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1 Another application of Hoeffding-Azuma

Here we discuss an application of the Hoeffding-Azuma inequality in which it’s important to
use nonuniform bounds on the increments (as opposed to our previous applications, which
used a uniform bound). We will apply Hoeffding-Azuma to a random version of the Traveling
Salesman Problem.

1.1 Problem description

We first describe the deterministic version of TSP:

Traveling Salesman Problem (TSP): Find an optimal circuit traversing n points p1, . . . , pn
in the unit square. More explicitly,

• Input: p1, . . . , pn ∈ [0, 1]2

• Goal: Find a permutation π ∈ Sn which minimizes the sum

n∑
i=1

∥∥pπ(i+1) − pπ(i)

∥∥ ,
where we identify pn+1 with p1, and ‖·‖ denotes the Euclidean norm.

Unlike our previous applications (e.g. finding the chromatic number of a graph), TSP
has a good polynomial-time approximation scheme. However, it is NP-hard to nail down the
precise optimum path. We consider the following stochastic version:

Random TSP:

• The points pi are IID uniform in [0, 1]2.

• If OPT denotes the length of an optimal path, what is E[OPT]?
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1.2 Bounds on the expected length of the optimal path

Fact: 1√
n

E[OPT]→ c∗ as n→∞ (where c∗ is a constant).

We will prove the weaker statement that E[OPT] �
√
n, where the notation f(n) � g(n)

means that there are constants c1 and c2 such that c1g(n) ≤ f(n) ≤ c2g(n) for all large
enough n (the notation f(n) = Θ(g(n)) means the same thing).

We first prove a deterministic bound on the maximum length of the optimal path.

Proposition 1.1 (Upper bound for OPT). Any set of n points in [0, 1]2 admits a tour
(circuit) of total length 2

√
n+ 3.

Proof. The idea is to partition the square into strips of height h, then traverse the points
in each strip left to right or right to left. It costs about h · (# points in strip) to cover the
points in each strip, and we have to do this 1/h times. The optimal h for this strategy (if
we want it to work in general) will be of order 1/

√
n. In more detail:

Partition the square into
√
n horizontal strips of height h = 1/

√
n. (More precisely, we

could make b
√
nc strips of height 1/

√
n and one strip of height {

√
n}/
√
n or something,

but we’ll ignore this detail. . . ) Now we add
√
n points q1, . . . , q√n alternately to the bottom

right or bottom left corner of each strip. That is, q1 goes at the bottom right corner of the
top strip (strip 1), q2 goes at the bottom left corner of the second strip, and so on down
to the bottom strip, which gets the point q√n added to one of its bottom corners. For the
upper bound, we are free to add the points qi to our tour by the triangle inequality.

Now we construct the tour as follows:

• Start with the leftmost point in strip 1, connecting the points in order from left to
right and ending at the “new” point q1 in the bottom right corner. Successive points
are connected with straight lines.

• Similarly, connect the points in strip 2 from right to left, starting with q1 and ending
with q2.

• Continue in this manner, connecting the points in each successive strip alternately from
left to right or right to left, ending with the

√
n-th strip at the bottom.

• Connect the final point q√n to the first point in strip 1 to complete the circuit, again

with a straight line path. This connection costs at most
√

2, the length of the diagonal
of the square.

By the triangle inequality, we can bound the length of the tour by the sum of the hori-
zontal and vertical distances between consecutive points in the tour:

• For each strip, the sum of the horizontal distances between points in the strip is at
most 1. Therefore, the sum of the horizontal distances (except for that of the final
segment) is at most 1 · (# of strips) =

√
n.
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• For each point (except for the last point q√n), the vertical distance to the next point
is at most h = 1/

√
n. Therefore, the sum of the vertical distances (except for that of

the final segment) is at most h · (# of points) = 1√
n
(n+

√
n) =

√
n+ 1.

Adding in the final segment, which has length at most
√

2, we have

|tour| ≤ 1 · (# of strips) + h · (# of points) +
√

2

=
√
n+ (

√
n+ 1) +

√
2

< 2
√
n+ 3.

We now obtain the following lower bound on the expected length of the optimal path.

Proposition 1.2 (Lower bound for E[OPT]).

