University of Washington Math 523A Lecture 8

LECTURER: EYAL LUBETZKY

Friday, April 24, 2009

1 Strong, weak, and very-weak martingales

Our goal will be to reach the following theorem, which we first state informally:

Theorem 1.1 (Kallenberg, Sztencel '91 ; Hayes '05). Let $X = (X_n)_{n\geq 0}$ be a martingale in \mathbb{R}^d with $X_0 = 0$. Then

$$\mathbb{P}(||X_n|| \ge a) \le 2e^{1-\frac{(a-1)^2}{2n}} \quad \forall a > 0.$$

Notice the remarkable fact that the bound doesn't depend on the dimension d. We will see that it is sufficient to project the process to 2 dimensions.

What do we mean by a martingale in \mathbb{R}^d ? We make the following definitions generalizing the notion of a martingale:

Definition 1.2 (Strong, weak, and very-weak martingales). Suppose $X = (X_t)_{t\geq 0}$ is a process in \mathbb{R}^d satisfying $\mathbb{E} ||X_t|| < \infty$ for all t (where $||\cdot||$ denotes the Euclidean norm in \mathbb{R}^d). We call X a strong, weak, or very weak martingale with respect to the induced filtration $\mathcal{F} = (\mathcal{F}_t)_{t\geq 0}$ if X satisfies one of the following conditions, respectively:

- 1. (strong) $\mathbb{E}[X_t \mid X_1, \dots, X_{t-1}] = X_{t-1}$ for all t.
- 2. (weak) $\mathbb{E}[X_t \mid X_s] = X_s$ for all s < t.
- 3. (very weak) $\mathbb{E}[X_t \mid X_{t-1}] = X_{t-1}$ for all t.

More generally, if $\mathcal{G} = (\mathcal{G}_t)_{t\geq 0}$ is an indexed collection of σ -fields (not necessarily increasing) and $X_t \in \mathcal{G}_t$, then X is adapted to the filtration $\mathcal{F} = (\mathcal{F}_t)_{t\geq 0}$ defined by $\mathcal{F}_t = \bigvee_{s\leq t} \mathcal{G}_s$. In this case we say that X is a strong, weak, or very weak martingale with respect to \mathcal{G} if $\mathbb{E}[X_t \mid \mathcal{F}_{t-1}] = X_{t-1} \ \forall t, \ \mathbb{E}[X_t \mid \mathcal{G}_s] = X_s \ \forall s < t, \text{ or } \mathbb{E}[X_t \mid \mathcal{G}_{t-1}] = X_{t-1} \ \forall t, \text{ respectively.}$

Note that strong \Rightarrow weak \Rightarrow very-weak, but the reverse implications don't necessarily hold. For example, if X is a very-weak martingale, our best guess for X_t given X_{t-1} is X_{t-1} , but we might be able to make a better guess if we're also given X_1, \ldots, X_{t-2} .

Recall: In the proof of the Hoeffding inequality, we only used the fact that X is a very-weak martingale (condition 3 above) since we always just used an increment of 1. This special case illustrates a general principle:

Theorem 1.3 (Hayes '05). Suppose (X_t) is a very-weak martingale in \mathbb{R}^d . Then there exists a strong martingale (Y_t) in \mathbb{R}^d such that

$$(Y_{t-1}, Y_t) \sim (X_{t-1}, X_t) \quad \forall t \ge 1.$$

This essentially means that we can apply any large deviation estimate for martingales to very-weak martingales as well, as long as the bound only involves the distribution of one variable (or two successive variables) at a time.

Proof sketch. We will prove the special case in which we have a finite number of steps and X_t takes finitely many possible values, i.e. $t \in \{1, \ldots, n\}$ for some finite n, and $X_t \in \Omega_t$, $|\Omega_t| < \infty \forall t$. We construct a coupling inductively as X_1, X_2, \ldots are revealed to us. Let $Y_1 = X_1$, and for $t \geq 2$, assume Y_1, \ldots, Y_{t-1} are already defined. Then we define the distribution of Y_t by

$$\mathbb{P}[(Y_0, \dots, Y_t) = (y_0, \dots, y_t)] = \begin{cases} 0, & \mathbb{P}(X_{t-1} = y_{t-1}) = 0\\ \mathbb{P}(X_t = y_t \mid X_{t-1} = y_{t-1}) & \\ & \cdot \mathbb{P}[(Y_0, \dots, Y_{t-1}) = (y_0, \dots, y_{t-1})], \end{cases} \text{ otherwise.}$$

Equivalently,

$$\mathbb{P}(Y_t = y_t \mid Y_1 = y_1, \dots, Y_{t-1} = y_{t-1}) = \mathbb{P}(X_t = y_t \mid X_{t-1} = y_{t-1}) \cdot \mathbf{1}_{\{\mathbb{P}(X_{t-1} = y_{t-1}) > 0\}}.$$
 (1.1)

That is, to get Y_t , we "forget" how we got to Y_{t-1} and move according to X from Y_{t-1} . Then we have $(Y_{t-1}, Y_t) \sim (X_{t-1}, X_t)$ since we only used X_{t-1} and X_t in the definition, and by (1.1) we have

$$\mathbb{E}[Y_t \mid Y_1 = y_1, \dots, Y_{t-1} = y_{t-1}] = \mathbb{E}[X_t \mid X_{t-1} = y_{t-1}] = y_{t-1}$$

since X is a very-weak martingale. This shows that

$$\mathbb{E}[Y_t \mid Y_1, \dots, Y_{t-1}] = Y_{t-1},$$

so Y is a (strong) martingale.

