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1 Introduction

In this report, we explore the the measurement of arbitrary subsets of the
metric space (X, ρ), a topological space X along with its distance function ρ.
We introduce Hausdorff Measure as a natural way of assigning sizes to these
sets, especially those of smaller “dimension” than X. After an exploration
of the salient properties of Hausdorff Measure, we proceed to a definition of
Hausdorff dimension, a separate idea of size that allows us a more robust
comparison between rough subsets of X.

Many of the theorems in this report will be summarized in a proof sketch
or shown by visual example. For a more rigorous treatment of the same
material, we redirect the reader to Gerald B. Folland’s Real Analysis: Modern
techniques and their applications. Chapter 11 of the 1999 edition served as
our primary reference.

2 Hausdorff Measure

2.1 Measuring low-dimensional subsets of X

The need for Hausdorff Measure arises from the need to know the size of
lower-dimensional subsets of a metric space. This idea is not as exotic as it
may sound. In a high school Geometry course, we learn formulas for objects
of various dimension embedded in R3. In Figure 1 we see the line segment,
the circle, and the sphere, each with it’s own idea of size. We call these
length, area, and volume, respectively.

Figure 1: low-dimensional subsets of R3.
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Note that while only volume measures something of the same dimension
as the host space, R3, length, and area can still be of interest to us, especially
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in applications. Sets of higher dimension and sets whick are less smooth are
not as easy to measure.

As an example, we will consider the Sierpinski Carpet, a fractal subset of
R2. The Carpet can be constructed iteratively starting with an equilateral
triangle, which we shall call T0. To pass from one iteration to the next, we
remove the middle quarter from each triangle in the set. Sierpinski Carpet
is the figure T∞ where the iteration has been applied a countably infinite
number of times. Figure 2 shows T0 through T4.

Figure 2: The first five iterations of Tk, from left to right.

Let Ai and Pi be defined as the area and perimeter of Ti, respectively,
and let each of A0 and P0 be finite. It is clear that for each k ∈ N .

Ak = A0

(
3

4

)k
Pk = P0

(
3

2

)k
As k → ∞ we see that Ak → 0 and Pk → ∞. This means that the Sier-

pinski Carpet, Tk has zero area but infinite perimeter. This lack of precision
in measurement is frustrating. We need a way to assign a finite number to
the size of a Sierpinksi Carpet.

2.2 Constructing Hausdorff Measure

We will proceed now to define the Hausdorff Outer Measure, Hd, of dimension
d on a general metric space (X, ρ). Hereafter, we will show that one can
restrict Hausdorff Outer Measure to the Borel sets of X to obtain a measure.

Before defining Hausdorff Outer Measure, we will remind the reader of
another definition.
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Definition. Let S ⊂ X. Then let the diameter of S be defined by

diam(S) = max{ρ(x, y) : x, y ∈ S}.

That is to say, the diameter of a set is the distance between the farthest
two points in the set.

Definition. Let S be any subset of X, and δ > 0 a real number. We define
the Hausdorff Outer Measure of dimension d bounded by δ (written Hd

δ ) by:

Hd
δ (S) = inf

{
∞∑
i=1

(diamUi)
d :

∞⋃
i=1

Ui ⊇ S, diamUi < δ

}
.

where the infimum is taken over all countable covers of S by sets Ui ⊆ X
satisfying diam(Ui) < δ.

If we allow δ to approach zero, the infimum is taken over a decreasing
collection of sets, and is therefore increasing. We can conclude that

lim
δ→0

Hd
δ (S) = Hd(S)

exists, but may be infinite. We call this limit Hausdorff Outer Measure of
dimension d. We will explore Hausdorff Outer Measure more rigorously soon,
but first, we will provide a few comments.

1. The superscript d corresponds roughly to the dimensionality of the set
being measured. That is, Hd is used to measure a d-dimensional subset
of the host space. The amount of S contained in a region of diameter r
is proportional to rp. This is measuring the length of a curve with line
segments, the area of a shape with circles, or the volume of a manifold
with spheres, as demonstrated in Figure 3.

