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1 Strong, weak, and very-weak martingales

Our goal will be to reach the following theorem, which we first state informally:

Theorem 1.1 (Kallenberg, Sztencel ‘91 ; Hayes ‘05). Let X = (Xn)n≥0 be a martingale in
Rd with X0 = 0. Then

P(‖Xn‖ ≥ a) ≤ 2e1−
(a−1)2

2n ∀a > 0.

Notice the remarkable fact that the bound doesn’t depend on the dimension d. We will
see that it is sufficient to project the process to 2 dimensions.

What do we mean by a martingale in Rd? We make the following definitions generalizing
the notion of a martingale:

Definition 1.2 (Strong, weak, and very-weak martingales). Suppose X = (Xt)t≥0 is a
process in Rd satisfying E ‖Xt‖ <∞ for all t (where ‖·‖ denotes the Euclidean norm in Rd).
We call X a strong, weak, or very weak martingale with respect to the induced filtration
F = (Ft)t≥0 if X satisfies one of the following conditions, respectively:

1. (strong) E[Xt | X1, . . . , Xt−1] = Xt−1 for all t.

2. (weak) E[Xt | Xs] = Xs for all s < t.

3. (very weak) E[Xt | Xt−1] = Xt−1 for all t.

More generally, if G = (Gt)t≥0 is an indexed collection of σ-fields (not necessarily increas-
ing) and Xt ∈ Gt, then X is adapted to the filtration F = (Ft)t≥0 defined by Ft =

∨
s≤t Gs.

In this case we say that X is a strong, weak, or very weak martingale with respect to G if
E[Xt | Ft−1] = Xt−1 ∀t, E[Xt | Gs] = Xs ∀s < t, or E[Xt | Gt−1] = Xt−1 ∀t, respectively.

Note that strong ⇒ weak ⇒ very-weak, but the reverse implications don’t necessarily
hold. For example, if X is a very-weak martingale, our best guess for Xt given Xt−1 is Xt−1,
but we might be able to make a better guess if we’re also given X1, . . . , Xt−2.

Recall: In the proof of the Hoeffding inequality, we only used the fact that X is a very-weak
martingale (condition 3 above) since we always just used an increment of 1. This special
case illustrates a general principle:
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Theorem 1.3 (Hayes ‘05). Suppose (Xt) is a very-weak martingale in Rd. Then there exists
a strong martingale (Yt) in Rd such that

(Yt−1, Yt) ∼ (Xt−1, Xt) ∀t ≥ 1.

This essentially means that we can apply any large deviation estimate for martingales
to very-weak martingales as well, as long as the bound only involves the distribution of one
variable (or two successive variables) at a time.

Proof sketch. We will prove the special case in which we have a finite number of steps and
Xt takes finitely many possible values, i.e. t ∈ {1, . . . , n} for some finite n, and Xt ∈ Ωt,
|Ωt| < ∞ ∀t. We construct a coupling inductively as X1, X2, . . . are revealed to us. Let
Y1 = X1, and for t ≥ 2, assume Y1, . . . , Yt−1 are already defined. Then we define the
distribution of Yt by

P[(Y0, . . . , Yt) = (y0, . . . , yt)] =


0, P(Xt−1 = yt−1) = 0

P(Xt = yt | Xt−1 = yt−1)

· P[(Y0, . . . , Yt−1) = (y0, . . . , yt−1)],
otherwise.

Equivalently,

P(Yt = yt | Y1 = y1, . . . , Yt−1 = yt−1) = P(Xt = yt | Xt−1 = yt−1) · 1{P(Xt−1=yt−1)>0}. (1.1)

That is, to get Yt, we “forget” how we got to Yt−1 and move according to X from Yt−1. Then
we have (Yt−1, Yt) ∼ (Xt−1, Xt) since we only used Xt−1 and Xt in the definition, and by
(1.1) we have

E[Yt | Y1 = y1, . . . , Yt−1 = yt−1] = E[Xt | Xt−1 = yt−1] = yt−1

since X is a very-weak martingale. This shows that

E[Yt | Y1, . . . , Yt−1] = Yt−1,

so Y is a (strong) martingale.
The general case (|Ωt| = ∞, n = ∞) can be proved from the finite case above by using

Kolmogorov’s extension theorem to merge the finite-dimensional distributions together into
a single measure.

We will now prove that, with regard to norms of martingales in Rd, “Dimension 2 suffices.”

Theorem 1.4 (Kallenberg, Sztencel 1991; Hayes ‘05). Let X = (Xt) be a very-weak mar-
tingale in Rd. Then there exists a strong martingale Y = (Yt) in R2 such that, for all t,

‖Yt‖ ∼ ‖Xt‖ and ‖Yt − Yt−1‖ ∼ ‖Xt −Xt−1‖ .
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Proof. Without loss of generality, assume X0 = 0. We will couple X to a very weak martin-
gale Y in R2 such that ‖Yt‖ = ‖Xt‖ and ‖Yt − Yt−1‖ = ‖Xt −Xt−1‖. The result then follows
from Hayes’s Theorem 1.3 above.

