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Abstract

This expository article is an introduction to Haar measure on locally
compact Hausdorff (LCH) groups. Haar measure is a translation invari-
ance measure and is widely used in pure mathematics, physics, and even
statistics. This article begins with an introduction to topological groups,
discusses Haar measure’s elementary properties, gives ideas about its con-
struction and uniqueness, and ends with the discussion of the relationship
between left and right Haar measures. The major reference is from [1].

1 Topological Groups

The main object we focus on is topological group. The notion of topological
group serves as a linkage between topology and algebra.

Definition 1.1 (Topological groups). A topological group G is a group endowed
with a topology such that the group operations (x, y) 7→ xy and x 7→ x−1 are
continuous.

Normed vector space is an additive topological group. The continuity of
addition essentially follows from the triangle inequality of the norm. Also the
collection of invertible n×n real matrices is a multiplicative non-Abelian topo-
logical group, with the Euclidean topology on Rn2

. Meanwhile, it is clear that
all groups with discrete topology are topological groups.

Before proceeding to the properties, we first introduce our notations. Let G
be a topological group. For x, y ∈ G,A,B ⊂ G, we denote

• e = identity element in G,

• xA = {xy : y ∈ A},

• Ax = {yx : y ∈ A},

• AB = {xy : x ∈ A, y ∈ B},

• A−1 = {x−1 : x ∈ A}.

And we say A is symmetric if A−1 = A.
We now provide several properties of topological groups.
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Proposition 1.1. Let G be a topological group. Then:

1. Topology of G is translation invariant. i.e. U open =⇒ Ux, xU open
∀x ∈ G.

2. For every neighborhood U of e, there is a symmetric neighborhood V of e
such that V ⊂ U .

3. For every neighborhood U of e, there is a neighborhood V of e such that
V V ⊂ U .

4. K1,K2 compact in G =⇒ K1K2 compact in G.

The above four propositions are all direct results of the continuity of group
operations. For part 1, fix x ∈ G, we know y 7→ xy is a homeomorphism. Hence
U open ⇐⇒ xU open. And similar arguments work for Ux. For part 2, WLOG
we assume U is open (otherwise just work on the interior of U). Then U−1 is
open because x 7→ x−1 is a homeomorphism. Now we can check V = U ∩ U−1
is a symmetric open neighborhood of e and V ⊂ U . For part 3, by continuity at
the identity, U is an open neighborhood of e implies ∃ open neighborhood A,B
of e such that AB ⊂ U . Then we can check V = A∩B is exactly what we want.
For part 4, note that K1×K2 is compact with respect to the product topology.
Then by continuity of (x, y) 7→ xy, we immediately have K1K2 is compact.

Meanwhile, we shall note that part 2 and part 3 together implies the follow-
ing:

Proposition 1.2. For every neighborhood U of e, there is a symmetric neigh-
borhood V of e such that V V ⊂ U .

This proposition will be used frequently throughout this article. Now we
give several other properties of topological groups.

Proposition 1.3. Let G be a topological group. Then:

1. H is a subgroup of G =⇒ H (the closure of H) is a subgroup of G.

2. Every open subgroup of G is also closed.

For part 1, just recall the closure of H is the set of points which is the limit of
a net in H. Then for x, y ∈ H, ∃{xα}α∈A, {yβ}β∈B such that xα → x, yβ → y.
Then by the fact that xαyβ → xy and x−1α → x−1, we know xy, x−1 ∈ H. Then
noting that e ∈ H, we conclude H is a subgroup. For part 2, let H be the open
subgroup of G. We may write G \H =

⋃
x/∈H xH. Hence G \H is open because

each xH is open. So we conclude that H is closed.

From now on we concentrate on the case where the topology on G is locally
compact Hausdorff (LCH). And by the following proposition we can see the
Hausdorff-ness turns out to be not much of a restriction.

Proposition 1.4. Let G be a topological group. Then:
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1. If G is T1 then G is T2 (Hausdorff).

2. If G is not T1, let H be the closure of {e}. Then H is a normal subgroup.
And if G/H is given the quotient topology, then G/H is a Hausdorff topo-
logical group.