2. Intuitively, the reason we decrease r toward zero to account for the
“roughness” of S. Covers made up of sets with large diameters may fail
to capture the complex shape of a set. For example, consider C, the
Topologist’s Sine Wave. C is a subset of R2 defined as the union of
the vertical line segment from (0,−1) to (0, 1) and points of the form
(x, π/ sin(x)) for x ∈ (0, 1]. Figure 4 shows C.
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Figure 3: Covers of 1-, 2-, and 3-dimensional subsets of R3

∝ Σ diam(B) ∝ Σ diam(B)2 ∝ Σ diam(B)3

Figure 4: Topologist’s Sine Curve
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If we do not restrict the Hausdorff Measure by some finite, δ we can
simply cover C by itself and show that

H1
∞(C) ≤ diam(C) ≤

√
(5).

But as δ → 0, sets in the cover grow small enough so that they tend
toward a trace of the Curve’s infinite length, giving us the anticipated
result that

H1(C) =∞

3. Hd is invariant under isometries of X. The idea here is that because
isometries preserve length, we can “translate” the sets in a cover of
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X to form a new cover of a “translated” copy of X, and the summed
diameters of the new cover will be the same as the summed diameters
of the original cover. We enclose the word “translate” in scare-quotes
to warn that isometries are not limited to translations. Nevertheless,
the picture remains the same.

Recall that we have only declared Hd to be an outer measure, we will
now move toward its restriction to a measure. This is a simple consequence
of a property of Hd we define now.

Definition. µ∗, an outer measure, is a metric outer measure if and only if

µ∗(A ∪B) = µ∗(A) + µ∗(B) when ρ(A,B) > 0.

Where ρ(A,B) is the minimum value of ρ(x, y) for x ∈ A, y ∈ B.

Theorem. Hd is a metric outer measure.

Proof sketch. The key here is to remember that Hd is defined as a limitHd
δ for

decreasing δ. Then let A and B be two sets in X such that ρ(A,B) = ε > 0.
For any δ < ε/3 we see that the covers of A and B which define Hd

δ (A) and
Hd
δ (B) are disjoint, and therefore do not “double count.” *

Knowing that Hd is a metric outer measure, we apply the following the-
orem (given without proof).

Theorem. If µ∗ is a metric outer measure on X then the Borel subsets of
X are µ∗-measurable.

A proof of this theorem is available in Folland’s book. The relevant result
is that Hd is indeed a measure when restricted to the Borel sets of X. Now
we have fully defined Hausdorff Measure on the Borel sets of an arbitrary
metric space.

2.3 Hausdorff Measure and Lebesgue Measure

In this section, we restrict our attention to a special case of Hausdorff Mea-
sure, specificallyHn on the metric space defined by Rn with Euclidean metric.
We will discover that Hn differs from Lebesgue measure only by a constant
factor.
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Let Qn be any finite n-dimensional cube embedded in Rn. We claim that

0 < Hn(Qn) < +∞.

This fact is the direct consequence of a recurrence relation we will explore in
section 3.3 of this report. For now, the fact that Hn(Qn) has a finite, nonzero
value gives us two important lemmas.

(i) Hn is not the zero measure.

(ii) Hn is finite on compact sets.

(i) is trivial. (ii) can be shown by constructing a cube around any compact
set in Rn and invoking monotonicity. We need a lemma to move forward.

Lemma. Every measure on the Borel subsets of Rn which is finite on com-
pact sets is regular, and therefore Radon.

