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1 Introduction

We have been familiar with the concept of linear vector space, which deals with finite di-
mensional vectors. However, many vectors we encounter might have infinite dimensions (for
example, most functions can be viewed as vectors have infinite dimensions), which we cannot
analyze in vector spaces. That is why we are interested in Hilbert space. The concept of
Hilbert space was put forward by David Hilbert in his work on quadratic forms in infinitely
many variables. It’s a generalization of Euclidean space to infinite dimensions. Due to its
convenience in infinite dimensional vectors’ analysis, Hilbert space has been widely used in
other fields, for example physicians applied this concept in quantum mechanics, economists
even used it in asset pricing theory.

In this paper, we give a brief introduction of Hilbert space, our paper is mainly based
on Folland’s book Real Analysis:Modern Techniques and their Applications (2nd edition)
and Debnath and Mikusiński’s book Hilbert space with applications (3rd edition).In second
part, we first introduce the concept of inner product space, which is complex vector space
equipped with inner product, and we also show that inner product space is a normed vector
space with norm defined as a vector’s inner product with itself. If an inner product space
is complete, we call it a Hilbert space, which is showed in part 3. In part 4, we introduce
orthogonal and orthonormal system and introduce the concept of orthonormal basis which
is parallel to basis in linear vector space. In this part, we also give a brief introduction of
orthogonal decomposition and Riesz representation theorem.

2 Inner Product Spaces

Definition 2.1(Inner product space)
Let E be a complex vector space. A mapping 〈 , 〉 E × E → C.is called an inner product

in E if for any x, y, z ∈ E the following conditions are satisfied:

(a) 〈x , y〉=〈y , x〉(the bar denotes the complex conjugate);

(b) 〈αx+ βy , z〉=α〈x , z〉+ β〈y , z〉;
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(c) 〈x , x〉 ≥ 0;

(d) 〈x , x〉 = 0 implies x = 0.

Now let’s look at some examples of inner product space:

Example 2.1 (N-dimensional inner product space) Consider space CN of N-tuples
x = (x1, ..., xn) of complex numbers, with inner product defined by:

〈x , y〉 =
∑N

k=1 xkyk.

Example 2.2(infinite dimensional inner product space) Consider l2 space of all se-
quences {xn} of complex numbers such that

∑∞
k=1 xk < ∞, the inner product is defined

by:

〈x , y〉 =
∑∞

k=1 xkyk.

Example 2.3(inner product space with functions) The space C([a, b]) of all contin-
uous complex valued functions on the interval [a, b], with the inner product defined:

〈f, g〉 =
∫ b
a
f(x)g(x)dx

is an inner product space, this inner product we will use many times afterwards.
Inner product space is also called pre-Hilbert space. From the examples above, we can

see that different from linear vector space, inner product space contains infinite dimensional
vectors (such as functions), which is the reason why we want to study this space.

Next we want to show inner product space is also a normed vector space, with norm
given by ||x|| = 〈x , x〉. Before proving that, we first need to notice that Schwarz’s inequality
holds in inner product space.

Theorem 2.1(Schwarz’s Inequality)For any two elements x and y of an inner product
space,we have

|〈x , y〉| ≤ ||x||||y||
. The equality |〈x , y〉|=||x||||y|| holds if and only if x and y are linearly dependent.

Theorem 2.2 Every inner product space is also a normed vector space with norm defined
by ||x|| = 〈x , x〉.
Proof:

1. ||x|| = 0 if and only if x = 0;

2. ||λx|| =
√
〈λx , λx〉 =

√
λλ〈x , x〉 = |λ|||x||.

3. (Triangle Inequality) For any two elements x and y of an inner product space we have:
||x+ y|| ≤ ||x||+ ||y||.
This is because: ||x+ y||2 = 〈x+ y , x+ y〉 = 〈x , x〉+ 2Re〈x , y〉+ 〈y , y〉
≤ 〈x , x〉+ 2|〈x , y〉|+ 〈y , y〉
≤ ||x||2 + 2||x||||y||+ ||y||2 (From Schwarz’s inequality)

= (||x||+ ||y||)2,
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Next I give two theorems that are true in geometrics and they also hold in inner product
space.