We will not pursue the details of proof here. But it is worthwhile to note
that if G is not T1, we can alternatively work on G/H, which ensures the
Hausdorff-ness. i.e. we just “quotient out” the non-separable part.

2 Haar Measure and Its Properties

Before the formal definition of Haar measure, we first introduce several terms.
The following definitions have both left and right versions. Without further
note we concentrate on the left case.

Definition 2.1 (Left/right translates). Let f : G→ R. We define Lyf : G→ R
to be the left translation of f through y ∈ G by Lyf(x) = f(y−1x) ∀x ∈ G.
Similarly we define the right translate of f through y by Ryf(x) = f(xy).

Note that we are using y−1 on the left and y on the right because we want
Lyz = Ly ◦ Lz and Ryz = Ry ◦Rz.
Definition 2.2 (Left/right uniformly continuity). f : G → R is called left
uniformly continuous if ∀ε > 0,∃ a neighborhood V of e such that ‖Lyf−f‖u < ε
for all y ∈ V , where ‖ · ‖u denotes the uniform norm. We can define right
uniform continuity in the same fashion.

If G = R, then either left or right uniform continuity is equivalent to the
classical “uniform continuity”, because R is an additive Abelian topological
group.

Recall Cc(G), the space of continuous functions with compact support. This
functional space has a very good property, as indicated in the following propo-
sition.

Proposition 2.1. If f ∈ Cc(G), then f is both left and right uniformly contin-
uous.

Proof. We shall consider right uniform continuity (the left case is essentially
the same). Let K = supp(f), ε > 0. For each x ∈ K, by continuity of f , ∃ a
neighborhood Ux of e such that |f(xy)− f(x)| < ε

2 for y ∈ Ux. By proposition
1.2, ∃ a symmetric neighborhood Vx of e such that VxVx ⊂ Ux. Since {xVx}x∈K
covers K, by compactness, ∃x1, . . . , xn such that K ⊂

⋃n
j=1 xjVxj . Let V =⋂n

j=1 Vxj . We claim that |f(xy) − f(x)| < ε if y ∈ V , for all x ∈ G, which is
exactly the statement of right uniform continuity.

• If x ∈ K, then x ∈ xjVxj for some j. Hence x−1j x ∈ Vxj and thus we have

xy = xj(x
−1
j x)y ∈ xjVxj

Vxj
⊂ xjUxj

. Also x ∈ xjVxj
⊂ xjUxj

. Then we
have

|f(xy)− f(x)| ≤ |f(xy)− f(xj)|+ |f(x)− f(xj)| <
ε

2
+
ε

2
= ε.
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• If x /∈ K, f(x) = 0. Then either f(xy) = 0 (if xy /∈ K) or xy ∈ xjVxj for
some j (if xy ∈ K). For the first case, it is clear that |f(xy) − f(x)| =
0. And for the second case, we have xy ∈ xjUxj

and x ∈ xjVxj
y−1 ⊂

xjVxj
V −1xj

⊂ xjUxj
. Then again we have

|f(xy)− f(x)| ≤ |f(xy)− f(xj)|+ |f(x)− f(xj)| <
ε

2
+
ε

2
= ε.

From now on we fix G to be a LCH group and (G,BG) to be our measurable
space, where BG is the Borel σ-algebra. We introduce the notion of invariant
measure and invariant linear functional.

Definition 2.3 (Left/right invariant measure). A Borel measure µ on G is
called left invariant if µ(xE) = µ(E) ∀x ∈ G,E ∈ BG. Respectively we can
define the right invariant Borel measure.

Definition 2.4 (Left/right invariant linear functional). A linear functional I on
Cc(G) is called left invariant if I(Lyf) = I(f) ∀f ∈ Cc(G), y ∈ G. Respectively
we can define the right invariant linear functional.

Given our construction so far, it is easy to state the definition of Haar mea-
sure.

Definition 2.5 (Left/right Haar measure). A left Haar measure on G is a
nonzero left invariant Radon measure on G. Respectively we can define a right
Haar measure.

