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1 Biased and unbiased random walks on Z
We first discuss some ways to approach Problem 3 from the first homework assignment. Let

St = S0 +
∑t

j=1Xj, where Xj ∼

{
1, p

−1, q = 1− p
are i.i.d. random variables with p ≥ 1

2
.

Let Pk and Ek denote the probability and expectation, respectively, for the process started
at S0 = k. We want to show

E0(τ1) =

{
1

2p−1
, p > 1

2

∞, p = 1
2
.

Biased walk:
First consider the case p > 1

2
. Then we can use the Optional Stopping Theorem to

compute Ek(τn) whenever k ≤ n. It is easy to verify that Mt := St−(2p−1)t is a martingale,
and if M0 = S0 = k, then supt≤τn |Mt| ≤ (k+ τn) + (2p− 1)τn = k+ 2pτn. To apply optional
stopping to Mτn , we need to verify that Ek(τn) <∞. To prove this, consider τn ∧N , where
N ∈ N. This is a bounded stopping time, so we can apply optional stopping to obtain

k = EkM0 = EkMτn∧N = EkSτn∧N − (2p− 1)Ek(τn ∧N).

Thus, Ek(τn ∧N) = 1
2p−1

[EkSτn∧N − k] ≤ n−k
2p−1

, where the inequality EkSτn∧N ≤ n holds for
any N < ∞ because if k ≤ n, then Sτn∧N ≤ n almost surely. Since τn ∧ N is nonnegative
and increases a.s. to τn as N → ∞, we have Ekτn ≤ n−k

2p−1
by monotone convergence. Since

Ek(τn) <∞, we can now apply the Optional Stopping Theorem at τn to obtain

k = EkM0 = EkMτn = Ek[Sτn − (2p− 1)τn] = n− (2p− 1)Ek(τn),

or

Ek(τn) =
n− k
2p− 1

.

Note that in the above calculation we used the fact that τn < ∞ a.s. (which follows from
Ek(τn) <∞) to conclude that Sτn = n a.s.
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Unbiased walk:
Now we want to show that E0(τ1) =∞ when p = 1

2
. There are various ways to see this.

Here are a few methods:

Method 1: Coupling. We can couple a biased and an unbiased random walk by using a
single sequence {Ui}i≥0 of i.i.d. Uniform

(
[0, 1]

)
random variables to determine the steps for

both walks simultaneously: If Ui ≤ p (resp. Ui ≤ 1
2
), then the ith step of the biased walk

(resp. unbiased walk) is to the right (i.e. Xi = +1); otherwise the ith step is to the left (i.e.
Xi = −1).

With this coupling we always have X
(p)
i ≥ X

( 1
2
)

i , hence S
(p)
t ≥ S

( 1
2
)

t . Therefore, the biased

walk is always to the right of the unbiased walk, so it must reach 1 first, i.e. τ
(p)
1 ≤ τ

( 1
2
)

1 .

Thus we have E0(τ
( 1
2
)

1 ) ≥ E0(τ
(p)
1 ) = 1/(2p− 1) for any p > 1

2
, so E0(τ

( 1
2
)

1 ) =∞.

Note: This same coupling can be used for any pair of p values, showing that E0(τ
(p)
1 ) must

be a monotone function of p.

Method 2: Comparison with τ{−k,1}. Based on our previous examples of applying the
Optional Stopping Theorem, we know that E0τ{−k,1} = k for a simple random walk. Clearly
we have 0 ≤ τ{−k,1} ↗ τ1 a.s. as k →∞, so E0τ1 = limk→∞ E0τ{−k,1} =∞ by the Monotone
Convergence Theorem.

Method 3: Contradiction using Optional Stopping. Since the simple random walk
{St} is a martingale with bounded increments, if E0(τ1) < ∞, we could apply optional
stopping to obtain E0(Sτ1) = E0(S0) = 0. But Sτ1 = 1 a.s., which is a contradiction.
Therefore we must have E0(τ1) =∞.

Method 4: Reflection principle. Suppose {Xi} are IID random variables taking values
in {+1,−1}. Given a stopping time τ , the mapping

(X1, X2, . . . , Xτ−1, Xτ , Xτ+1, . . .) 7→ (X1, X2, . . . , Xτ−1,−Xτ ,−Xτ+1, . . .)

is an involution (i.e. it’s its own inverse) on the set of sequences. If we use the right stopping
time, we can use this fact to show that for a simple random walk,

P0(τ1 = k) ∼ C

k3/2
, k odd,

so τ1 has infinite expectation. We’ll see how to do this on Friday, May 1.