Set Y0 = 0 ∈ R2, and choose Y1 to be one of the points (‖X1‖ , 0) and (−‖X1‖ , 0) in R2

with equal probability. For t ≥ 2, suppose Yt−1 ∈ R2 has already been defined. There are two
choices for Yt ∈ R2 such that the triangles 4(0, Xt−1, Xt) ⊂ Rd and 4(0, Yt−1, Yt) ⊂ R2 are
congruent – we use a fair coin flip ξt to decide between these two values, thus defining Yt as
a function of Xt−1, Yt−1, Xt, and ξt. (We take the sequence (ξt)t≥1 of coin flips to be IID and
independent ofX.) The congruence of the triangles means that (‖Yt−1‖ , ‖Yt‖ , ‖Yt − Yt−1‖) =
(‖Xt−1‖ , ‖Xt‖ , ‖Xt −Xt−1‖) for either choice of Yt, so it remains to show that Y = (Yt) is
a very weak martingale with respect to its induced filtration.

For all t ≥ 1 we can decompose Yt and Xt into components parallel to Yt−1 and Xt−1,
respectively, and the orthogonal complements of these. That is, we have

Yt = αtYt−1 + Zt Zt ⊥ Yt−1

Xt = βtXt−1 +Wt Wt ⊥ Xt−1

for some αt, βt ∈ R, and Zt ∈ R2, Wt ∈ Rd, where “⊥” denotes orthogonality with respect
to the Euclidean inner product. More explicitly, we can take α1 = β1 = 1 and Z1 = Y1,
W1 = X1, and for each t ≥ 2,

αt :=
〈Yt, Yt−1〉
‖Yt−1‖2

Zt := Yt − αtYt−1

βt :=
〈Xt, Xt−1〉
‖Xt−1‖2

Wt := Xt − βtXt−1,

where 〈·, ·〉 denotes the Euclidean inner product.
Since X is a very-weak martingale we have

Xt−1 = E[Xt | Xt−1] = E [βtXt−1 +Wt | Xt−1]

= E[βt | Xt−1] ·Xt−1 + E[Wt | Xt−1].

Since Wt ⊥ Xt−1 we have E[Wt | Xt−1] ⊥ Xt−1, so this implies that E[Wt | Xt−1] = 0 and
E[βt | Xt−1] = 1.

Now, since 4(0, Xt−1, Xt) ∼= 4(0, Yt−1, Yt), we have αt = βt for all t ≥ 1. Moreover, βt
depends only on Xt and Xt−1, so it is independent of (ξt)t≥1 (which is independent of X).
Therefore,

E[αt | Yt−1] = E[βt | Xt−1] = 1.

Finally, we have E[Zt | Yt−1] = 0 since the two possible values of Zt given Yt−1 are symmetric
about the origin and occur with equal probability (according to ξt). Therefore,

E[Yt | Yt−1] = E[αt | Yt−1] · Yt−1 + E[Zt | Yt−1] = Yt−1,

so Y is a very-weak martingale. We can now use Theorem 1.3 to construct a strong martingale
from Y .
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Remark: For the existence of the martingale Y in Theorem 1.4, “2 dimensions are required.”
For example, consider the martingale X = (Xt) in R2 defined as follows: Xt =

∑t
i=1 ξi, where

ξ1 is chosen uniformly from the unit circle, and given Xi−1 (for i ≥ 2), ξi is chosen with equal
probability from the two points which satisfy ‖ξi‖ = 1 and ξi ⊥ Xi−1 (these points are mirror
images about the line through Xt−1). Then it follows by induction that ‖Xt‖2 = t for all t;
it is impossible to construct such a process in one dimension.

2 Maximal inequalities

Reminder (Optional Stopping Theorem): If (Xt) is a submartingale with respect to F = (Ft)
and τ1 ≤ τ2 ≤M <∞ are F -stopping times, then EXτ1 ≤ EXτ2 .

We will use this to prove the following maximal inequality:

Theorem 2.1. Let X = (Xt) be a submartingale with respect to F = (Ft). Then for all
integers n and all x > 0,

P
(

max
0≤i≤n

Xi ≥ x

)
≤

E
[
Xn · 1{max0≤i≤n Xi≥x}

]
x

≤ EX+
n

x
.

This result may look weak because the bound uses the first moment as in Markov’s
inequality (as opposed to the Chernoff or Hoeffding bounds which use infinite moments),
but if n is very large, the maximal inequality can be much more powerful than the union
bound.

Proof. let τ = min{i : Xi ≥ x}. By optional stopping (for bounded stopping times), we have
EXτ∧n ≤ EXn. In the case where Xt > 0 for all t, we have (using Markov’s inequality):

P
(

max
0≤i≤n

Xi ≥ x

)
= P(τ ≤ n) = P(Xτ∧n ≥ x) ≤ EXτ∧n

x
≤ Xn

x
.

For the general case, we follow the proof of Markov’s inequality:

EXn ≥ EXτ∧n = E
[
Xτ1{τ≤n}

]
+ E

[
Xn1{τ>n}

]
≥ xP(τ ≤ n) + E

[
Xn1{τ>n}

]
,

so
xP(τ ≤ n) ≤ E

[
Xn

(
1− 1{τ>n}

)]
= E

[
Xn1{τ≤n}

]
.

For example, if (Xi) are IID, EX1 = 0, EX2 <∞, and Sn =
∑n

i=1Xi, then

P
(

max
0≤j≤n

|Sj| ≥ x

)
= P

(
max
0≤j≤n

|Sj|2 ≥ x2

)
≤ VarSn

x2
.

This is like Chebyshev’s inequality, but for the maximum.
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