We shall recall the definition of the Radon measure: it is finite on compact
sets, outer regular for Borel sets and inner regular for open sets. Immediately
we can see that the Lebesgue measure on Rn is a left and right Haar measure.
Also the counting measure on any group with discrete topology is a left and
right Haar measure, because the cardinality of subset of a group is translation
invariant.

Now we let C+
c = {f ∈ Cc(G) : f ≥ 0, ‖f‖u > 0}. And we state several

properties of the Haar measure.

Proposition 2.2.

1. A Radon measure µ on G is a left Haar measure iff the measure µ̃ defined
by µ̃(E) = µ(E−1) ∀E ∈ BG is a right Haar measure.

2. A nonzero Radon measure µ on G is a left Haar measure iff
∫
fdµ =∫

Lyfdµ ∀f ∈ C+
c , y ∈ G.

3. If µ is a left Haar measure on G, then µ(U) > 0 for every nonempty open
U ∈ BG and

∫
fdµ > 0 ∀f ∈ C+

c .

4. If µ is a left Haar measure on G, then µ(G) <∞ iff G is compact.
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Part 1 tells us an elementary relationship between left and right Haar mea-
sures. As a result, if we construct a left Haar measure, we automatically get a
right Haar measure for free. Part 2 tells us an alternative characterization of
the Haar measure: when the measure is already Radon, in order to specify a
Haar measure, we just need to specify its invariant behavior on integration for
functions in C+

c . Therefore, if we want to construct a Haar measure, we just
need to construct a invariant positive linear functional on Cc(G) and induce the
Riesz representation theorem.

Proof. For part 1, by symmetry it suffices to show one direction. Assume µ
is a left Haar measure. We show µ̃ is a right Haar measure. We first check
the right invariance. For A ∈ BG, x ∈ G, we have µ̃(Ax) = µ(x−1A−1) =
µ(A−1) = µ̃(A). Also, since x 7→ x−1 is a homeomorphism, K compact iff
K−1 compact. Thus µ̃(K) = µ(K−1) < ∞. Then we check outer regularity.
Note that C := {S ⊂ G : S−1 ∈ BG} is a σ-algebra. Meanwhile, we know U
open iff U−1 open. Hence C ⊃ {U : Uopen}, which implies C ⊃ BG. Thus
A ∈ BG iff A−1 ∈ BG. Now assume A ∈ BG, by outer regularity, we have
µ̃(A) = µ(A−1) = inf{µ(U) : A−1 ⊂ U,Uopen}. With some computations we
have µ̃(A) = inf{µ(U−1) : A ⊂ U,Uopen}, which means µ̃ is outer regular for
Borel sets. The arguments for inner regularity is essentially the same.

For part 2, we first show the “only if” part. Note that for a simple func-
tion ϕ,

∫
Lyϕdµ =

∫
ϕdµ. For f ∈ C+

c , f can be approximated by a sequence
of simple functions. Then the result easily follows by using monotone conver-
gence theorem. For the “if” part, we need to show the left invariance of µ.
If we can show µ(U) = µ(xU) for open U , then using outer regularity, for
A ∈ BG we have µ(xA) = inf{µ(U) : U ⊃ xA,Uopen} = inf{µ(xU) : xU ⊃
yA, yUopen} = inf{µ(U) : U ⊃ A,Uopen} = µ(A). Hence it suffices to show∫
χUdµ =

∫
LyχUdµ. But unfortunately χU /∈ C+

c all the time. However we do
have a way to approximate characteristic functions using continuous functions:
Urysohn’s lemma. The lemma states: if K is compact in G and U is an open
neighborhood of K, then ∃f ∈ Cc(G) such that χK ≤ f ≤ χU . By the existence
of such f , along with inner regularity, it is easy to see that µ(U) = sup{µ(K) :
K ⊂ U,Kcompact} = sup{

∫
fdµ : f ∈ C+

c , ‖f‖u ≤ 1, supp(f) ⊂ U}. Using this
alternative characterization of inner regularity, after some computations we can
derive µ(U) = µ(yU), which completes the proof for part 2.

