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1 Strong, weak, and very-weak martingales

Our goal will be to reach the following theorem, which we first state informally:

Theorem 1.1 (Kallenberg, Sztencel ‘91 ; Hayes ‘05). Let X = (X,,)n>0 be a martingale in
R¢ with Xo = 0. Then

a—1 2
P(| X, | > a) < 2¢'“F Va > 0.

Notice the remarkable fact that the bound doesn’t depend on the dimension d. We will
see that it is sufficient to project the process to 2 dimensions.

What do we mean by a martingale in R?? We make the following definitions generalizing
the notion of a martingale:

Definition 1.2 (Strong, weak, and very-weak martingales). Suppose X = (Xi)i>0 5 a
process in R? satisfying E || X¢|| < oo for all t (where ||| denotes the Euclidean norm in R?).
We call X a strong, weak, or very weak martingale with respect to the induced filtration
F = (Fi)eso if X satisfies one of the following conditions, respectively:

1. (strong) E[X; | X1,..., X 1] = X4 for all t.
2. (weak) E[X; | Xi] = X for all s < t.
3. (very weak) E[X; | X¢—1] = X;—1 for all t.

More generally, if G = (G;):>0 is an indexed collection of o-fields (not necessarily increas-
ing) and X; € G, then X is adapted to the filtration F = (F;)¢>o defined by F; = /., Gs.
In this case we say that X is a strong, weak, or very weak martingale with respect to G if
E[X: | Fioq] = Xooa VE, E[X, | G = X Vs < t, or E[X, | Gi_1] = X;_1 Vi, respectively.

Note that strong = weak = very-weak, but the reverse implications don’t necessarily
hold. For example, if X is a very-weak martingale, our best guess for X; given X;_ 1 is X;_q,
but we might be able to make a better guess if we're also given Xy,..., X; o.

Recall: In the proof of the Hoeffding inequality, we only used the fact that X is a very-weak
martingale (condition 3 above) since we always just used an increment of 1. This special
case illustrates a general principle:



Theorem 1.3 (Hayes ‘05). Suppose (X;) is a very-weak martingale in R%. Then there exists
a strong martingale (Y;) in RY such that

(Vi V) ~ (X1, X)) VE> 1.

This essentially means that we can apply any large deviation estimate for martingales
to very-weak martingales as well, as long as the bound only involves the distribution of one
variable (or two successive variables) at a time.

Proof sketch. We will prove the special case in which we have a finite number of steps and
X; takes finitely many possible values, i.e. t € {1,...,n} for some finite n, and X; € €,
|2;] < oo Vt. We construct a coupling inductively as X, Xo,... are revealed to us. Let
Y, = X, and for ¢ > 2, assume Yi,...,Y; ; are already defined. Then we define the
distribution of Y; by

0, P(Xt—l = yt—l) =0
P[(Yo,.. -, Y:) = (Yo, u)] = 4 P(Xe =4 | X1 = y11)

otherwise.
: P[(%a o 71/;5—1) = (y()v . ayt—l)]a

Equivalently,
PYi=y|Yi=v,.... Vi =) =P(Xe = | X1 = 1) - Lp(xy_1=y, )03 (1.1)

That is, to get Y;, we “forget” how we got to Y;_; and move according to X from Y;_;. Then
we have (Y;_1,Y;) ~ (X;_1, X;) since we only used X; ; and X, in the definition, and by
(1.1) we have

EY: [ Yi=y,.... Vi =y =EXy [ Xin =] =y
since X is a very-weak martingale. This shows that
]E[Y;f ’ }/17 s 7}/;5—1] = th—la

so Y is a (strong) martingale.

The general case (|€;] = 0o, n = 00) can be proved from the finite case above by using
Kolmogorov’s extension theorem to merge the finite-dimensional distributions together into
a single measure. O]

We will now prove that, with regard to norms of martingales in R¢, “Dimension 2 suffices.”

Theorem 1.4 (Kallenberg, Sztencel 1991; Hayes ‘05). Let X = (X;) be a very-weak mar-
tingale in RY. Then there exists a strong martingale Y = (Y;) in R? such that, for all t,

Vil ~ 12Xl and - |[Y: = Y|l ~ [ X0 = Xoal



Proof. Without loss of generality, assume Xy = 0. We will couple X to a very weak martin-
gale Y in R? such that | V|| = || X;]| and ||Y; — Yi_1]| = || X: — X;_1]|. The result then follows
from Hayes’s Theorem 1.3 above.