Figure 1: Pythagorean formula and Parallelogram Law

Theorem 2.3(Parallelogram Law) For any two elements x and y of an inner product
space, we have

||x+ y||2 + ||x− y||2 = 2(||x||2 + ||y||2)

Theorem 2.4 (Pythagorean formula) For any pair of orthogonal vectors, we have

||x+ y||2 = ||x||2 + ||y||2

3 Hilbert Space

Definition 3.1(Hilbert space) A complete inner product space H is called a Hilbert space.

Now let’s look at several examples:

Example 3.1 (Examples of Hilbert space)

(a) C is complete, it’s Hilbert space, and so is CN .

(b) l2 is a Hilbert space.

(c) L2(R) and L2([a, b]) are Hilbert spaces.

Example 3.2 (Spaces that are not Hilbert spaces)

(a) Consider a space E consisting of sequences {xn} of complex numbers with only a finite
number of nonzero terms.

xn = (1,
1

2
,
1

3
, ...,

1

n
, 0, 0, ...)
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The inner product is defined as :

〈xn , xm〉 =
∞∑
k=1

xnxm

we can show that {xn} is a Cauchy sequence, since if m > n:

lim
m,n→∞

||xm − xn|| = lim
m,n→∞

[
n∑

k=m

1

k2
]
1
2 = 0

However, the sequence doesn’t converge in E, since its limit has infinite terms that are
not equal to 0.

(b) Consider the space C[0, 1] consisting of continuous functions in [0,1]. Define

fn(x) =


1 0 ≤ x ≤ 1

2

1− 2n(x− 1
2
) 1

2
≤ x ≤ 1

2n
+ 1

2

0 1
2n

+ 1
2
≤ x ≤ 1

Also it’s easy to check {fn(x)} is Cauchy sequence,however,if we take the limit:

Figure 2: Example 3.2(b)

f(x) =

{
1 0 ≤ x ≤ 1

2

0 1
2
< x ≤ 1

the limit function is not continuous, thus not in C[0, 1], so C[0, 1] is not Hilbert space.
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4 Orthogonal and orthonormal system

In linear vector space E, we have basis, which is a linearly independent family B = {xn, n =
1, 2, ...} of vectors from E such that for any x ∈ E x can be written as finite linear combi-
nation of xn’s: x =

∑m
n=1 λnxn. As a result, we can represent whole elements in the space

with simple ”bricks”–basis. As we noted before, inner product space or Hilbert space can be
viewed as a generalization of linear vector space. So in inner product space, we also expect to
have such ”bricks” to represent any element in the space. To achieve that goal, we will first
introduce orthogonal and orthonormal system in this section, and then give the definition of
orthonormal basis in inner product space, with this basis, we can represent any element in
inner product space as infinite linear combination of elements in the basis.

4.1 Orthogonal and orthonormal system

Definition 4.1(Orthogonal and orthonormal system) In an inner product space E,
suppose S is a family of nonzero vectors, such that if x 6= y, we have x ⊥ y (i.e.〈x , y〉 = 0 ),
we can S an orthogonal system. If for any x ∈ S, ||x|| = 1, we can S an orthonormal system.

Why we want to introduce such system? Because elements in orthogonal system and or-
thonormal system preserve an important property as elements in a basis, which, as showed
in the theorem below, is linearly independence.

Theorem 4.1(Linearly independence) Orthogonal systems are linearly independent.
Proof: Let S be an orthogonal system. Suppose

∑n
k=1 αkxk = 0, for some x1, x2, ..., xn ∈ S

and α1, ..., αn ∈ C.Then

0 =
∑n

m=1〈0 , αmxm〉 =
∑n

m=1〈
∑n

k=1 αkxk , αmxm〉 =
∑n

m=1 |α|2||xm||2

This implies αm = 0. So x1, ..., xn are linearly independent.
Example 4.1: For example, the function sequence {φn(x)}, φn(x) = einx√

2π
is an orthonormal

system in L2([−π, π]). 〈φn , φm〉 =
∫ π
−π φnφmdx = 1

2π

∫ π
−π e

i(n−m)xdx = 1
2π

∫ π
−π(cos(n−m)x +

i sin(n −m)x)dx = 0 for any n 6= m, thus if φn 6= φm, φn ⊥ φm. 〈φn , φn〉 =
∫ π
−π φnφndx =

1
2π

∫ π
−π e

i(n−n)xdx = 1. So ||φn|| = 1 for any φn,n ∈ N .