The general case $(|\Omega_t| = \infty, n = \infty)$ can be proved from the finite case above by using Kolmogorov's extension theorem to merge the finite-dimensional distributions together into a single measure.

We will now prove that, with regard to norms of martingales in \mathbb{R}^d , "Dimension 2 suffices."

Theorem 1.4 (Kallenberg, Sztencel 1991; Hayes '05). Let $X = (X_t)$ be a very-weak martingale in \mathbb{R}^d . Then there exists a strong martingale $Y = (Y_t)$ in \mathbb{R}^2 such that, for all t,

$$||Y_t|| \sim ||X_t||$$
 and $||Y_t - Y_{t-1}|| \sim ||X_t - X_{t-1}||$.

Proof. Without loss of generality, assume $X_0 = 0$. We will couple X to a very weak martingale Y in \mathbb{R}^2 such that $||Y_t|| = ||X_t||$ and $||Y_t - Y_{t-1}|| = ||X_t - X_{t-1}||$. The result then follows from Hayes's Theorem 1.3 above.

Set $Y_0 = 0 \in \mathbb{R}^2$, and choose Y_1 to be one of the points $(||X_1||, 0)$ and $(-||X_1||, 0)$ in \mathbb{R}^2 with equal probability. For $t \geq 2$, suppose $Y_{t-1} \in \mathbb{R}^2$ has already been defined. There are two choices for $Y_t \in \mathbb{R}^2$ such that the triangles $\triangle(0, X_{t-1}, X_t) \subset \mathbb{R}^d$ and $\triangle(0, Y_{t-1}, Y_t) \subset \mathbb{R}^2$ are congruent – we use a fair coin flip ξ_t to decide between these two values, thus defining Y_t as a function of X_{t-1}, Y_{t-1}, X_t , and ξ_t . (We take the sequence $(\xi_t)_{t\geq 1}$ of coin flips to be IID and independent of X.) The congruence of the triangles means that $(||Y_{t-1}||, ||Y_t||, ||Y_t - Y_{t-1}||) =$ $(||X_{t-1}||, ||X_t||, ||X_t - X_{t-1}||)$ for either choice of Y_t , so it remains to show that $Y = (Y_t)$ is a very weak martingale with respect to its induced filtration.

For all $t \ge 1$ we can decompose Y_t and X_t into components parallel to Y_{t-1} and X_{t-1} , respectively, and the orthogonal complements of these. That is, we have

$$Y_t = \alpha_t Y_{t-1} + Z_t \qquad \qquad Z_t \perp Y_{t-1}$$
$$X_t = \beta_t X_{t-1} + W_t \qquad \qquad W_t \perp X_{t-1}$$

for some $\alpha_t, \beta_t \in \mathbb{R}$, and $Z_t \in \mathbb{R}^2$, $W_t \in \mathbb{R}^d$, where " \perp " denotes orthogonality with respect to the Euclidean inner product. More explicitly, we can take $\alpha_1 = \beta_1 = 1$ and $Z_1 = Y_1$, $W_1 = X_1$, and for each $t \geq 2$,

$$\alpha_t := \frac{\langle Y_t, Y_{t-1} \rangle}{\|Y_{t-1}\|^2} \qquad Z_t := Y_t - \alpha_t Y_{t-1} \beta_t := \frac{\langle X_t, X_{t-1} \rangle}{\|X_{t-1}\|^2} \qquad W_t := X_t - \beta_t X_{t-1},$$

where $\langle \cdot, \cdot \rangle$ denotes the Euclidean inner product.

Since X is a very-weak martingale we have

$$X_{t-1} = \mathbb{E}[X_t \mid X_{t-1}] = \mathbb{E}[\beta_t X_{t-1} + W_t \mid X_{t-1}] \\ = \mathbb{E}[\beta_t \mid X_{t-1}] \cdot X_{t-1} + \mathbb{E}[W_t \mid X_{t-1}].$$

Since $W_t \perp X_{t-1}$ we have $\mathbb{E}[W_t \mid X_{t-1}] \perp X_{t-1}$, so this implies that $\mathbb{E}[W_t \mid X_{t-1}] = 0$ and $\mathbb{E}[\beta_t \mid X_{t-1}] = 1$.