For part 3, since µ 6= 0, we have µ(G) > 0. Since G is open in G, by inner
regularity we have µ(G) = sup{µ(K) : K ⊂ G,Kcompact} > 0. Hence ∃K
compact in G such that µ(K) > 0. Now for a nonempty open U , {xU}x∈G is
an open cover of K. So we get a subcover {xiU}ni=1 of K. Then µ(

⋃n
i=1 xiU) ≥

µ(K) > 0, which gives µ(U) > 0. Now we let U = {x ∈ G : f(x) > ‖f‖u/2}.
It is clear that U is open by continuity of f and the definition of ‖ · ‖u. Then∫
fdµ ≥

∫
U
‖f‖u/2dµ = 1

2‖f‖uµ(U) > 0.
For part 4, the “if” part is true by the definition of the Haar measure. So

we show the “only if” part. Assume G is not compact. Let K be a compact
neighborhood of e (such K exists since G is LCH). Then by proposition 1.2, ∃
a symmetric open neighborhood U of e such that UU ⊂ K. Note that there is
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no finite number of translates of K that covers G (if there is one, let O be any
open cover of G, O covers xiK, so there is a finite subcover of xiK. Take the
union of these finite subcovers over x1, . . . , xn, we get a finite subcover of G,
which means G is compact). Now we construct a net {xn}n∈N ⊂ G by choosing
xn such that xn /∈

⋃
j<n xjK. We claim that xiU

⋂
xjU = ∅ for i 6= j. If

the claim holds, then µ(G) ≥ µ(
⋃
n∈N xnU) =

∑
n∈N µ(xnU) =

∑
n∈N µ(U) =

∞ because µ(U) > 0 by part 3. The proof for the claim is straightforward:
suppose xiU

⋂
xjU 6= ∅ for i < j, then ∃u, v ∈ U such that xiu = xjv. So

xj = xiuv
−1 ∈ xiUU−1 = xiUU ⊂ xiK, which contradicts our construction of

{xn}n∈N.

3 Construction of Haar Measure

We now construct the Haar measure on the LCH topological group G. Note
that by proposition 2.2 part 1, it suffices to construct the left Haar measure, as
given a left Haar measure µ on G, the measure µ̃ defined by µ̃(E) = µ(E−1)
is a right Haar measure. We start by giving an intuition as to how one might
measure the Borel subsets of G.

3.1 Haar Covering Number

Let E ∈ BG and let V ⊂ G be open and non-empty. Then we define the Haar
covering number of E with respect to V - (E : V ) - by “the smallest number of
left translates of V that cover E”:

(E : V ) = inf{|A| : E ⊂
⋃
x∈A

xV }

Intuitively, (E : V ) is a way of ‘measuring’ E using V as a unit of measure-
ment. We can normalize this measurement by picking a set E0 to have ‘measure’

1 by considering (E:V )
(E0:V ) . This is in a sense the ‘size’ of E when E0 is said to have

size 1. This estimate is not very precise, but it gets more precise the ‘smaller’
we make V (this is tongue and cheek - we don’t have a measure yet so we don’t
know what it means for V to be small).

Notice, (E:V )
(E0:V ) is clearly left-invariant with respect to E. The intuition is that

is a V gets smaller and smaller, (E:V )
(E0:V ) approaches a measure. As this measure

would be left invariant, this suggests a construction of a left Haar measure by

defining µ(E) = limV→∅
(E:V )
(E0:V ) . However, this argument is fairly complicated

and unwieldy. It is easier to approach this problem from the perspective of
integrals of functions rather than measures of sets, and then apply the Riesz
Representation Theorem to retrieve the measure.

Thus for f, φ ∈ C+
c (G), we define the Haar covering number of f with respect

to g to be:

(f : φ) = inf{
n∑
i=1

cn : f ≤
n∑
i=1

ciLxiφ for some n ∈ N and x1, ..., xn ∈ G}

6



This definition makes sense - (f : φ) <∞ - as the set {x : φ(x) > 1
2 ||φ||u} is

an open and non-empty set. Therefore, as supp(f) is compact and the collection
of left translates of {x : φ(x) > 1

