
University of Washington Math 523A Lecture 6

Lecturer: Yuval Peres

Friday, April 17, 2009

1 Expected hitting times for words

1.1 Review of Li’s martingale method

Setting: X1, X2, . . . are IID and take values in some finite alphabet A, with

P(Xi = a) = pa ∀a ∈ A.

Given a word w ∈ Ak, the hitting time of w is

τw = min{t ≥ 1 : (Xt−k+1, . . . , Xt) = w}.

(Note that we must in fact have τw ≥ k if the sequence starts at time 1. In the next section
we consider a generalized setting in which the sequence may start before time 1 and hence
τw can be less than k.)

Last time we computed Eτw using the following martingale scheme.

Martingale method (Li 1980)
Think of a gambler, Glinda, making a sequence of fair bets on w coming up, starting at

time t. First Glinda bets on the 1st digit of w, then continues to bet on each successive digit
in a way that makes all the bets fair (i.e. her expected winnings are 0 at each step):

• At time t, Glinda puts a dollar on Xt = w1. She gets 0 if wrong, gets 1
pw1

if right. In

the latter case, she bets this on Xt+1 = wk, and gets 1
pw1pw2

if right.

• Continue this process ∀j < k: If (Xt . . . , Xt+j−1) = (w1, . . . , wj), Glinda receives∏j
i=1

1
pwi

and bets that on Xt+j = wj, and she wins
∏j+1

i=1
1
pwi

if right.

Assume that one gambler enters the game at each time step, and each gambler bets on w
using the scheme above. Each gambler remains in play until making a wrong bet, at which
point he or she leaves the game with a net loss of one dollar. The game stops at time τw,
at which point any gambler who is still in play wins some money if their current bet agrees

1

with the last digit of w. Let Mt be the net winnings (at time t) of all gamblers who entered
by time t. Mt is an {Ft}-martingale, where Ft = σ(X1, . . . , Xt). For all t ≤ τw, we have

Mt =
k∑
j=1

(
1{

(Xt−j+1,...,Xt)=(w1,...,wj)
} · j∏

i=1

1

pwi

)
− t.

At time t, there are t gamblers in the game, and each has paid a dollar, hence the “−t”
term, and the sum computes their gross winnings.

Applying the Optional Stopping Theorem to Mt (after verifying that it satisfies an ap-
propriate hypothesis) we see that

0 = EM0 = EMτw = w ∗ w − Eτw,

where

w ∗ w :=
k∑
j=1

(
1{

(wk−j+1,...,wk)=(w1,...,wj)
} · j∏

i=1

1

pwi

)
,

so Eτw = w ∗ w. Note that w ∗ w is the amount paid to the gamblers who win their bets
when w appears.

1.2 Conditioning on an initial word

Now suppose we have two words, v ∈ A` and w ∈ Ak. We want to compute

Evτw := E[τw | the initial word in the sequence is v].

More precisely, we place v in front of the sequence X1, X2, . . . so that the final digit of v
occurs at time 0, and the previous digits of v correspond to negative times. Equivalently, we
can define X−t = v`−t for 0 ≤ t ≤ `− 1. Depending on the final digits of v, the word w may
now appear before time k (but we only count its appearance after time 0). For example,
take A = {0, 1, 2}, v = 122122, and w = 221. For the sequence

12001 221︸︷︷︸
w

0012 . . . ,

we have τw = 8. For the same sequence with v pre-appended,

1221 22|1︸︷︷︸
w

20012210012 . . . ,

we have τw = 1.
To deal with this situation we imagine that, using the martingale scheme from the previ-

ous section, the gamblers start betting at the beginning of the augmented sequence containing
v. Thus, one gambler enters the game at each time step, starting at time 1− ` rather than
at time 1. However, we don’t count their winnings or losses from the past; we only count the
bets made after time 0. If the final digits of v coincide with the initial digits of w (but do

2

not contain all of w), then there will still be gamblers in play at time 0 who can make bets
on w starting at time 1. The bets placed by these gamblers after time 0 can be computed by
looking at all ways to place w so that the beginning part of w coincides with the end part
of v. We denote this amount by v ∗ w:

v ∗ w =
k∑
j=1

(
1{

(v`−j+1,...,v`)=(w1,...,wj)
} · j∏

i=1

1

pwi

)
.

Note that the martingale Mt from the previous section can be written

Mt = (X1, . . . , Xt) ∗ w − t.

If v does not end with the word w, define for t ≥ 0,

M v
t = (v1, . . . , v`, X1, . . . , Xt) ∗ w − (t+ v ∗ w).

Then M v
t computes the net winnings of the gamblers at time t ≥ 0 when the initial sequence

is v. (The term (v1, . . . , v`, X1, . . . , Xt)∗w computes the gross winnings at time t. The losses
are 1 dollar for each of the t gamblers who entered the game since time 0, plus v ∗w for the
gamblers who were in play at time 0.) Since the game is fair, M v

t is a martingale. It can be
verified that we can apply the Optional Stopping Theorem:

0 = EvM
v
0 = EvM

v
τw = w ∗ w − (Evτw + v ∗ w),

so
Evτw = w ∗ w − v ∗ w

for any v that does not end with w. The case when v is the empty word ∅ reduces to the
result in the previous section. Thus

E∅τw = Eτw = w ∗ w.