E[OPT] ≥
(

1

2
− o(1)

)√
n.

Proof. Define Xi = dist
(
pi, {p1, . . . , pi−1, pi+1, . . . , pn}

)
. Then for any permutation π ∈ Sn

we have
n∑
i=1

∥∥pπ(i+1) − pπ(i)

∥∥ ≥ n∑
i=1

Xi

because the segment beginning at pi in the tour corresponding to π must have length at
least Xi. Note that this lower bound does not depend on the permutation π. In particular,
it holds for whatever permutation corresponds to OPT, so we have

E[OPT] ≥
n∑
i=1

EXi = nEX1,

where the last step follows because the Xi are identically distributed since the pi are IID.

Claim: P(X1 ≥ x) ≥ (1 − πx2)n−1. Why? The event {X1 ≥ x} means that all the points
p2, . . . , pn lie outside a ball of radius x around p1. Conditioning on the location of p1, we
have

P(X1 ≥ x | p1) =
(
1−

∣∣Bp1(x) ∩ [0, 1]2
∣∣)n−1

≥ (1− πx2)n−1,

where the inequality follows by considering the worst case, when Bp1(x) lies entirely within
the square. Since this bound holds independently of p1, the same bound holds when we take
the average over p1 to get P(X1 ≥ x).
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Now fix ε < 1
2
. Then there is some ε′ such that 1

1−πx2 < 1 + ε′ for all x < ε, and ε′ → 0

as ε→ 0. Using the inequality 1− y ≥ e−
y

1−y , we have

P(X1 ≥ x) ≥ (1− πx2)n−1 ≥ exp

(
−πx

2(n− 1)

1− πx2

)
≥ e−(1+ε′)πx2n.

Therefore

EX1 =

∫ ∞
0

P(X1 ≥ x) dx

≥
∫ ε

0

e−(1+ε′)πx2n dx

=
1√

2πn(1 + ε′)

∫ ε
√

2πn(1+ε′)

0

e−t
2/2 dt,

so

lim
n→∞

√
n · EX1 ≥ lim

n→∞

1√
2π(1 + ε′)

∫ ε
√

2πn(1+ε′)

0

e−t
2/2 dt

=
1√

2π(1 + ε′)
·
√

2π

2

=
1

2
√

1 + ε′
.

Letting ε→ 0 (hence ε′ → 0) we have limn→∞
√
n · EX1 ≥ 1

2
. In particular,

E[OPT] ≥ nEX1 ≥
(

1

2
− o(1)

)√
n.

Combining Propositions 1.1 and 1.2 we see that(
1

2
− o(1)

)√
n ≤ E[OPT] ≤

(
2 + o(1)

)√
n.

Therefore E[OPT] �
√
n, though it is not clear that 1√

n
E[OPT] → c∗ since the constants

1/2 and 2 don’t match.

1.3 Concentration about E[OPT]

To get a basic concentration bound for OPT, we can apply Hoeffding-Azuma to Doob’s
martingale: Expose p1, p2, . . . , pn in succession, and let yi = E[OPT | p1, . . . , pi]. Then

|yi+1 − yi| ≤ 2
√

2, so by Hoeffding-Azuma, P(|OPT− E[OPT]| ≥ a) ≤ 2 exp
(
− a2

2n·8

)
. Tak-

ing a = ε
√
n, we get

P
(
|OPT− E[OPT]| ≥ ε

√
n
)
≤ 2e−ε

2/16.
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But since E[OPT] �
√
n, this doesn’t tell us very much. The problem is that we used the

constant bound of 2
√

2 for the all the increments |yi+1 − yi|. We need to be a bit more
careful and find a better bound that varies with i. The situation is analogous to the proof of
Proposition 1.1 above, where we needed to find a path with many short segments and only
used the wasteful bound of

√
2 for the last step.

Proposition 1.3. There is a constant A such that for any ε > 0,

P
(
|OPT− E[OPT]| ≥ ε

√
n
)
≤ 2e−Aε

2 n
log n .