2 ||φ||u} covers supp(f), finitely many left
translates of {x : φ(x) > 1

2 ||φ||u} cover supp(f). Then, we have for some
x1, ..., xn:

f ≤ 2||f ||u
||φ||u

n∑
i=1

Lxi
φ

Thus (f : φ) ≤ 2n||f ||u
||φu|| < ∞. We also have (f : φ) ≥ ||f ||u

||φ||u as if f ≤∑n
i=1 ciLxi

φ, then we have:

||f ||u ≤
∣∣∣∣∣∣ n∑
i=1

ciLxi
φ
∣∣∣∣∣∣
u
≤

n∑
i=1

ci||Lxi
φ||u = ||φ||u

n∑
i=1

ci

Thus, ||f ||u||φ||u ≤
∑n
i=1 ci, thus ||f ||u||φ||u ≤ (f : φ). Now we prove several facts

about the Haar Covering Number:

3.2 Properties of the Haar Covering Number

Let f, g, φ ∈ C+
c (G). Then:

a. (f : φ) = (Lx(f) : φ) = (f : Lx(φ)) for all x ∈ G.
b. (cf : φ) = c(f : φ) for all c ∈ R.
c. (f + g : φ) ≤ (f : φ) + (g : φ).
d. (f : φ) ≤ (f : g)(g : φ).

Proof: (a) Notice that f ≤
∑n
i=1 ciLxi

φ if and only if Lx(f) ≤ Lx
(∑

ciLxi
φ
)

=∑
ciLx(Lxiφ) =

∑
ciLxxiφ. Thus (f : φ) ≤

∑
ci if and only if (Lx(f) : φ) ≤∑

ci, thus (f : φ) = (Lx(f) : φ). Similarly, f ≤
∑
ciLxiφ if and only if

f ≤
∑
ciLxix−1Lxφ, thus (f : φ) = (f : Lx(φ)).

(b) Notice cf ≤
∑
ciLxi

φ if and only if f ≤
∑ ci

c Lxi
φ. Thus, (cf : φ) ≤

∑
ci

if and only if (f : φ) ≤ 1
c

∑
ci. Thus (cf : φ) = c(f : φ).

(c) Notice if f ≤
∑n
i=1 ciLxi

φ and g ≤
∑m
j=1 djLyjφ, then (as f, g, φ ≥ 0)

f + g ≤
∑n
i=1 ciLxi

φ+
∑m
j=1 djLyjφ. Thus if (f : φ) ≤

∑
ci and (g : φ) ≤

∑
dj

then (f+g : φ) ≤
∑
ci+

∑
dj . Notice we can pick (ci), (dj) s.t. (f : φ)+ε ≥

∑
ci

and (g : φ) + ε ≥
∑
dj , thus (f + g : φ) ≤ (f : φ) + (g : φ) + 2ε. As we can make

ε as small as we like, (f + g : φ) ≤ (f : φ) + (g : φ).
(d) Notice if f ≤

∑n
i=1 ciLxiφ and g ≤

∑m
j=1 djLyjφ, then f ≤

∑n
i=1

∑m
j=1 cidjLxiyjφ.

Thus, if (f : g) ≤
∑
ci and (g : φ) ≤

∑
dj , then (f : φ) ≤

(∑
ci
)
·
(∑

dj).
Then as we can pick (ci), (dj) s.t. (f : g) + ε ≥

∑
ci and (g : φ) + ε ≥

∑
dj ,

then we have (f : φ) ≤ ((f : g) + ε) · ((g : φ) + ε) = (f : g)(g : φ) + ε((f : g) + (g :
φ) + ε). As (f : g), (g : φ) are finite and we can make ε as small as we like,
(f : φ) ≤ (f : g)(g : φ).
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3.3 An Almost-Linear Functional

Now, using the above lemma, we can normalize (f : φ) as we did for the Haar
covering number of sets to get a pseudo-functional Iφ. That is, we pick f0 for
which we want Iφ(f0) = 1 and define:

Iφ(f) =
(f : φ)

(f0 : φ)

Notice Iφ is left invariant by (a) of the above lemma. Furthermore Iφ is
almost linear (it is linear under scalar multiplication by (b) and sub-additive by
(c) of the above lemma). We also have:

(f0 : f)−1 ≤ Iφ(f) ≤ (f : f0)