Here we also have Pythagorean formula in orthogonal system for many vectors:

Theorem 4.2(Pythagorean Formula) Suppose {xn} is a sequence of orthogonal vectors
in an inner product space. Then we have ||

∑n
k=1 xk||2 =

∑n
k=1 ||xk||2.

The proof of this theorem is very straight forward, we can use induction: first show this
is true for n = 2 case (which is already given by Theorem 2.4). Then if n = k − 1 holds,
using the fact that

∑n
k=1 xk =

∑n−1
k=1 xk + xn, we can easily show this is also true for n = k.

Theorem 4.3 (Bessel’s equality and inequality) Let x1, x2, ..., xn be an orthonormal
set of vectors in inner product space E. For every x ∈ E,we have:

||x−
∑n

k=1〈x , xk〉||2 = ||x||2 −
∑n

k=1 |〈x , xk〉|2

and

5



Figure 3: Pythagorean Theorem

∑n
k=1 |〈x , xk〉|2 ≤ ||x||2

Proof: using the result from Pythagorean theorem, we know: ||
∑n

k=1 αkxk||2 =
∑n

k=1 ||αkxk||2 =∑n
k=1 |αk|2.
For arbitrary complex numbers α1, ..., αn, we have: ||x−

∑n
k=1 αkxk||2 = 〈x−

∑n
k=1 αkxk, x−∑n

k=1 αkxk〉 = ||x||2 −
∑n

k=1 |〈x, xk〉|2 +
∑n

k=1 |〈x, xk〉 − αk|2. Let αk = 〈x, xk〉, we have
||x−

∑n
k=1〈x , xk〉||2 = ||x||2 −

∑n
k=1 |〈x , xk〉|2. Since||x−

∑n
k=1〈x , xk〉||2 ≤ 0, from Bessel’s

equality, we can easily know
∑n

k=1 |〈x , xk〉|2 ≤ ||x||2.

4.2 Orthogonal decomposition and Riesz representation

From Bessel’s inequality, we know
∑n

k=1 |〈x , xk〉|2 ≤ ||x||2, if we let n to be ∞, we have∑∞
k=1 |〈x , xk〉|2 ≤ ||x||2, thus limn→∞|〈x , xn〉| = 0, and for any n, let f(x) = 〈x , xn〉, we

can see f(x) is a bounded linear function in inner product space E. In this section, we will
introduce Riesz representation theorem, which claims that for any x0 ∈ E, f(x) = 〈x , x0〉 is
a bounded linear function, besides any bounded linear function has such form.

Theorem 4.4(orthogonal decomposition) If M is a closed subspace of Hilbert space
H, then we have: H = M⊕M⊥, where M⊥ = {x ∈ H : 〈x , y〉 = 0, y ∈ M}. In other
words, for any x ∈ H,x can be expressed uniquely as x = y + z where y ∈M and z ∈M⊥.
Moreover, y and z are the unique elements of M and M⊥ whose distance to x is smallest.

The proof of this theorem is a bit tedious and not of our interest, so I am gonna to skip that.
One can easily find the proof in Folland’s book(chapter 5).Now, I want to explain about the
intuition behind that theorem.

As showed in the figure above, suppose the 3-dimension space as a whole is Hilbert space
H, x is an arbitrary vector in H. LetM be a plane in H, which is a closed set. Let y be the
projection of x on H, and let z = x− y, we have z ⊥ y, moreover, z ⊥ any vector in M, so
z ∈M⊥. Since y is projection of x, y is the element in M whose distance to x is smallest.

With Theorem 4.4, I can prove Riesz representation theorem.