Now, since $\triangle(0, X_{t-1}, X_t) \cong \triangle(0, Y_{t-1}, Y_t)$, we have $\alpha_t = \beta_t$ for all $t \ge 1$. Moreover, β_t depends only on X_t and X_{t-1} , so it is independent of $(\xi_t)_{t\ge 1}$ (which is independent of X). Therefore,

$$\mathbb{E}[\alpha_t \mid Y_{t-1}] = \mathbb{E}[\beta_t \mid X_{t-1}] = 1.$$

Finally, we have $\mathbb{E}[Z_t | Y_{t-1}] = 0$ since the two possible values of Z_t given Y_{t-1} are symmetric about the origin and occur with equal probability (according to ξ_t). Therefore,

$$\mathbb{E}[Y_t \mid Y_{t-1}] = \mathbb{E}[\alpha_t \mid Y_{t-1}] \cdot Y_{t-1} + \mathbb{E}[Z_t \mid Y_{t-1}] = Y_{t-1},$$

so Y is a very-weak martingale. We can now use Theorem 1.3 to construct a strong martingale from Y. $\hfill \Box$

Remark: For the existence of the martingale Y in Theorem 1.4, "2 dimensions are required." For example, consider the martingale $X = (X_t)$ in \mathbb{R}^2 defined as follows: $X_t = \sum_{i=1}^t \xi_i$, where ξ_1 is chosen uniformly from the unit circle, and given X_{i-1} (for $i \ge 2$), ξ_i is chosen with equal probability from the two points which satisfy $||\xi_i|| = 1$ and $\xi_i \perp X_{i-1}$ (these points are mirror images about the line through X_{t-1}). Then it follows by induction that $||X_t||^2 = t$ for all t; it is impossible to construct such a process in one dimension.

2 Maximal inequalities

Reminder (Optional Stopping Theorem): If (X_t) is a submartingale with respect to $\mathcal{F} = (\mathcal{F}_t)$ and $\tau_1 \leq \tau_2 \leq M < \infty$ are \mathcal{F} -stopping times, then $\mathbb{E}X_{\tau_1} \leq \mathbb{E}X_{\tau_2}$.

We will use this to prove the following maximal inequality:

Theorem 2.1. Let $X = (X_t)$ be a submartingale with respect to $\mathcal{F} = (\mathcal{F}_t)$. Then for all integers n and all x > 0,

$$\mathbb{P}\left(\max_{0 \le i \le n} X_i \ge x\right) \le \frac{\mathbb{E}\left[X_n \cdot \mathbf{1}_{\left\{\max_{0 \le i \le n} X_i \ge x\right\}}\right]}{x} \le \frac{\mathbb{E}X_n^+}{x}$$

This result may look weak because the bound uses the first moment as in Markov's inequality (as opposed to the Chernoff or Hoeffding bounds which use infinite moments), but if n is very large, the maximal inequality can be much more powerful than the union bound.

Proof. let $\tau = \min\{i : X_i \ge x\}$. By optional stopping (for bounded stopping times), we have $\mathbb{E}X_{\tau \wedge n} \le \mathbb{E}X_n$. In the case where $X_t > 0$ for all t, we have (using Markov's inequality):

$$\mathbb{P}\left(\max_{0\leq i\leq n} X_i \geq x\right) = \mathbb{P}(\tau \leq n) = \mathbb{P}(X_{\tau \wedge n} \geq x) \leq \frac{\mathbb{E}X_{\tau \wedge n}}{x} \leq \frac{X_n}{x}$$

For the general case, we follow the proof of Markov's inequality:

$$\mathbb{E}X_n \ge \mathbb{E}X_{\tau \wedge n} = \mathbb{E}\left[X_{\tau}\mathbf{1}_{\{\tau \le n\}}\right] + \mathbb{E}\left[X_n\mathbf{1}_{\{\tau > n\}}\right]$$
$$\ge x\mathbb{P}(\tau \le n) + \mathbb{E}\left[X_n\mathbf{1}_{\{\tau > n\}}\right],$$

 \mathbf{SO}

$$x\mathbb{P}(\tau \leq n) \leq \mathbb{E}\left[X_n\left(1 - \mathbf{1}_{\{\tau > n\}}\right)\right] = \mathbb{E}\left[X_n\mathbf{1}_{\{\tau \leq n\}}\right].$$

For example, if (X_i) are IID, $\mathbb{E}X_1 = 0$, $\mathbb{E}X^2 < \infty$, and $S_n = \sum_{i=1}^n X_i$, then

$$\mathbb{P}\left(\max_{0\leq j\leq n}|S_j|\geq x\right) = \mathbb{P}\left(\max_{0\leq j\leq n}|S_j|^2\geq x^2\right)\leq \frac{\operatorname{Var} S_n}{x^2}.$$

This is like Chebyshev's inequality, but for the maximum.