This follows as by (d), (f0 : φ) ≤ (f0 : f)(f : φ), thus (f0 : f) ≥ (f0:φ)
(f :φ) , thus

(f0 : φ)−1 ≤ (f :φ)
(f0:φ)

= Iφ(f). By (d) we also have (f : φ) ≤ (f : f0)(f0 : φ)¡ thus

Iφ(f) ≤ (f : f0).
What we have now is a class of functionals Iφ which are left-invariant, linear

under scalar multiplication, sub-additive, and uniformly bounded. From this
class we want to construct a left-invariant linear functional from which we will
get a left Haar measure by invoking the Riesz Representation Theorem. The
last major lemma we will state will show that for a specific choice of f, g ∈ C+

c ,
we can choose φ ∈ C+

c s.t. Iφ is almost linear. Specifically:

Proposition 3.1. If f1, f2 ∈ C+
c and ε > 0, then there is a neighborhood V of

e such that Iφ(f1) + Iφ(f2) ≤ Iφ(f1 + f2) + ε for all φ ∈ C+
c s.t. supp(φ) ⊂ V .

Combined with the sub-additivity of Iφ (Iφ(f1 + f2) ≤ Iφ(f1) + Iφ(f2)), this
tells us FINISH THIS

3.4 Every LCH Group G Has a Left Haar Measure

Now we have the tools to prove the existence of a left Haar Measure. I will
provide an outline of the proof. For the full proof, see Folland’s Real Analysis.

Proposition 3.2. Let G be an LCH group. Then there exists a left Haar
Measure µ on (G,BG).

Fix an f0 ∈ C+
c . This function will have integral 1 with respect to the

measure we construct - it is our unit. Define the produce space:∏
f∈C+

c

[(f0 : f)−1, (f : f0)−1]

By Tychonoff’s Theorem, this space is compact. A brief digression: Ty-
chonoff’s Theorem is a theorem of Topology which states that arbitrary prod-
ucts of compact spaces are compact under the product topology. Tychonoff’s
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Theorem requires (and is in fact equivalent to) the axiom of choice. A proof
of the existence of Haar measure that does not depend on the axiom of choice
exists, though we do not discuss it here.

Note that the elements of the product space defined above are functionals
on C+

c . This follows as uncountable products are defined as ’functions’ from the
index space C+

c to the element space R, which in this case is precisely a subset
of the set of functionals on C+

c .
Then for any open set V ⊂ G containing e, define K(V ) to be the closure of

{Iφ : supp(φ) ⊂ V } in the product space. Then notice finite intersections of the
K(V )s are non-empty. It therefore follows from the compactness of

∏
f∈C+

c
[(f0 :

f)−1, (f : f0)] that
⋂
V open,e∈V K(V ) is non-empty.

Then let I be a member of this intersection. Them I is left invariant and
linear. This follows by the previous lemma and the fact that for any f1, f2, ..., fn
and ε > 0, you can find a φ ∈ C+

c s.t. Iφ is within ε of I on f1, ..., fn. Consult
Folland’s book for a more in depth proof.

Then we have a left invariant linear functional I on C+
c . This can be ex-

tended to be a positive left invariant linear functional by observing, for an
f ∈ Cc, I(f+) − I(f−). Thus we have a positive left invariant linear func-
tional on G. Thus the Riesz representation theorem gives us a Radon measure
µ corresponding to I. Proposition 2.2 gives us that µ is a left Haar measure.

Thus we have a left Haar measure µ on G - the existence of the right Haar
measure follows from proposition 2.2. It is important to note that µ is not
unique. At the beginning of this section, we fixed f0 ∈ C+

c . f0 was a function
we picked arbitrarily to have integral 1 - we could have just as easily picked
any other function. Thus there are many other possible left Haar measures on
G - we can easily see this by scaling µ by a constant. The important result
presented in the next section states that such scalings are the only other left
Haar measures on G.