1.3 Examples

Let A = {0, 1, 2}, and suppose each element of A is equally likely, so the vector of probabil-
ities is p(·) =

(
1
3
, 1

3
, 1

3

)
.

Recall that w ∗w is the amount paid out when w comes up. Let w = 221. Since the end
of w doesn’t have any overlaps with the beginning of w, only one gambler wins anything
when w appears: At time τw, the gambler who entered at time τw − 2 has already made two
successful bets, and wins 1

(1
3)

3 = 27 with the final bet on on the last digit of w. Any gambler

who entered before this time must have already lost because τw is the first time w appears.
The gamblers entering at times τw − 1 and τw are both still in play at time τw, and they
both bet on 2 at this time, but they both lose because 1 comes up. Thus 221 ∗ 221 = 27,
and applying optional stopping at time τ221 gives E∅τ221 = 27.

Now suppose w = 222. This time w has self-overlaps, so more than one gambler wins
when w appears: At time τw, the three gamblers who entered at times τw − 2, τw − 1, and

3

τw are all still in play and all bet on 2 for the next digit. When 2 appears at time τw, they
win $27, $9, and $3, respectively. Therefore, since τw is the total amount that has been paid
by all the gamblers since time 0, applying optional stopping at time τw gives

0 = E∅(net gains of all gamblers at time τw) = E∅(27 + 9 + 3− τ222),

so E∅τ222 = 222 ∗ 222 = 27 + 9 + 3 = 39.
Now let v = 1122 and w = 221, and consider betting on w conditioned on the initial

word being v. Again we have w ∗ w = 27 for the one gambler who wins when w appears,
so the gross winnings at time τw are $27. However, since there are two ways to place w so
that the beginning of w coincides with the end of v, there are two gamblers in play at time
0, and we have to take their losses into account when computing the net winnings: At time
1, the gamblers who entered at time −1 and time 0 are still in play, and make bets of $9 on
1, and $3 on 2, respectively. (This shows that v ∗ w = 9 + 3.) Therefore, the total losses at
time τw are 9 + 3 = 12 for these two gamblers, plus τw for all the gamblers who entered after
time 0. Therefore, by optional stopping,

0 = Ev(net gains of all gamblers at time τw) = Ev(27− [τw + 9 + 3]),

so E1122τ221 = 221 ∗ 221− 1122 ∗ 221 = 27− 12 = 15.

1.4 Multiple patterns

Now suppose we are given patterns (words) w1, . . . , wn such that no word is a suffix of
another. For example the pair {122, 112} is allowed, but {122, 1122} is not.

Goals:

• Find e∅∗ := E∅ min
1≤j≤n

τwj
.

• Find α∅i := P∅
(
τwi

= min
1≤j≤n

τwj

)
.

Observe that
∑n

i=1 α∅i = 1 because, by the assumption that no word is a suffix of another,
there can be no ties when one of the words comes up. Define

eji = Ewj
τwi

(i 6= j), eii = Ewi
τwi

= 0 (the waiting time is 0), and e∅i = E∅τwi
.

From the above definitions, we have

e∅i = e∅∗ +
n∑
j=1

α∅jeji

= E∅ min
1≤k≤n

τwk
+

n∑
j=1

P∅
(
τwj

= min
1≤k≤n

τwk

)
eji

4

since, starting with the empty word ∅, we have

τwi
= min

1≤k≤n
τwk

+
n∑
j=1

1{τwj =min1≤k≤i τwk} · τ̃wi

(where τ̃wi
= τwi

−mink τwk
). We can encode this in a matrix multiplication:

0 1 1 . . . 1
1 0 e21 . . . en1

1 e12 0 . . . en2
...

...
...

. . .
...

1 e1n e2n . . . 0

e∅∗
α∅1
α∅2

...
α∅n

 =

1
e∅1
e∅2
...
e∅n

 . (1.1)

Here the matrix is (n+1)×(n+1), with rows and columns indexed from 0 to n. For i, j ≥ 1,
the entry of the matrix in row i, column j is eji. Recall that eji = wi ∗ wi − wj ∗ wi and
e∅i = wi ∗ wi.

Fact: The matrix on the left side of (1.1) is always nonsingular. (Exercise: Find a nice proof
of this.) Thus, the above system can be solved for (e∅∗, α∅1, . . . , α∅n).

2 Another application: Boolean functions

2.1 Monotone Boolean functions, e.g. recursive majority

Consider a Boolean function f : {1,−1}n → {1,−1} mapping n bits to 1 bit. Place a partial
ordering on elements x = (x1, . . . , xn) and y = (y1, . . . , yn) in {1,−1}n by comparing the
digits coordinatewise: x ≤ y iff xi ≤ yi for 1 ≤ i ≤ n. (Note that this is only a partial
ordering because not every pair of elements in {1,−1}n is comparable.)

Definition 2.1. A Boolean function f : {1,−1}n → {1,−1} is monotone (increasing) if
x ≤ y ⇒ f(x) ≤ f(y).