Proof. For notational convenience, let Ln be the optimal path length OPT for a tour of the
points p1, . . . , pn. As before, we will consider Doob’s martingale yi = E[Ln | p1, . . . , pi]. For

each i let L̂n(i) be the optimal path length for the TSP on the n−1 points p1, . . . , pi−1, pi+1, . . . , pn.
We claim that

L̂n(i) ≤ Ln ≤ L̂n(i) + 2Zi, (1.1)

where Zi := dist
(
pi, {pi+1, . . . , pn}

)
. The first inequality in (1.1) holds because the optimal

path length increases when we add the point pi to the tour.
To prove the second inequality in (1.1), suppose pj attains the minimal distance of pi

from {pi+1, . . . , pn}, so j ∈ {i+1, . . . , n} and |pjpi| = Zi. Then we can use the following tour
of the n points: Suppose π is the permutation of {1, 2 . . . , i− 1, i+ 1, . . . , n} corresponding

to L̂n(i), so the tour for L̂n(i) is

pπ(1) → pπ(2) → . . .→ pj → ps → . . .→ pπ(n) → pπ(1).

Then we can add pi to the tour between the points pj and ps:

pπ(1) → pπ(2) → . . .→ pj → pi → ps → . . .→ pπ(n) → pπ(1).

The cost of this new path is L̂n(i) for the original tour of n− 1 points, plus |pjpi|+ |pips| for
the two segments we added, minus |pjps| for the segment we deleted. By the reverse triangle
inequality, we have |pips| − |pjps| ≤ |pjpi|. Thus, since the optimal path on all n points can
be no longer than the path we constructed, we have

L̂n ≤ L̂n(i) + |pjpi|+ |pips| − |pjps|
≤ L̂n(i) + |pjpi|+ |pjpi|
= L̂n(i) + 2Zi,

proving the upper bound in (1.1).

Now observe that L̂n(i) does not depend on pi. Therefore, if Ft = σ(p1, . . . , pt), we have

E
[
L̂n(i) | Fi

]
= E

[
L̂n(i) | Fi−1

]
. (1.2)

Taking conditional expectations of (1.1) we have

E
[
L̂n(i) | Fi−1

]
≤ yi−1 ≤ E

[
L̂n(i) | Fi−1

]
+ 2 E

[
Zi | Fi−1

]
5



and
E
[
L̂n(i) | Fi

]
≤ yi ≤ E

[
L̂n(i) | Fi

]
+ 2 E

[
Zi | Fi

]
.

Subtracting these inequalities, (1.2) implies

yi − yi−1 ≤ 2 E
[
Zi | Fi

]
and yi−1 − yi ≤ 2 E

[
Zi | Fi−1

]
.

Therefore
|yi − yi−1| ≤ 2 max

{
E
[
Zi | Fi

]
, E
[
Zi | Fi−1

]}
. (1.3)

Notice that we defined Zi starting at the index i+ 1 so that it doesn’t depend on the past,
which we are conditioning on.

Now we use an argument similar to that in the proof of Proposition 1.2 above to get a
bound on the expectation of Zi. For a point Q ∈ [0, 1]2, let Zi(Q) = dist

(
Q, {pi+1, . . . , pn}

)
.

Then there is some constant c such that for any Q we have

P(Zi(Q) ≥ x) ≤ (1− cx2)n−i

for 0 ≤ x ≤
√

2, and P(Zi(Q) ≥ x) = 0 for x ≥
√

2. This follows by considering the worst
possible location for Q, which is a corner of the square. Using the inequality 1 − y ≤ e−y,
we have, for any Q,

E[Zi(Q)] ≤
∫ √2

0

(1− cx2)n−i dx ≤
∫ √2

0

e−cx
2(n−i) dx ≤ c′√

n− i

for some constant c′ when i 6= n, and E[Zn(Q)] ≤
√

2. Combining this with (1.3), we have

|yi − yi−1| ≤
c′√
n− i

for i 6= n, and |yn − yn−1| ≤ 2
√

2.

Now, applying Hoeffding-Azuma to the martingale yi using these bounds on the increments,
we get

P (|Ln − ELn| ≥ a) ≤ 2 exp

(
− a2

2
[
8 +

∑n−1
i=1

4c′2

n−i

]) .
The sum in the denominator is of order log n, so setting a = ε

√
n we get

P
(
|Ln − ELn| ≥ ε

√
n
)
≤ 2 exp

(
−Aε2 n

log n

)
for some constant A.
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