4 Uniqueness of Haar Measure

Not only can we show the existence of left and right Haar measures, but we can
show uniqueness (up to scalar multiplication as well). This gives us a very strong
result - that is that on any LCH group G, there exists a canonical measure that
obeys the topological structure of G (it is radon) as well as the group structure
of G (it is left or right translation invariant). The statement of this result is as
follows:

Proposition 4.1. Let G be an LCH group. Then if µ, ν are left/right Haar
measures, µ = cν for some c > 0.

We do not provide a proof of this, but a proof can be found in Folland’s
Real Analysis (the proof does not carry with it much intuition - it is largely
computation).
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5 The Modular Function

Let µ be a left Haar Measure on G. Then for any x ∈ G, we define µx by
µx(E) = µ(Ex). Notice µx is a left Haar Measure, as by associativity

µx(yE) = µ(yEx) = µ(Ex) = µx(E)

Therefore by Haar measures’ uniqueness property, there is a positive number
∆(x) s.t. µx = ∆(x)µ. We call this function the modular function:

Definition 5.1 (The Modular Function). The modular function ∆ : G → R+

takes values s.t. µ(Ex) = ∆(x)µ(E) for all E ∈ BG. Note that the module
function is independent of the choice of µ as the choice of µ can only differ by
a constant factor.

By proposition 11.10, ∆ is a continuous homomorphism from G to R∗ with
multiplication. Moreover:∫

(Ryf)dµ = ∆(y−1)

∫
f dµ

Note that when ∆ is identically 1, µ(Ex) = µx(E) = ∆(x)µ(E) = µ(E),
thus µ is right invariant. Thus, left Haar measures are precisely right Haar
measures. The converse also holds. In this case, we say:

Definition 5.2 (Unimodularity). An LCH group G is said to be unimodular
when its modular function ∆ is identically 1.

It is easy to see that every abelian group is unimodular. However, there
are many non-commutative groups that are unimodular as well. Specifically,
let [G,G] is the commutator subgroup of G (it consists of elements of the form
xyx−1y−1 for x, y ∈ G). Then, if the Quotient group G/[G,G] is finite, G is
unimodular.

This follows from the fact that (R+, ·) is abelian, so any homomorphism
∆ : G → R+ must annihilate the commutator subgroup. Then, as R+ has no
finite subgroups except for {1}, if what remains is finite it must all be mapped
to 1. Intuitively what this means is that groups with finite non-commutativity
are unimodular.

Also, any compact group G must be unimodular. This follows from the fact
that a left Haar measure is finite on compact sets and the fact that Gx = G,
giving us µ(G) = µ(Gx) = ∆(x)µ(G). Dividing by 0 < µ(G) <∞ gives us that
∆(x) = 1.

The last and most important result we give with respect to the modular
function ties together the left and right Haar measures of an LCH group G. We
saw in proposition 2.2 that if µ is a left Haar Measure then µ̃(E) = µ(E−1) is
a right Haar measure. Now we show how to compute µ̃ from ∆ and µ:

Proposition 5.1. dµ̃ = ∆−1dµ, or equivalently µ̃(S) =
∫
S

∆−1dµ for all S ∈
BG.

This leads to the immediate corollary that left and right Haar Measures are
mutually absolutely continuous.
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6 Examples

Let G be a topological group that is homeomorphic to an open subset of Rn.
Then if the group operation on G is a linear transformation, that is the function
fx(y) = xy can be written as fx(y) = Ax(y) + bx, then a left Haar measure of
G is |det(Ax)|−1dx where dx is Lebesgue measure on Rn.

Note that an alternative formulation of the determinant of a linear transfor-
mation is the scaling factor by which the transformation modifies the Lebesgue
measure of a set it acts on. Thus, what the above statement is saying is that
if G can be viewed as an open subset of Rn where λ(xS) = g(x)λ(S) for all
measurable S (where λ is Lebesgue measure), then (g(x))−1dλ(x) is a left Haar
measure on G (This is mostly a formulation to help the reader’s intuition - it
may not be perfectly correct).

We can apply this idea to many groups. Specifically, we can apply it to the
group of non-zero complex numbers under multiplication, for which we get a
left and right Haar measure of 1

|z|dz where dz is Lebesgue measure in R2.

