k} \sum_{\ell \in \Delta(P,i,j)} x_{\ell} \qquad \text{for all } i,j \in [1..n+1]$$

$$z \geq -h_{i,j} + \frac{1}{k} \sum_{\ell \in \overline{\Delta}(P,i,j)} x_{\ell} \qquad \text{for all } i,j \in [1..n]$$

$$\sum_{i=1}^{n} x_{i} = k$$

$$x_{i} \in \{0,1\} \qquad \text{for all } i \in [1..n]$$

$$z \in \mathbb{R}_{\geq 0}$$

References

- J. Dick, F. Pillichshammer, Digital Nets and Sequences, Cambridge University press 2010.
- C. Doerr, M. Gnewuch, M. Wahlström, Calculation of Disrepancy measures and applications, in A Panorama of Discrepancy Theory, Springer, 2014.
- J. Matousek, Geometric Discrepancy, 2nd edition, 2010.
- M. Gnewuch, A.Srivastav, C.Winzen, Finding Optimal volume subintervals with k points and calculating the star discrepancy are NP-hard problems, Journal of Complexity, 2009.
- P. Giannopoulos, C. Knauer, M. Wahlström, D. Werner, Hardness of discrepancy computation and ε -net verification in high dimension, Journal of Complexity, 2012.

References

- A. Neumann, W. Gao, C. Doerr, F. Neumann, M. Wagner, Discrepancy-based evolutionary diversity optimization, prioceedings of GECCO 2018.
- C. Doerr and F.-M. de Rainville, Constructing low star discrepancy point sets with genetic algorithms, Proceedings of GECCO 2013.
- S. Steinerberger, A non-local functional promoting low-discrepancy point sets, Journal of Complexity, 2019.
- E. Novak and H. Woźniakowski, Tractability of Multivariate problems, Volume 2, Eur. Math. Soc. Publ. House, 2010.

References

- F. Clément and C. Doerr and L. Paquete, Star discrepancy subset selection: Problem formulation and efficient approaches for low dimensions, Journal of Complexity, 2022.
- P. L'Ecuyer, P. Marion, M. Godin and F. Puchhammer, A Tool for Custom Construction of QMC and RQMC Point sets, Monte Carlo and Quasi-Monte Carlo Methods 2020.
- P. Marion, M. Godin, and P. L'Ecuyer, An algorithm to compute the t-value of a digital net and of its projections, Journal of Computational and Applied Mathematics, June 2020