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The L∞ star discrepancy

Approximate volume of boxes [0,q)⊆ [0,1)d by the proportion of
points inside.
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The L∞ star discrepancy

L∞ star discrepancy

For P a point set in [0;1]d ,

d∗
∞(P)= sup

q∈[0;1)d

∣∣∣ ∣∣P ∩ [0,q)
∣∣

|P | −λ(
[0,q)

)∣∣∣.

Local discrepancy:
D(q,P)= |7/60−0.16| = 0.044

François Clément An Optimization Perspective on the Construction of Low Discrepancy Point Sets 3 / 50



The L∞ star discrepancy: Heatmap

Figure: Discrepancy heatmap for 10 points in dimension 2
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Why discrepancy?

Covering a search space uniformly: design of experiments,
non-adaptive black-box optimization, Quasi-Monte Carlo
methods

Koksma-Hlawka inequality: Discrepancy is a bound for the
error of approximating an integral∣∣∣∫

[0,1]d
f (x)dλd (x)− 1

|P |
∑
p∈P

f (p)
∣∣∣≤Var(f )d∗

∞(P)

How many samples do you need for a desired error bound?
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Summary

Background

Optimal constructions and beyond

Set extraction and heuristic construction

From sets to sequences
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Some point sets

Grid points: O(n−1/d )
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Some point sets

Random points: Θ(
√
d/n)
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Some point sets

Sobol’ (and low-discrepancy sequences in general): O
(
logd (n)

n

)
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Sets vs Sequences

Sequence: Infinite sequence of points. Any prefix big enough
has low discrepancy

Set: Finite set of points, good only for a specific n

Figure: The Sobol’ sequence for 20 and 21 points
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A specific construction: the Fibonacci set

Kronecker sequence: Given α ∈R\Q, we define the sequence
(xn)n∈N = {

{iα} : i ∈N}
. These sequences are uniformly

distributed [Weyl, 1916]

Among these, one of the best is for α=φ := (1+p
5)/2: the

Fibonacci sequence

We can then associate it to a two-dimensional lattice of fixed
size n, P = {

(i/n, {φi }) : i ∈ {0, . . . ,n−1}
}
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A specific construction: the Fibonacci set

P = {
(i/n, {φi }) : i ∈ {0, . . . ,n−1}

}

Figure: The Fibonacci set for 40 points
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The minimal star discrepancy

The optimal discrepancy order is unknown

The asymptotic order is O
(
logd (n)

n

)
for sequences, or

O
(
logd−1(n)

n

)
for sets. What happens for smaller n?

The minimal star discrepancy, d∗∞(n,d), is the best possible
L∞ star discrepancy value for a point set of size n in
dimension d

There is a bound by [Heinrich et al, 2001] showing that
d∗∞(n,d)≤C

√
d/n for some constant C

In general there is no constructive approach to obtain point
sets matching these bounds
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Very small instances: optimal values

d∗∞(n,d) is explicitly known in only a few specific cases

[White, 1977] gave point sets for n≤ 6 in dimension 2

1-point sets for any d have been solved by [Pillard, Cools and
Vandewoestyne, 2006], extended to 2 points by [Larcher and
Pillichshammer, 2007]

For the periodic L2 discrepancy, [Hinrichs and Oettershagen,
2016] solved the problem for n≤ 16

Can we provide point sets matching d∗∞(n,d)?
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Computing the star discrepancy

Calculating the discrepancy is a discrete problem, maximal values
can only be reached on a grid defined by the points [Niederreiter,
1972].

Figure: Critical boxes defined by a given point set in two dimensions.
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Computing the star discrepancy

From the discrete “positions-grid”: O
(
nd

)
, O

(
nd/d!

)
if we

only count critical boxes

Best known algorithm: O
(
n1+d/2

)
by [Dobkin, Eppstein and

Mitchell, 1996]

New parallel implementation by Alexandre D. Jesus as part of
a GECCO paper1. It is based on the original work of Magnus
Wahlström

Best heuristic in higher dimensions: Threshold Accepting
algorithm by [Gnewuch, Wahlström and Winzen, 2012]

Too expensive to evaluate!

1F. C., D. Vermetten, J. de Nobel, A. D. Jesus, C. Doerr, L. Paquete. Computing Star

Discrepancies with Numerical Black-Box Optimization Algorithms. Proceedings of GECCO 2023
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Summary

Background

Optimal constructions and beyond

Set extraction and heuristic construction

From sets to sequences
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Optimal constructions2

Optimal L∗∞ star discrepancy set

Given an integer n≥ 1 and a dimension d ≥ 2, find a set P of size n

in dimension d of discrepancy d∗∞(n,d).