For GL(n,R), we get the left and right Haar measure 1
|det(A)|n dX where dX

is Lebesgue measure on Rn2

.
For the group of matrices of the form (x > 0, y ∈ R):[

x y
0 1

]
we get a left Haar measure of x−2dxdy and a right Haar measure of x−1dxdy.

Verifying this is not too difficult.

7 A Combinatorial Proof of the Existence of
Haar Measure

In this section we discuss a proof of the existence of Haar Measure on compact
groups G [2]. This proof follows the same broad strategy as the proof discussed
earlier in that it constructs a Haar measure on G (left/right are the same as G
is compact) by constructing a left invariant linear functional.

Definition 7.1 (Hypergraph). A Hypergraph H is a tuple (V,E) where V is a
set of vertices and E is a collection of subsets of V called edges.

If H = (V,E) is a hypergraph and f : V → R, let δ(f,H) = sup{|f(x) −
f(y)| : x, y ∈ U for some U ∈ E}. δ(f,H) can be intuitively considered to be
the maximal difference (w.r.t. f) between pairs of nodes connected by some
edge.

Also, if A is a finite set and f : A→ R, let f(A) = 1
|A|
∑
x∈A f(x) (f is the

average value of f on A w.r.t. the counting measure. Finally:
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Definition 7.2. Let H = (V,E) be a hypergraph. Then A is a blocking set of H
if U ∩A 6= ∅ for all edges U ∈ E. Another word for A would be a vertex cover.
Furthermore, A is called a minimum cardinality blocking set of H if there does
not exist a blocking set B of H s.t. the cardinality of B is less than that of A.

Now we can state the following:

Lemma: Let H = (V,E) be a hypergraph and let A,B be two minimum cardi-
nality blocking sets of H. If A and B are finite, then:

|f(A)− f(B)| ≤ δ(f,H)

Note as A,B are finite and both minimum cardinality blocking sets, we have
|A| = |B|. Then if we view A,B as disjoint sets (i.e. if x ∈ A,B view the x ∈ A
and the x ∈ B as different), we can construct a bipartite with nodes AtB and
with edges between each x ∈ A, y ∈ B if and only if there exists an edge U of
H s.t. x, y ∈ U .

Then, through some cleverness and use of the Marriage lemma, we see that
the bipartite graph above has a perfect matching (see [2]). What this means is
that there is a matching ai ∈ A, bi ∈ B s.t. for each 1 ≤ i ≤ n = |A|, there
exists an edge U of H s.t. ai, bi ∈ U . But this means:

|f(A)−f(B)| =
∣∣∣ 1
n

n∑
i=1

f(ai)−
1

n

n∑
i=1

f(bi)
∣∣∣ ≤ 1

n

n∑
i=1

|f(ai)−f(bi)| ≤
1

n
nδ(f,H) = δ(f,H)

Using this lemma, we can derive the existence of a Haar measure on G. First,
however, some definitions. Given some open subset U of G, define HU =
(G, {xUy : x, y ∈ G}). That is, HU is the graph with vertices G and edges
the translates of U . We call a blocking set of HU a U net (a U net intersects
all translates of U). The compactness of G guarantees the existence of a finite
U net for any U .

Fix f ∈ C(G). Let U, V be open subsets of G. Let A be a minimum
cardinality U net and let B be a minimum cardinality V net. Then it follows
from the above lemma that:

|f(A)− f(B)| ≤ δ(f,HU ) + δ(f),HV )

Now let Un be a sequence of open sets such that δ(f,HUn
)→ 0 (note in this

contest, δ(f,HUn)→ 0 is equivalent to the uniform continuity of f , which holds
as f is a continuous function on a compact set G). Then by the above claim,
the sequence (f(Un)) is Cauchy. Thus it converges to some value which we call
L(f). Note that this limit is independent of the choice of Un and An.

Then it is not too difficult to show that L(f) is a translation invariant linear
functional. Thus by the Riesz Representation Theorem the proof of the existence
of Haar measure on the compact group G is complete. Something to note about
this proof was, although it involved concepts like hypergraphs, the argument
was almost entirely an analytic argument. The only place where combinatorics
came up was in the use of the Marriage lemma in the proof of the stated lemma.
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