Theorem. Let λn denote n-dimensional Lebesgue Measure. There exists a
γn > 0 such that

λn = γnH
n

Proof. By the last lemma and by (i), we know that Hn is a non-zero Radon
measure on Rn. Additionally, recall from our “remarks” after the definition
of Hausdorff Measure that it is invariant under the isometries of Rn. Since
Rn is a locally compact Hausdorff space, this is enough to conclude that Hn

is also a Haar measure on Rn. We know that Lesbesgue Measure is a Haar
measure and that all Haar Measures on a space are equivalent up to a scaling
factor. Thus we are done. *

You may wonder about the value of γn. It can be shown that it is equal
to the n-volume of an n-dimensional ball of radius 1 in the usual norm. That
is

γn =
π2/n

2nΓ(n/2 + 1)

where Γ is Euler’s Gamma Function.
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3 Hausdorff Dimension

3.1 Defining the Hausdorff dimension of a set

Theorem. If Hp(A) <∞, then Hq(A) = 0 for all q > p. Also, if Hp(A) > 0,
then Hq(A) =∞ for all q < p.

Proof. Let Hp(A) <∞ and q < p. Then,

Hq(A) = lim
δ→0

Hq
δ (A)

= lim
δ→0

inf

{∑
α∈I

(diam Uα)q :
⋃
α∈I

Uα ⊇ A, diam Uα < δ

}
≤ lim

δ→0
inf

{∑
α∈I

(diam Uα)pδq−p :
⋃
α∈I

Uα ⊇ A, diam Uα < δ

}
= lim

δ→0
δq−p inf

{∑
α∈I

(diam Uα)p :
⋃
α∈I

Uα ⊇ A, diam Uα < δ

}
factor out constant

= 0 let δ → 0

Now let Hp(A) > 0 and q > p. Then,

Hq(A) = lim
δ→0

Hq
δ (A)

= lim
δ→0

inf

{∑
α∈I

(diam Uα)q :
⋃
α∈I

Uα ⊇ A, diam Uα < δ

}
≥ lim

δ→0
inf

{∑
α∈I

(diam Uα)pδq−p :
⋃
α∈I

Uα ⊇ A, diam Uα < δ

}
since q − p < 0

= lim
δ→0

1

δp−q
inf

{∑
α∈I

(diam Uα)p :
⋃
α∈I

Uα ⊇ A, diam Uα < δ

}
factor out constant

= +∞ let δ → 0

*

Definition. We then see that if Hp(A) is a finite nonzero value, then for
all k ∈ [0,+∞) such that k 6= p, Hk(A) is either infinite or zero. Then, we
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define the Hausdorff Dimension of set A, dimH(A) = p if and only if Hp(A)
is a finite, nonzero number.

Remark. If the set A has Hausdorff dimension dimH(A) = k, then

Hp(A) =


0 if k < p
finite, nonzero number if k = p
+∞ if k > p

To illustrate, let’s consider a situation where k > p. For concreteness,
we’ll measure the length (p = 1) of a square (k = 2). First consider using a
ruler to measure an edge of the square in the x direction. Let’s say the side
length is some value, L > 0 Then move that ruler an infintesimal distance in
the y direction and record the length, which must still be L > 0. By gradually
moving the ruler continuously over this extra y dimension, the length of the
square becomes the sum of an uncountable number of L’s. This brings the
length to L + L + L + L + L + L... = +∞. More formally, this is shown by
integrating this uncountable set of L’s with respect to the counting measure.
We retrieve from this that the square has an infinite length.

H1(A) = +∞

x

y

Now let’s set k < p. For concreteness, we’ll measure the area (p = 2) of a
line (k = 1). Area can be regarded as the product of length and width. If we
lay our line of length L in the x direction, then the line in the y direction can
only occupy a single point, giving the line a width of zero in the y direction.

H1(A) = 0

0 = width {
x

y
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It follows from the remark that there exists a unique Hausdorff Dimension
for any subset of (X, ρ).

3.2 Non-integer Hausdorff Dimension

To visualize the necessity of a noninteger Hausdorff dimension, let us con-
sider the Koch curve, K. Which is generated as the limit of the following
transformations:

A

S(A)

S2(A)

S3(A)

S4(A)

Since this curve is composed of lines, it necessarily has zero area, thus
H2(K) = 0, so dimH(K) < 2. Now we’ll consider the length of K. Let’s
suppose that the initial line from above has a length of one. The result of
one transformation is four lines each of length strictly less than one. For the
sake of argument, let’s say that first transformation yields four lines, each
of length 1/3. This gives us a total length of 4/3. Repeating this procedure
gives us 4 lines of length (1/3)/3 = 1/9 for each of the 4 lines, giving us a
total length of 16/9 = (4/3)2. K is achieved by applying this transformation
an arbitrarily large number of times, therefore we can regard the total length
of K as

H1(K) = lim
n→∞

(4/3)n = +∞
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Therefore dimH(K) > 1. It follows that

1 < dimH(K) < 2

Therefore, K’s Hausdorff dimension is necessarily some noninteger value.
In order to analyze this result, we will first develop some terminology.