Our two non-linear programming formulations rely on the grid
structure of the discrepancy calculation

2Constructing Optimal L∞ Star Discrepancy Sets, F.C, C. Doerr, K. Klamroth and L. Paquete,
submitted, 2023
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First formulation

Objective z is the discrepancy value

Variables correspond to the points’ coordinates (x2i−1,x2i ),
plus some ordering variables yij

Add constraints for each box that could define the discrepancy,
always lower-bounding z
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First formulation

min z

s.t.
1
n

i∑
u=1

yuj −x2i−1x2j ≤ z+(1−yij)

−1
n

(
i−1∑
u=1

yuj −1

)
+x2i−1x2j ≤ z+(1−yij) 0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.000

0.008

0.016

0.024

0.032

0.040

0.048

0.056

0.064

0.072

For each box, we need:

the number of points inside:
∑i

u=1 yuj

its volume: x2i−1x2j

to verify it is critical: 1−yij
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Bonus constraints: Breaking symmetries

Proposition [CDKP, 2023]

There is an optimal configuration in two dimensions with the
points in general position

Lower bound on the discrepancy of 1/n if n≥ 4 for d ≥ 2

There is an optimal configuration in general position where no
coordinate is smaller than 1/n if n≥ 4

Transitivity of the ordering variables
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A second formulation

We split the problem in two parts: finding the coordinates and
finding an assignment.

0

1

1

yj

xi

ai ,j
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Results: a visible difference

First model better in 2D, second better in 3D: solutions up to
n= 21 points in 2D and n= 8 in 3D.

Left: 10 point Fibonacci set; Right: 10 optimally placed points.
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Fibonacci vs Sobol’ vs Optimal

Left: Fibonacci 12; Middle: Sobol’ 12; Right: Optimal 12

François Clément An Optimization Perspective on the Construction of Low Discrepancy Point Sets 24 / 50



Fibonacci vs Sobol’ vs Optimal

Left: Fibonacci 18; Middle: Sobol’ 18; Right: Optimal 18

Better point sets... and a new search direction for constructions?
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The multiple-corner discrepancy

Our models are not limited to the L∞ star discrepancy.

Star discrepancy breaks symmetries: one corner of [0,1)d is
more important.

Possible counter-measure: take each corner as an anchor, then
take the worst star discrepancy.

This multiple-corner discrepancy is an intermediate step
between star and extreme discrepancies.

In 2D, we need to introduce 3 more sets of “box constraints”.
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Comparison to our star optimal set

Optimizing the multiple-corner discrepancy leads to very little loss
for the star discrepancy.
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Figure: Comparison of our optimal sets with the Fibonacci set
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Comparison to our star optimal set

Figure: Optimal multiple-corner and star discrepancy sets for the star
discrepancy.
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Comparison to our star optimal set

Figure: Optimal multiple-corner and star discrepancy sets for the
multiple-corner discrepancy.
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How to obtain good solutions for higher n?3

Our models find excellent solutions quickly. Difficulty is
proving optimality

Two simple options: fixing the coordinates, or fixing the
permutation, then solving the remaining problem

π(P)= (1,4,3,2)

3Transforming the Challenge of Constructing Low-Discrepancy Point Sets into a Permutation
Selection Problem, F. C., C. Doerr, K. Klamroth and L. Paquete, arxiv 2024
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The better choice: fixing the permutation

Figure: Best L∞ star discrepancy values obtained by taking the
permutation from the Fibonacci set offset by 1, compared with MPMC4

and the Ostromoukhov upper bound5

4T. Konstantin Rusch, N. Kirk, M. M. Bronstein, C. Lemieux and D. Rus, Message-Passing Monte
Carlo: Generating low-discrepancy point sets via Graph Neural Networks, 2024

5V. Ostromoukhov, Recent Progress in Improvement of Extreme Discrepancy and Star Discrepancy
of One-dimensional Sequences, 2008François Clément An Optimization Perspective on the Construction of Low Discrepancy Point Sets 31 / 50



(Nearly?) Optimal sets: Conclusion

Best point sets known to this day in 2D

New structure observed for low-discrepancy point sets

Changing the paradigm: from a point construction problem to
a permutation selection one
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Summary

Background

Optimal constructions and beyond

Set extraction and heuristic construction

From sets to sequences
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Subset Selection6

Star Discrepancy Subset Selection
Given two integers n≥ 1 and k ≤ n, and a point set P , find a subset
P ′ ⊆P of size k such that P ′ := argminPk⊆P ,|Pk |=k d

∗∞(Pk).

Figure: Selecting 20 points out of 140 from the Fibonacci set.