An example of a monotone Boolean function is the m-fold recursive majority of depth
h, f

(h)
m , where m is odd and h ∈ N. The function f

(h)
m : {1,−1}mh → {1,−1} is defined by

recursively taking the majority of m bits. For example, take m = 3. The function f
(1)
3 :

{1,−1}3 → {1,−1} computes the majority of 3 bits. The function f
(2)
3 : {1,−1}9 → {1,−1}

is defined by breaking the input string into three blocks of 3 bits each, finding the majority
bit in each of these three blocks separately, and then taking the majority of the resulting 3
bits. In general, f

(h+1)
3 is defined recursively for h ≥ 1 by

f
(h+1)
3 = f

(1)
3 ◦

(
f

(h)
3 × f (h)

3 × f (h)
3

)
,

where × deontes the Cartesian product of functions:

f
(h)
3 × f (h)

3 × f (h)
3 (x, y, z) =

(
f

(h)
3 (x), f

(h)
3 (y), f

(h)
3 (z)

)
.

5

Note that, setting Ω0 = {1,−1}, we have (x, y, z) ∈ Ω3h

0 × Ω3h

0 × Ω3h

0 = {1,−1}3h+1
and(

f
(h)
3 (x), f

(h)
3 (y), f

(h)
3 (z)

)
∈ Ω0 × Ω0 × Ω0 = {1,−1}3,

so f
(h+1)
3 (x, y, z) = f

(1)
3

(
f

(h)
3 (x), f

(h)
3 (y), f

(h)
3 (z)

)
∈ Ω0 = {1,−1}.

The function f
(h)
3 can be visualized as a ternary tree of depth h, with the root at the top

and the leaves at the bottom. Each of the 3h leaves at level h corresponds to one bit of input,
either + or −. Each of the 3h−1 nodes at level h − 1 is assigned a + or − according to the
majority of its three children, and so on for each successive level up to the root, which gives
the final value of the function. Note that the recursive majority function does not necessarily
compute the majority of the input bits. For example, consider f

(2)
3 applied to the string

+ +−+ +−−−−.

2.2 Randomized algorithms

Consider the probability space Ω = Ωn
0 = {1,−1}n equipped with the probability measure

P =
(

1
2
, 1

2

)n
. Suppose f is a monotone Boolean function on Ω. If x = (x1, . . . , xn) is a

random element of Ω, the influence of variable j on f is

Ij(f) = E[xjf(x)] = P[f(x) = 1 | xj = 1]− P[f(x) = 1 | xj = −1]

+ P[f(x) = −1 | xj = −1]− P[f(x) = −1 | xj = 1].

(The formula follows from the definitions of expectation and conditional probability.)
We are interested in randomized algorithms to compute f exactly. An algorithm is

specified by a random sequence of indices k(1), k(2), . . . , k(τ) telling us which input variables
to look at; τ is a stopping time indicating when the algorithm is finished computing. More
explicitly, the index k(j) is computed as some function of the previously revealed variables
and an independent source of randomness:

k(j) = Fj
(
xk(1), xk(2), . . . , xk(j−1), Uj

)
,

where Uj is independent of {x, U1, . . . , Uj−1}. The time τ when the algorithm terminates is
defined by

τ = min
{
j : f(x) is determined by xk(1), xk(2), . . . , xk(j)

}
.

Thus τ is a stopping time with respect to the filtration F = (Fj), where

Fj = σ
{
U1, . . . , Uj ;xk(1), xk(2), . . . , xk(j)

}
is the information available at the jth step.

For example, let f : Ω3
0 → Ω0 be the majority of three variables. Let k(1) ∈ Unif{1, 2, 3}

and k(2) ∈ Unif({1, 2, 3} \ {k(1)}). If xk(1) = xk(2), then τ = 2 and f(x) = xk(1). If
xk(1) 6= xk(2), then we need to look at the 3rd bit to determine f(x), and τ = 3. Thus we
have

P(τ = 2) =
1

2
and Eτ =

5

2
.

6

Now suppose n = 3h and let f = f
(h)
3 be the 3-fold recursive majority on Ω = Ωn

0 . Then
it’s easy to find an algorithm with Eτ = (2.5)h (e.g. think of f as a ternary tree, and at
each level, choose two children at random). By comparison, the best known algorithm has
Eτ = (2.46 . . .)h. Here’s a general inequality:(∑n

j=1 Ij(f)
)2

≤ Eτ for any randomized algorithm that computes a monotone

f : {1,−1}n → {1,−1} exactly.

For f = recursive majority, the influence of a variable at depth k is 2−k (again, we are
thinking of f as a tree, and we can think of the inner nodes as intermediate variables

in the computation of f). Therefore, Ij(f) =
(

1
2

)h
for any j. Since n = 3h we have∑n

j=1 Ij(f) =
(

3
2

)h
, so the above inequality gives

(
3
2

)2h
= (2.25)h ≤ Eτ . Thus the expected

running time (2.46 . . .)h for the best known algorithm is already fairly close to the best we
could possibly hope for.

7