3.3 Calculating dimH(·) for self-similar objects

Definition. A set, A is called self-similar if there exists some A′ ⊂ A such
that A′ is similar to A. In other words, there exists a subset of the self-similar
set A such that dilation of that subset gives A exactly.

Definition. A similitude is a map S : Rn → Rn of the form S(x) = rO(x)+b
such that r > 0, b ∈ Rn, and O is an element of the nth orthogonal group,
O ∈ O(n). r is often called the scaling factor.

Example. The following is an example of a similitude on a square which
has a scaling factor of r = new

old
= 1/2

1
= 1/2

1 1
2

Definition. A similitude family is a collection of similatudes (Sα), α ∈ I.
We will be interested in similitude families that leave the Hausdorff p measure
invarient.

Example. To demonstrate a similitude family that leaves the Hausdorff p
measure invariant, we will consider the following partitioning of a square, A.
By associating the Hausdorff 2 measure with the Lebesgue 2 measure, we

S ∼=
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can show that this similitude family conserves area.

H2(A) ≈
∫
A

d2λ =

∫ 1

0

∫ 1

0

dx1dx2 = 1

4∑
i=1

H2(Si(A)) ≈
4∑
i=1

∫
Si(A)

d2λ =
4∑
i=1

∫ 1/2

0

∫ 1/2

0

dx1dx2 =
4∑
i=1

1

2 ∗ 2
= 1

Now define A = ∪α∈ISα(A) ≡ S(A). Since this similitude family (Sα) ∼=
S, leaves the area of a square invariant we have for any i ∈ N,

A = S(A) = S2(A) = · · · = Si(A) = Si+1(A) = · · ·

Now let’s calculate the Hausdorff dimension of the square, A. Consider
taking the general Hausdorff p measure of A after having been transformed
by S i times.

Hp(Si(A)) = Hp(Si+1(A))

4i(1/2)ip = 4i+1(1/2)(i+1)p

1 = 4(1/2)p

1/4 = (1/2)p

log(1/4) = p log(1/2)

p = log(1/2)/ log(1/4)

p = 2 log(1/2)/ log(1/2)

p = 2

Therefore, the square A has Hausdorff dimension 2, which agrees with the
square classically having dimension 2.

Example. We now turn to calculating the Hausdorff dimension of the Koch
Curve, K. In order to construct K, we first consider a line A. We then
repeatedly apply the transformation S of the similitude family described by
replacing every line of length x with four lines each of length x/3 (this is
depicted in Section 3). We then describe the object Si(A), which is that
transformation applied to A i times. For visualization purposes, we display
the case of i = 5.
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S5(A)

By defining K as K = limi→∞ S
i(A) ≡ S∞(A), we can readily observe

that
S(K) = S

(
lim
i→∞

Si(A)
)

= lim
i→∞

Si+1(A) = lim
j→∞

Sj(A) = K

So since S leaves K invariant, it must necessarily leave its p-dimensional
Hausdorff measure invariant.

Hp(S(K)) = Hp(K)

This statement is true for any p, but we aren’t interested in just any
p, we’re interested in the unique p such that p = dimH(K). Accordingly,
suppose p = dimH(K). In this case, Hp(K) = Hp(limi→∞ S

i(A)) necessarily
converges on a finite nonzero value.

Since only countable sums of nonnegative values are finite, the smallest
cover of K can be then expressed as a countable sum under the Hp measure.