6F. C., C. Doerr, and L. Paquete. Star discrepancy subset selection: Problem formulation and
efficient approaches for low dimensions. Journal of Complexity, 2022
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A difficult problem

Proposition [CDP 2022]

The Star Discrepancy Subset Selection Problem is NP-hard.

Given n, the best subset of size k is not necessarily contained
in the best subset of size h> k
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MILP and Branch-and-Bound

Mixed Integer Linear Programming formulation is very similar
to the one for optimal sets!

Simply add a binary variable term to each point variable

Branch-and-Bound: how good could our future point set
theoretically be, given choices made so far?
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MILP and Branch-and-Bound

Both algorithms give substantially better low-discrepancy
points sets than the well-known ones in lower dimensions
(dimension 2 here)

Similar plots for other values of n

Best subset discrepancies for k = 20

François Clément An Optimization Perspective on the Construction of Low Discrepancy Point Sets 37 / 50



Tackling higher dimensions: Swap heuristic7

Keep a current best subset

At each step try to replace a selected point by a non-selected
point

Main Limitation: computing star discrepancies

7F. C., C. Doerr, and L. Paquete. Heuristic approaches to obtain low-discrepancy point sets via
subset selection. Journal of Complexity, 2024
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Results

Best discrepancy values obtained in dimension 6 for k = 80 to 170.
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Extracting sets: Conclusion

We provide a way of solving a common problem for
practitioners, in a wide range of (n,d) settings

At the same time, the resulting sets have the lowest
discrepancy values known in the majority of tested settings
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Summary

Background

Optimal constructions and beyond

Set extraction and heuristic construction

From sets to sequences
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The L2 discrepancy

L2 star discrepancy

For P a point set in [0;1]d ,

d∗
2 (P)=

(∫
[0,1)d

D(q,P)2dq
)1/2

,

where D(q,P) is the local discrepancy.

The main advantage of the L2 discrepancy is that it is very
easy to compute using the Warnock formula [Warnock, 1972].

(d∗
2 )

2(P)= 1
3d

− n

2d−1

n∑
i=1

d∏
k=1

(1−(x (i)
k

)2)+
n∑

i ,j=1

d∏
k=1

(1−max(x
(i)
k

,x (j)
k

))
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The Warnock formula

(d∗
2 )

2(P)= 1
3d

− n

2d−1

n∑
i=1

d∏
k=1

(1− (x
(i)
k

)2)+
n∑

i ,j=1

d∏
k=1

(1−max(x
(i)
k

,x (j)
k

))

Individual point weights
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The Warnock formula

(d∗
2 )

2(P)= 1
3d

− n

2d−1

n∑
i=1

d∏
k=1

(1−(x (i)
k

)2)+
n∑

i ,j=1

d∏
k=1

(1−max(x
(i)
k

,x (j)
k

))

Interaction between pairs of points
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The Kritzinger sequence

Kritzinger, 2022

Given a starting point p1, we define the sequence P = (pi )i∈N, such
that

pk := arg min
p∈[0,1)d

d∗
2 (Pk−1∪ {p}),

where Pk=1 is the set containing the first k −1 elements of P .

In 1d, this comes down to finding

arg min
p∈[0,1)

(n+1)(1−p2)+ (1−p)+2
n∑
i=1

(1−max(xi ,p))
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Computing the Kritzinger sequence

[Kritzinger, 2022] Points have a very specific structure.
Computations up to around 1500 points

Proposition [F.C. 2024]

There exists an algorithm to compute the next point in the
Kritzinger sequence in linear time.

I also introduced exact and heuristic methods for higher
dimensions
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A million points
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Figure: One million points with the Kritzinger sequence, compared to the
Fibonacci sequence and the Ostromoukhov sequence.
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Going forward: L2 subset selection

Same problem as before: optimizing for L2 instead of L∞

Only linear dependency on d

Flexibility: Any measure where a point’s contribution can be
identified

Very good initial results for low dimensions
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A measure for the future?

L2 allows for the construction of low-discrepancy L∞ sequences

It can easily be adapted: weighted, multiple-corner, periodic...

Now even making good L∞ sets! MPMC, L2 subset selection

Is the L2 discrepancy a good surrogate
for the L∞ discrepancy?
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Conclusion

We have introduced methods to construct sets, extend
sequences or extract from a given set

For any n and d combination, at least one of the methods
presented can be applied

Resulting sets are far better, discrepancy-wise, than previous
constructions
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Further work

Can we generalize these constructions to obtain new
construction methods?

Can we prove a better relationship between L2 and L∞ for sets
used in practice? Or obtain a separate surrogate for L∞?

Is the star discrepancy really what we should optimize? Is
multiple-corner a good compromise?

How to know which measure and point sets should be used for
which applications?