Set Yy = 0 € R?, and choose Y; to be one of the points (|| X;]|,0) and (— || X;]|,0) in R?
with equal probability. For t > 2, suppose Y;_; € R? has already been defined. There are two
choices for Y; € R? such that the triangles A(0, X; 1, X;) C R? and A(0,Y;_1,Y;) C R? are
congruent — we use a fair coin flip & to decide between these two values, thus defining Y; as
a function of X;_1, Y;_1, X3, and &. (We take the sequence (&);>1 of coin flips to be IID and
independent of X.) The congruence of the triangles means that (||Y;,_1||, [|Y:||, [|Y: — Yie1l]) =
(N1 Xe—1 | 5 || Xell , | Xe — Xe—1]|) for either choice of Y}, so it remains to show that Y = (Y}) is
a very weak martingale with respect to its induced filtration.

For all t > 1 we can decompose Y; and X; into components parallel to Y;_; and X;_1,
respectively, and the orthogonal complements of these. That is, we have

Y, =Y, + 2, Zy LY,
Xy =B X + W, Wy L X
for some ay, 3; € R, and Z, € R?, W, € R?% where “L” denotes orthogonality with respect

to the Euclidean inner product. More explicitly, we can take a; = (4 = 1 and Z; = Y,
Wi = X1, and for each t > 2,

Y, Y
Qy = W Zi =Y — Y
t—1
X, X,
By = W Wi =Xy — 8 X1,
t—1

where (-, -) denotes the Euclidean inner product.
Since X is a very-weak martingale we have

Xir =E[X; [ Xy ] = E[B X1 + Wi | Xi]
=E[B | Xi—1] - Xemr + E[W, | Xyq].

Since Wy L X; 1 we have E[W; | X;_1] L X; 1, so this implies that E[W; | X, ;] = 0 and
E[B, | Xi] = 1.

Now, since A(0, X;—1, Xy) = A(0,Y;-1,Y;), we have oy = 3, for all ¢ > 1. Moreover, (3,
depends only on X; and X; 4, so it is independent of (&);>1 (which is independent of X).

Therefore,
Ela [ Yia] = E[B¢ | Xea] = 1.

Finally, we have E[Z; | Y;_1] = 0 since the two possible values of Z; given Y;_; are symmetric
about the origin and occur with equal probability (according to &). Therefore,

E[Y; | Yio1] = Elow | Yioa] - Yir + E[Z; | Vi) = Vi,

so Y is a very-weak martingale. We can now use Theorem 1.3 to construct a strong martingale
from Y. O



Remark: For the existence of the martingale Y in Theorem 1.4, “2 dimensions are required.”
For example, consider the martingale X = (X;) in R? defined as follows: X; = >'_, &, where
& is chosen uniformly from the unit circle, and given X; ; (for i > 2), &; is chosen with equal
probability from the two points which satisfy ||&;|| = 1 and & L X;_; (these points are mirror
images about the line through X,_;). Then it follows by induction that || X||> = ¢ for all ¢;
it is impossible to construct such a process in one dimension.

2 Maximal inequalities

Reminder (Optional Stopping Theorem): If (X;) is a submartingale with respect to F = (F;)
and 11 < 19 < M < oo are F-stopping times, then EX,, <EX,,.

We will use this to prove the following maximal inequality:

Theorem 2.1. Let X = (X;) be a submartingale with respect to F = (F;). Then for all
integers n and all x > 0,

) ) E [Xn Lmwacicnxze}| _ EXF

P(maXXZ- >

0<i<n X x

This result may look weak because the bound uses the first moment as in Markov’s
inequality (as opposed to the Chernoff or Hoeffding bounds which use infinite moments),
but if n is very large, the maximal inequality can be much more powerful than the union

bound.

Proof. let 7 = min{i : X; > x}. By optional stopping (for bounded stopping times), we have
EX,;nn <EX,. In the case where X; > 0 for all ¢, we have (using Markov’s inequality):

P (Orgagc X, > :L’) =P(r <n)=P(X;n, >2) <

For the general case, we follow the proof of Markov’s inequality:

EX, > EX;\, = E I:XT]'{TS'I’L}} +E |:Xn1{7—>n}]
> zP(1 < n) + E [Xnlgrsny)

SO
x]P(T § n) S E [Xn (1 — 1{T>n})] =K [Xn]_{.,-gn}] .
For example, if (X;) are IID, EX; = 0, EX? < 00, and S,, = Y ., X;, then

P (max 1S;] > :c) =P (max 1S, > x2> < VarSn.

0<j<n 0<j<n 2

This is like Chebyshev’s inequality, but for the maximum.