And as discussed previously, H1(Si+1(A)) > H1(Si(A)), thereforeHp(Si+1(A)) >
Hp(Si(A)) for all i, we have that Hp(Si(A)) forms a monotonically increas-
ing sequence with finite limit, Hp(K). We may then apply the monotone
convergence theorem to bring the limit out of the countable sum, retrieving,

Hp( lim
i→∞

Si(A)) = lim
i→∞

Hp(Si(A))

The calculation is then straightforward
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lim
i→∞

Hp(Si(A)) = Hp( lim
i→∞

Si(A))

= Hp(K)

= Hp(S(K))

= Hp( lim
i→∞

Si+1(A))

= lim
i→∞

Hp(Si+1(A))

And since both sides converge to a finite value,

lim
i→∞

[
Hp(Si+1(A))−Hp(Si(A))

]
= 0

The diameter of a line is its length, and the length of a line in Si(A) will
be (1/3)i. Also, the number of lines in Si(A) is 4i. Since the minimum cover
of Si(A) is itself, which is the collection of those 4i lines, we have that

Hp(Si(A)) = 4i(1/3)ip. We may then simplify

lim
i→∞

4i+1(1/3)(i+1)p − 4i(1/3)ip = 0

lim
i→∞

4i(1/3)ip
(
4(1/3)p − 1

)
= 0(

4(1/3)p − 1
)

lim
i→∞

4i(1/3)ip = 0(
4(1/3)p − 1

)
Hp(K) = 0

By assumption, 0 < Hp(K) < +∞. Therefore,

4(1/3)p − 1 = 0

Solving for p, we retrieve the Hausdorff dimension of the Koch curve,

p =
log 4

log(1/3)
≈ 1.26...

Which is in fact a noninteger value. It is easily seen that this is consistent
with the previous example

1 < 1.26... = dimH(K) < 2
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We would now like to generalize the previous example to show that we
can analytically calculate the Hausdorff dimension for any compact object,
A, with self-similarity described by a similitude family that creates m copies
of itself and has a scaling factor of r. We will also suppose that we are
working within a metric space with a continuous, locally finite metric.

Theorem. If m and r are as defined above, then

1 = mrdimH(A)

Proof. With minor adjustments, the proof here is essentially the same as
for the Koch curve example above. Suppose that we want to calculate the
Hausdorff dimension of a compact object, K, with self similarity described by
some similatude family of transformations, S, where S produces m disjoint
copies of itself and scales itself by a scaling factor, r. Suppose for nontriviality
that m > 1. If r ≥ 1, then K would tile an unbounded region of its metric
space. Since K is compact, r < 1 necessarily. Letting K be generated as the
limit of applications of S on some set, for example, A, we have as before

K = lim
i→∞

Si(A) ≡ S∞(A)

and
S(K) = S

(
lim
i→∞

Si(A)
)

= lim
i→∞

Si+1(A) = lim
j→∞

Sj(A) = K

Now suppose that we have chosen a p such that Hp(K) 6= +∞. we may
then write

0 = Hp(K)−Hp(K)

Supposing we’re working in a metric space with a continuous metric, we
can as before take the limit out of the Hausdorff p measure, and we have

0 = Hp(K)−Hp(K)

= Hp(S(K))−Hp(K)

= Hp( lim
i→∞

Si+1(A))−Hp( lim
i→∞

Si(A))

= lim
i→∞

Hp(Si+1(A))− lim
i→∞

Hp(Si(A))

= lim
i→∞

mi+1rp(i+1) − lim
i→∞

mirpi

= lim
i→∞

[
mi+1rp(i+1) −mirpi

]
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Since we assume that the limit of the series exists by the assumption that
Hp(K) < +∞. Then by factoring, we recover,

0 = (mrp − 1) lim
i→∞

mirip

Then one of the two factors must be zero. Supposing that p is the Hausdorff
dimension of K, we have that

0 < Hp(K) = lim
i→∞

mirip

Then,
mrp − 1 = 0

Which is the desired result, solving for p, we have

dimH(K) = p =
logm

log 1/r
= log1/rm

*
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