
Avoiding L∞ Discrepancy Optimization

François Clément

joint work with Carola Doerr, Luís Paquete and Kathrin
Klamroth

François Clément Avoiding L∞ Discrepancy Optimization 1 / 26



The L∞ star discrepancy

L∞ star discrepancy

For P a point set in [0;1]d ,

d∗
∞(P)= supq∈[0;1)d

∣∣∣ ∣∣P ∩ [0,q)
∣∣

|P | −λ(
[0,q)

)∣∣∣.

Local discrepancy:
D(q,P)= 0.044
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Very small instances: optimal values

The minimal star discrepancy, d∗∞(n,d), is the best possible
L∞ star discrepancy value for a point set of size n in
dimension d .

[White, 1977] gave point sets for n≤ 6 in dimension 2

1-point sets for any d have been solved by [Pillard, Cools and
Vandewoestyne, 2006], extended to 2 points by [Larcher and
Pillichshammer, 2007]

For the periodic L2 discrepancy, [Hinrichs and Oettershagen,
2016] solved the problem for n≤ 16

Can we provide point sets matching d∗∞(n,d)?
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Computing the star discrepancy

Calculating the discrepancy is a discrete problem, maximal values
can only be reached on a grid defined by the points.
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Computing the star discrepancy

From the discrete “positions-grid”: O(nd ), O(nd/d!) if we
only count critical boxes

Best known algorithm: O(n1+d/2) by Dobkin, Eppstein and
Mitchell (1996)

Best heuristic in higher dimensions: Threshold Accepting
algorithm by Gnewuch, Wahlström and Winzen (2012)
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Optimal constructions1

Optimal L∗∞ star discrepancy set

Given an integer n≥ 1 and a dimension d ≥ 2, find a set P of size n

in dimension d of discrepancy d∗∞(n,d).

Our two non-linear programming formulations rely on the grid
structure of the discrepancy calculation.

1Constructing Optimal L∞ Star Discrepancy Sets, F.C, C. Doerr, K. Klamroth and L. Paquete,
Proceedings of the American Mathematical Society Series B, 2025
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The assignment formulation

We are trying to determine where the n points should be to
minimize the discrepancy value, by placing the underlying grid
and deciding which points should generate it.

The objective z represents the discrepancy of the selected set.

Variables xi correspond to the ordered x coordinates of the
points. The yj to the ordered y coordinates.

The binary variables ai ,j correspond to the selected grid-points.
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The assignment formulation

We split the problem in two parts: finding the coordinates and
finding an assignment.

0

1

1

yj

xi

ai ,j
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First formulation

min z

s.t.
1
n

i∑
u=1

j∑
v=1

auv −xiyj ≤ z

−1
n

i−1∑
u=1

j−1∑
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For each box, we need:

the number of points inside:
∑i

u=1
∑j

v=1auv

its volume: xiyj
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Fibonacci vs Sobol’ vs Optimal

Left: Fibonacci 18; Middle: Sobol’ 18; Right: Optimal 18
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A computational obstacle

We can solve these models to optimality for up to around 20
points in 2d.

Similar models can be found for other discrepancy measures.

Going further: focus on half of the problem! Either we fix the
grid preemptively, or the ai ,j .
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The correct choice: Fixing the permutation 2

Fixing the coordinates does not help at all.

Fixing the assignment (equiv. permutation) makes the
problem much easier to solve.

Can solve for up to 500 points, and the main obstacle is
reading the model and presolving.

How to choose the correct permutation?

2F. C., Carola Doerr, Kathrin Klamroth, Luís Paquete. Searching permutations for constructing
uniformly distributed point sets, PNAS 2025
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A natural candidate: shifted Fibonacci sets

For some shift j ∈N, P = {
(i/n,

{
φ(i + j)

}
) : i ∈ {1, . . . ,n}

}

Figure: The unshifted Fibonacci set for 40 points
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A natural candidate: shifted Fibonacci sets
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Figure: Best L∞ star discrepancy values obtained by taking the
permutation from the Fibonacci set offset by 1.
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Structure of the Fibonacci permutations

Cycle structure of the permutation is very regular.