Thank you for your attention!
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Steinerberger’s energy functional

By gradient descent, minimize:

E [X ]= ∑
1≤m,n≤N

m ̸=n

d∏
k=1

(1− log(2sin(|xm,k −xn,k |π)))
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Kritzinger in 2D and 3D
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Figure: Kritzinger sequence in 2D and 3D
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Kritzinger in 2D and 3D
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Figure: 20K points in 2D for the Kritzinger sequence
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Exact approaches: Branch-and-Bound

Upper-bound: Best set found so far.

Lower-bound 1:

LB1(PA,PR ,PN) := max
q∈Γ(PA)

{
λ(q)− 1

k
min

{
k ,D(q,PA)+D(q,PN)

}
,0

}
.
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Exact approaches: Branch-and-Bound

Lower-bound 2:

LB2(PA,PR ,PN) := max
q∈Γ(PA)

{
1
k
D(q,PA)−λ(q),0

}
.

When we reach a candidate subset, this will give us the local
discrepancy for all closed boxes without recomputing.

Only the first lower bound needs to be updated when rejecting
a point.
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Bracketing covers

Most recent paper by Gnewuch, Pasing and Weiss, based on a
generalization of the Faulhaber inequality.

N[],δ ≤max(1.1d−101,1)d
d

d! (δ
−1+1)d .

Improved bounds from Thiémard’s algorithm by Gnewuch:

N[],δ ≤
dd

d!
ϵ−d
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(t,m,d)-nets

(t,m,d)-net

For a given dimension d , integer base b, a positive integer m and
an integer 0≤ t ≤m, a point set P of size bm in [0,1)d is called a
(t,m,d)-net in base b if each b-adic elementary interval of order
m− t contains bt points of P .

Elementary interval of order k : J =∏d
i=1

[
ai
bdi

, ai+1
bdi

(
, where∑d

i=1di = k and 0≤ ai < bdi
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(t,m,d)-net

(t,m,d)-net

For a given dimension d , integer base b, a positive integer m and
an integer 0≤ t ≤m, a point set P of size bm in [0,1)d is called a
(t,m,d)-net in base b if each b-adic elementary interval of order
m− t contains bt points of P .

Figure: Order 4 dyadic intervals for a binary net in d = 2
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Digital (t,m,d)-nets

One of the methods to build (t,m,d) nets in base b.

Introduce d matrices over Fb: C1, . . . ,Cd .

Given an integer n, write its b-adic expansion: n=∑m−1
i=0 an,jb

j

and an the vector with the an,j .

xn,i =
∑m−1

j=0 (Cian)jb
−j is the i − th coordinate of the n-th point

of our set.

Some well-known digital nets in base 2: Hammersley sequence
and Sobol’ sequence.

François Clément An Optimization Perspective on the Construction of Low Discrepancy Point Sets 50 / 50



Negative dependent variable

Attempt to combine the good asymptotic behaviour of
low-discrepancy sequences with that of random points when
there are fewer points.

For the moment: improved constants in the bounds for the
star discrepancy of random sets (Monte-Carlo or LHS)

François Clément An Optimization Perspective on the Construction of Low Discrepancy Point Sets 50 / 50



An NLP formulation: quick sketch

min z

s.t.
1
m

i∑
u=1

yuj −x2i−1x2j ≤ z+(1−yij) ∀i , j = 1, . . . ,m, j ≤ i

(2a)

−1
m

(
i−1∑
u=1

yuj −1

)
+x2i−1x2j ≤ z+(1−yij) ∀i = 2, . . . ,m, j = 1, . . . , i−1

(2b)

−1
m

( m∑
u=1

yuj −1
)
+x2j ·1≤ z ∀j = 1, . . . ,m (2c)

−(i −1)
m

+x2i−1 ·1≤ z ∀i = 1, . . . ,m (2d)
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An assignment-like formulation

min z

s.t.
1
m

i∑
u=1

j∑
v=1

auv −xiyj ≤ z ∀i , j = 1, . . . ,m (3a)

−1
m

i−1∑
u=1

j−1∑
v=1

auv +xiyj ≤ z ∀i , j = 1, . . . ,m+1 (3b)

xm+1 = 1, ym+1 = 1 (3c)

xi+1−xi ≥ ε ∀i = 1, . . . ,m−1 (3d)

yi+1−yi ≥ ε ∀i = 1, . . . ,m−1 (3e)
m∑
i=1

aij = 1 ∀j = 1, . . . ,m (3f)

m∑
j=1

aij = 1 ∀i = 1, . . . ,m (3g)

∀i = 1, . . . ,m,xi ,yi ∈ [0,1], ∀i , j = 1, . . . ,m;aij ∈ {0,1} z ≥ 0.
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