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The L., star discrepancy

Lo star discrepancy

For P a point set in [0;1],
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Very small instances: optimal values

@ The minimal star discrepancy, d (n,d), is the best possible
Lo star discrepancy value for a point set of size n in

dimension d.
o [White, 1977] gave point sets for n<6 in dimension 2

@ 1-point sets for any d have been solved by [Pillard, Cools and
Vandewoestyne, 2006], extended to 2 points by [Larcher and
Pillichshammer, 2007]

@ For the periodic Ly discrepancy, [Hinrichs and Oettershagen,
2016] solved the problem for n<16

Can we provide point sets matching d (n,d)?
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Computing the star discrepancy

Calculating the discrepancy is a discrete problem, maximal values
can only be reached on a grid defined by the points.
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Computing the star discrepancy

o From the discrete “positions-grid”: O(n?), O(n?/d!) if we
only count critical boxes

@ Best known algorithm: O(n'*9/2) by Dobkin, Eppstein and
Mitchell (1996)

@ Best heuristic in higher dimensions: Threshold Accepting
algorithm by Gnewuch, Wahlstrém and Winzen (2012)
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Optimal constructions!

Optimal L3, star discrepancy set

Given an integer n=>1 and a dimension d =2, find a set P of size n
in dimension d of discrepancy d (n,d).

@ Our two non-linear programming formulations rely on the grid

structure of the discrepancy calculation.

1

Constructing Optimal Loo Star Discrepancy Sets, F.C, C. Doerr, K. Klamroth and L. Paquete,

Proceedings of the American Mathematical Society Series B, 2025
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The assignment formulation

@ We are trying to determine where the n points should be to
minimize the discrepancy value, by placing the underlying grid

and deciding which points should generate it.
@ The objective z represents the discrepancy of the selected set.

@ Variables x; correspond to the ordered x coordinates of the
points. The y; to the ordered y coordinates.

@ The binary variables a; ; correspond to the selected grid-points.
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The assignment formulation

We split the problem in two parts: finding the coordinates and

finding an assignment.
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First formulation

min z -
1 J J v

s.t —Z Zauv—x,yJSZ -
n,=1v=1
i .
— ay +Xjyj<z
n y=1v=1

For each box, we need:
@ the number of points inside: Zi]:l Zj"/zl auy

e its volume: x;y;
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First formulation

min z -
1 J J v

s.t —Z Zauv Xjyj<z -
n,=1v=1
i .
— ay +Xjyj<z
n y=1v=1

For each box, we need:
@ the number of points inside: ZL:l Z{/:l auy

e its volume: xpj_1Xo;
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Fibonacci vs Sobol" vs Optimal

0128

o2

003

0.080

0064

o048

0032

001

0000

Left: Fibonacci 18; Middle: Sobol’ 18; Right: Optimal 18
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A computational obstacle

@ We can solve these models to optimality for up to around 20
points in 2d.

@ Similar models can be found for other discrepancy measures.

e Going further: focus on half of the problem! Either we fix the

grid preemptively, or the a; ;.
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2

The correct choice: Fixing the permutation

@ Fixing the coordinates does not help at all.

e Fixing the assignment (equiv. permutation) makes the

problem much easier to solve.

@ Can solve for up to 500 points, and the main obstacle is

reading the model and presolving.

How to choose the correct permutation?

2

F. C., Carola Doerr, Kathrin Klamroth, Luis Paquete. Searching permutations for constructing

uniformly distributed point sets, PNAS 2025
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A natural candidate: shifted Fibonacci sets

For some shift jeN, P = {(I/n,{¢(l+_/)}) 1€ {1,...,n}}
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Figure: The unshifted Fibonacci set for 40 points

Francois Clément Avoiding Loo Discrepancy Optimization 13 /26



A natural candidate: shifted Fibonacci sets
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Figure: Best L, star discrepancy values obtained by taking the
permutation from the Fibonacci set offset by 1.
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Structure of the Fibonacci permutations

Cycle structure of the permutation is very regular.