Theorem 4.5 (Riesz Representation Theorem) If f ∈ H∗,H∗ is dual space of H (by

6



Figure 4: Understanding of orthogonal decomposition in Hilbert space

dual space we mean H∗ consists of all bounded linear functions: H → C, then there is a
unique y ∈ H such that f(x) = 〈x , y〉 for all x ∈ E.
Proof:

1.Uniqueness : If f(x) = 〈x , y〉 = 〈x , y′〉 for all x ∈ X . Take x = y − y′, we have
||y − y′||2 = 0, so y = y′.

2.Existence:
a) If f(x) ≡ 0, then we just pick y = 0, so we have f(x) = 〈x , y〉.
b) If f(x) is not always equal to 0. Let M = x ∈ H : f(x) = 0. Since f(x) is bounded

linear function, M is a proper closed subset of E. By theorem 4.3, we know, M⊥ 6= {0},
since if M⊥ = {0}, for any x ∈ H, we have x = y + z, y ∈ M, z ∈ M⊥, so x = y +
0 = y,f(x) = f(y) = 0, for all x, contradiction! So we can pick a z in M⊥ such that
||z|| = 1. Define u = f(x)z − f(z)x, since f(x) is linear function, we have u ∈ M. So
0 = 〈u , z〉 = f(x)− 〈x , f(z)z〉. Let y = f(z)z, we have f(x) = 〈x , y〉.

4.3 Orthonormal Basis

Given an orthonormal sequence {xn}, from Bessel’s inequality, we have
∑∞

k=1 |〈x , xk〉|2 ≤ ∞,
thus {〈x , xn〉} ∈ l2 so we have a mapping from inner product space E to l2. The expansion

x ∼
∑∞

n=1〈x , xn〉xn

is called a generalized Fourier series of x. The following theorem guarantees convergence of
this series in Hilbert space.
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Figure 5: Extension of basis in inner product space

Theorem 4.6 Suppose {xn} is an orthonormal sequence in a Hilbert space H, and {αn} is
a sequence of complex numbers. Then the series

∑∞
n=1 |α|2 < +∞ and in that case

||
∑∞

n=1 αnxn||2 =
∑∞

n=1 |αn|2

This can be viewed as a generalized case of Pythagorean theorem: the square of norm of
infinite linear combinations of orthonormal sequence is equal to infinite sums of the coeffi-
cients’ square. The proof is simple, we first consider the finite case (Pythagorean theorem)
and use the completeness of H and get the result.

This theorem implies in a Hilbert space H, the series
∑∞

n=1〈x , xn〉xn converges for every
x ∈ H, which means there exists a x′ ∈ H, such that x′ =

∑∞
n=1〈x , xn〉xn, however x′ is not

necessarily equal to x. If x′ is equal to x, we call the sequence {xn} a complete orthonormal
sequence.

Definition 4.2(Complete orthonormal sequence) An orthonormal sequence {xn} in an
inner product space E is said to be complete if for every x ∈ E we have

x =
∑∞

n=1〈x , xn〉xn

In the beginning of this section, I recall the basic properties of our ”bricks”– basis in lin-
ear vector space, and we also want to extend the properties of basis in infinite dimensional
space. Here, we introduce orthonormal basis.

Definition 4.3(Orthonormal basis) An orthonormal systemB is called an orthonormal basis
if for every x ∈ E has a unique representation:

x =
∑∞

n=1 αnxn

where αn ∈ C, and xn’s are distinct elements of B.

Note that a complete orthonormal sequence {xn} is an orthonormal basis. The proof is
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very straightforward.Suppose x =
∑∞

n=1 αnxn =
∑∞

n=1 βnxn. We have 0 = ||x − x||2 =
||
∑∞

n=1(αn − βn)xn||2 =
∑∞

n=1 |αn − βn|2, so αn = βn for b ∈ N . Besides, if {xn} is an
orthonormal basis in an inner product space, the span of {xn} (i.e. span{x1, x2, ...} =∑n

k=1 αkxk)is dense in E.

One famous example of orthonormal basis is given below:

Example 4.2 The sequence of functions: 1√
2π
, cosx√

π
, sinx√

π
, cos 2x√

π
, sin 2x√

π
, ... is a complete or-

thonormal system in L2([−π, π]), so for any function in L2([−π, π]), we can express f(x) as
infinite linear combination of the series above, which is the result given by Fourier transfor-
mation.
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