For n=Fk many points, either there are only cycles of length 2
and fixed points, or cycles of length 4 and a unique fixed
points/cycle of length 2.

Similar observations are possible for quadratic irrationals.

Is this even relevant for discrepancy?
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Key questions

How can we determine if a given permutation can lead to a
low-discrepancy point set?

Can we replace the discrepancy optimization by an
optimization on the permutation? What kind of structure are
we looking for?

What should be the starting point in higher dimensions? for
other discrepancy measures?
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A separate path: the L2 discrepancy

L2 star discrepancy

For P a point set in [0;1]d ,

d∗
2 (P)=

(∫
[0,1)d

D(q,P)2dq
)1/2

,

where D(q,P) is the local discrepancy.

The main advantage of the L2 discrepancy is that it is very
easy to compute using the Warnock formula [Warnock, 1972].

(d∗
2 )

2(P)= 1
3d

− n

2d−1

n∑
i=1

d∏
k=1

(1−(x (i)
k

)2)+
n∑

i ,j=1

d∏
k=1

(1−max(x
(i)
k

,x (j)
k

))
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Optimizing the L∞ discrepancy via the L2 discrepancy

Rusch et al. (2024)3 use GNN to optimize point placement for
the L2 discrepancy, and they obtain excellent sets also for the
L∞ star discrepancy!

Preliminary work suggests that gradient descent on a
smoothed version of the L2 discrepancy also leads to similar
results as long as the starting set is “good”.

A subset selection approach also leads to low L∞ sets.

3T. Konstantin Rusch, N. Kirk, M. M. Bronstein, C. Lemieux and D. Rus, Message-Passing Monte
Carlo: Generating low-discrepancy point sets via Graph Neural Networks, 2024
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A good surrogate in low dimensions

The “base” L2 discrepancy can be used to optimize for L∞ only
for d ≤ 5.

Strongest results in dimension 2.

Generalized discrepancy is the better choice in higher
dimensions, but not a miracle solution.

What would be the appropriate L2 surrogate function?
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A greedy approach: the Kritzinger sequence

Kritzinger, 2022

Given a starting point p1, we define the sequence P = (pi )i∈N, such
that

pk := arg min
p∈[0,1)d

d∗
2 (Pk−1∪ {p}),

where Pk=1 is the set containing the first k −1 elements of P .

In 1d, this comes down to finding

arg min
p∈[0,1)

(n+1)(1−p2)+ (1−p)+2
n∑
i=1

(1−max(xi ,p))
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Constructing the sequence

In one dimension, the next point in the sequence can only
come from a “small” set of rationals.

Linear-time to compute the next point in the sequence.

Dimensions 2 and 3: exact MILP models, or heuristics.
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A million points
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Figure: One million points with the Kritzinger sequence, compared to the
Fibonacci sequence and the Ostromoukhov sequence.
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5 million points!

Figure: Five million points for the Kritzinger and Fibonacci sequences.
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2d and 3d
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Figure: Performance of the Krizinger sequence in two and three
dimensions.
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The Kritzinger sequence

The Kritzinger sequence:

has on average lower discrepancy than the best
low-discrepancy sequences.

is more stable.

corrects a bad starting set! Even starting with 1 000 badly
placed points, the sequence will become low-discrepancy very
quickly.

It has not been shown that the sequence is low-discrepancy!
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Key questions

Can we determine what permutations lead to low-discrepancy
sets? Are there specific structures we should look out for?

Why do near-optimal L2 discrepancy sets have near-optimal
L∞ sets?

What function should be used to generalize this to higher
dimensions?

What makes the Kritzinger sequence so good? Can we show it
is low-discrepancy?

Thank you for your attention!
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