@ For n= F, many points, either there are only cycles of length 2
and fixed points, or cycles of length 4 and a unique fixed
points/cycle of length 2.

Similar observations are possible for quadratic irrationals.

Is this even relevant for discrepancy?
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@ How can we determine if a given permutation can lead to a

low-discrepancy point set?

@ Can we replace the discrepancy optimization by an
optimization on the permutation? What kind of structure are
we looking for?

@ What should be the starting point in higher dimensions? for

other discrepancy measures?

16/26
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A separate path: the L, discrepancy

L, star discrepancy

For P a point set in [0;1],

. 1/2
% (P)=([ . D(aPRa)

where D(q, P) is the local discrepancy.

@ The main advantage of the L, discrepancy is that it is very

easy to compute using the Warnock formula [Warnock, 1972].

n d . .
(d)2(P) = 3d T 1Zl‘[(l M)+ Y T (a—max(x?,x9y)

i=1k=1 ij=1k=1
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Optimizing the L., discrepancy via the L, discrepancy

@ Rusch et al. (2024)3 use GNN to optimize point placement for
the L, discrepancy, and they obtain excellent sets also for the

Lo star discrepancy!

@ Preliminary work suggests that gradient descent on a
smoothed version of the L, discrepancy also leads to similar

results as long as the starting set is “good".

@ A subset selection approach also leads to low L, sets.

3T. Konstantin Rusch, N. Kirk, M. M. Bronstein, C. Lemieux and D. Rus, Message-Passing Monte
Carlo: Generating low-discrepancy point sets via Graph Neural Networks, 2024
18/26
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A good surrogate in low dimensions

@ The "base” L, discrepancy can be used to optimize for Ly, only
for d <5.

@ Strongest results in dimension 2.

o Generalized discrepancy is the better choice in higher

dimensions, but not a miracle solution.

What would be the appropriate L, surrogate function?
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A greedy approach: the Kritzinger sequence

Kritzinger, 2022
Given a starting point p;, we define the sequence P = (p;)jen, such

that

o= in dy(Px_1U{p}),
pii=arg min 5 (Pr-1uip})

where Pj_1 is the set containing the first k—1 elements of P.

.

In 1d, this comes down to finding

1 max(x;j,p))

||M3

arg min (n+1)(1-
& min (n+1)(1-p")
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Constructing the sequence

@ In one dimension, the next point in the sequence can only

come from a “small” set of rationals.

@ Linear-time to compute the next point in the sequence.

@ Dimensions 2 and 3: exact MILP models, or heuristics.
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A million points
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Figure: One million points with the Kritzinger sequence, compared to the
Fibonacci sequence and the Ostromoukhov sequence.
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5 million points!
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Figure: Five million points for the Kritzinger and Fibonacci sequences.
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2d and 3d
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Figure: Performance of the Krizinger sequence in two and three
dimensions.
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The Kritzinger sequence

The Kritzinger sequence:
@ has on average lower discrepancy than the best
low-discrepancy sequences.

@ is more stable.

@ corrects a bad starting set! Even starting with 1000 badly
placed points, the sequence will become low-discrepancy very
quickly.

It has not been shown that the sequence is low-discrepancy!
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@ Can we determine what permutations lead to low-discrepancy

sets? Are there specific structures we should look out for?

@ Why do near-optimal L, discrepancy sets have near-optimal

Lo sets?

@ What function should be used to generalize this to higher

dimensions?

@ What makes the Kritzinger sequence so good? Can we show it

is low-discrepancy?
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@ Can we determine what permutations lead to low-discrepancy

sets? Are there specific structures we should look out for?

@ Why do near-optimal L, discrepancy sets have near-optimal
Lo sets?
@ What function should be used to generalize this to higher

dimensions?

@ What makes the Kritzinger sequence so good? Can we show it

is low-discrepancy?

Thank you for your attention!
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