2 The O’Donnell–Servedio bound for randomized al-

gorithms

Recall our setup from last time (April 17) for using randomized algorithms to compute
monotone Boolean functions:

2



Consider the probability space Ω = Ωn
0 = {1,−1}n equipped with the probability measure

P =
(

1
2
, 1

2

)n
. Suppose f : Ω → Ω0 is a monotone Boolean function. If x = (x1, . . . , xn) is a

random element of Ω, the influence of variable j on f is

Ij(f) = E[xjf(x)] = P[f(x) = 1 | xj = 1]− P[f(x) = 1 | xj = −1]

+ P[f(x) = −1 | xj = −1]− P[f(x) = −1 | xj = 1].

We are interested in randomized algorithms to compute f exactly. An algorithm is
specified by a random sequence of indices k(1), k(2), . . . , k(τ) telling us which input variables
to look at, where τ is the (random) running time of the algorithm, i.e. the number of steps
it takes to finish computing. More explicitly, the index k(j) is computed as some function
of the previously revealed variables and an independent source of randomness:

k(j) = Fj
(
xk(1), xk(2), . . . , xk(j−1), Uj

)
,

where Uj is independent of {x, U1, . . . , Uj−1}. The time τ when the algorithm terminates is
defined by

τ = min
{
j : f(x) is determined by xk(1), xk(2), . . . , xk(j)

}
.

That is, if we examine more variables after time τ , the computed value of f will not change.
The running time τ is a stopping time with respect to the filtration F = (Fj), where

Fj = σ
{
U1, . . . , Uj ;xk(1), xk(2), . . . , xk(j)

}
is the information available at the jth step.

Theorem 2.1 (O’Donnell, Servedio). If τ is the running time of a randomized algorithm
which computes a monotone f : {1,−1}n → {1,−1} exactly, then(

n∑
j=1

Ij(f)

)2

≤ Eτ.

Proof. Let U = (U1, . . . , Un), and let L(U) denote the law (i.e. distribution) of the random
vector U , which we assume takes values in [0, 1]n without loss of generality. Since U is
independent of x, we can work on the probability space Ω′ = Ω× [0, 1]n under the product
measure ν = P⊗ L(U).

First we claim that Eν

[
xjf(x)1{j not examined}

]
= 0. Intuitively, this says that the expected

influence of variables that don’t get examined is 0. Here’s a proof using the reflection
principle:

Note that {j not examined} = {τ < j}. Since τ is a function of x and U , and f and xj
are functions of x, we have xjf(x)1{j not examined} = ϕ(x, U) for some (deterministic) function
ϕ. Let ι : Ω→ Ω be the (random) function which flips all unexamined vertices, i.e. xj 7→ −xj
if j > τ and otherwise xj stays the same. Then ι is an involution (hence bijection), and ι(x)
has the same law as x since +1 and −1 are equally likely for each bit (that is, the marginal
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distributions of x and ι(x) are both P). Therefore (using the independence of x and U and
the fact that ι is a measure-preserving bijection) we have

Eνϕ(x, U) = Eνϕ(ι(x), U).

On the other hand, by the definition of τ , the unexamined bits of x do not affect the value
of f , and hence the sign of ϕ changes if we flip all the unexamined bits in x. Therefore we
have ϕ(ι(x), U) = −ϕ(x, U) and hence

Eνϕ(x, U) = −Eνϕ(ι(x), U),

so we must have Eνϕ(x, U) = 0.

Now, since U is independent of x, and the functions f and xj depend only on x, not U ,
the expectation of xjf(x) with respect to ν is the same as the expectation with respect to
P. That is,

Ij(f) = EP[xjf(x)] = Eν [xjf(x)].

Thus, using the fact that Eν

[
xjf(x)1{j not examined}

]
= 0, we have

n∑
j=1

Ij(f) = Eν

n∑
j=1

xjf(x) = Eν

n∑
j=1

xjf(x)1{j examined}.

By the Cauchy–Schwarz inequality,(∑n
j=1 Ij(f)

)2

≤ Eνf(x)2 · Eν

(∑n
j=1 xj1{j examined}

)2

= Eν(1) · Eν

(
xk(1) + xk(2) + . . .+ xk(τ)

)2
= 1 · EνS

2
τ

= Eντ.

Here, St :=
∑t

j=1 xk(j) has the same distribution (for 0 ≤ t ≤ τ) as a simple random walk on

Z since the variables {xk(j)}τj=1 are IID Unif{+1,−1} under the measure ν. Thus, S2
t − t is a

martingale with respect to the filtration F , so the last step follows by applying the Optional
Stopping Theorem at time τ .
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