University of Washington Math 523A Lecture 6

LECTURER: YUVAL PERES

Friday, April 17, 2009

1 Expected hitting times for words

1.1 Review of Li’s martingale method

Setting: X, Xy, ... are IID and take values in some finite alphabet A, with
P(X;,=a)=p, VYaeA.
Given a word w € A¥, the hitting time of w is
Tw =min{t > 1: (X4_gy1,...,Xs) = w}.

(Note that we must in fact have 7, > k if the sequence starts at time 1. In the next section
we consider a generalized setting in which the sequence may start before time 1 and hence
Tw can be less than k.)

Last time we computed Er,, using the following martingale scheme.

Martingale method (Li 1980)

Think of a gambler, Glinda, making a sequence of fair bets on w coming up, starting at
time ¢. First Glinda bets on the 1st digit of w, then continues to bet on each successive digit
in a way that makes all the bets fair (i.e. her expected winnings are 0 at each step):

e At time ¢, Glinda puts a dollar on X; = w;. She gets 0 if wrong, gets pL if right. In
w1

the latter case, she bets this on X;,; = wy, and gets 5 1p if right.
w1 Fwa
e Continue this process Vj < k: If (X;...,Xy1;.1) = (wi,...,w;), Glinda receives

9 1 -) . j+1 L . .
i=1 7, and bets that on X;,; = w;, and she wins | [; 7 P if right.

Assume that one gambler enters the game at each time step, and each gambler bets on w
using the scheme above. Each gambler remains in play until making a wrong bet, at which
point he or she leaves the game with a net loss of one dollar. The game stops at time 7,
at which point any gambler who is still in play wins some money if their current bet agrees

1

with the last digit of w. Let M, be the net winnings (at time ¢) of all gamblers who entered
by time t. M, is an {F;}-martingale, where F;, = (X, ..., X;). For all t < 7,,, we have

k

1
e Z (1{(Xtj+17-~-vXt)=(w1='"7wj)} . 111 p_wz> o

j=1

At time t, there are t gamblers in the game, and each has paid a dollar, hence the “—t”
term, and the sum computes their gross winnings.

Applying the Optional Stopping Theorem to M, (after verifying that it satisfies an ap-
propriate hypothesis) we see that

0=EMy=EM,, =w*xw—Er,,

where
k

J

1

= 1 . -

W * W Z ({(wk_]-ﬂ,_..,wk):(wl,_._,wj)} pr) ;
7j=1 =1 S

so E7, = w x w. Note that w * w is the amount paid to the gamblers who win their bets

when w appears.

1.2 Conditioning on an initial word

Now suppose we have two words, v € A’ and w € A*. We want to compute
E, Ty := E[r, | the initial word in the sequence is v].

More precisely, we place v in front of the sequence X, Xs,... so that the final digit of v
occurs at time 0, and the previous digits of v correspond to negative times. Equivalently, we
can define X_; = vy_; for 0 <t < ¢ —1. Depending on the final digits of v, the word w may
now appear before time k£ (but we only count its appearance after time 0). For example,
take A = {0, 1,2}, v = 122122, and w = 221. For the sequence

12001 221 0012. ..,
<~

w

we have 7,, = 8. For the same sequence with v pre-appended,

1221 22|1 20012210012 . .,
—~—

w
we have 7, = 1.

To deal with this situation we imagine that, using the martingale scheme from the previ-
ous section, the gamblers start betting at the beginning of the augmented sequence containing
v. Thus, one gambler enters the game at each time step, starting at time 1 — ¢ rather than
at time 1. However, we don’t count their winnings or losses from the past; we only count the
bets made after time 0. If the final digits of v coincide with the initial digits of w (but do

2

not contain all of w), then there will still be gamblers in play at time 0 who can make bets
on w starting at time 1. The bets placed by these gamblers after time 0 can be computed by
looking at all ways to place w so that the beginning part of w coincides with the end part
of v. We denote this amount by v * w:

k

I
Vkw = Z (1{@[jH,m,w):(wl,...,wJ’)} . Pl p_wz> '

j=1
Note that the martingale M, from the previous section can be written
M, = (Xq1,...,X¢) xw—t.
If v does not end with the word w, define for ¢ > 0,
M} = (v1,.. .0, X1, .0, X)) s w — (E+v*w).

Then M} computes the net winnings of the gamblers at time ¢ > 0 when the initial sequence
is v. (The term (vy,...,vp, X1,..., X¢)*w computes the gross winnings at time ¢. The losses
are 1 dollar for each of the ¢ gamblers who entered the game since time 0, plus v * w for the
gamblers who were in play at time 0.) Since the game is fair, M} is a martingale. It can be
verified that we can apply the Optional Stopping Theorem:

0=E,M; =E,M, =wx*w— (E,7, +v*w),

SO
E, 7y =w*w — v *w

for any v that does not end with w. The case when v is the empty word () reduces to the
result in the previous section. Thus

Egrp = E7, = w * w.

1.3 Examples

Let A ={0,1,2}, and suppose each element of A is equally likely, so the vector of probabil-
ities is p(-) = (3, 3,3)-

Recall that w * w is the amount paid out when w comes up. Let w = 221. Since the end
of w doesn’t have any overlaps with the beginning of w, only one gambler wins anything
when w appears: At time 7, the gambler who entered at time 7,, — 2 has already made two

successful bets, and wins % = 27 with the final bet on on the last digit of w. Any gambler

who entered before this tir;le must have already lost because 7, is the first time w appears.
The gamblers entering at times 7, — 1 and 7, are both still in play at time 7, and they
both bet on 2 at this time, but they both lose because 1 comes up. Thus 221 % 221 = 27,
and applying optional stopping at time 7991 gives Eg1o9; = 27.

Now suppose w = 222. This time w has self-overlaps, so more than one gambler wins
when w appears: At time 7, the three gamblers who entered at times 7, — 2, 7, — 1, and

Tw are all still in play and all bet on 2 for the next digit. When 2 appears at time 7, they
win $27, $9, and $3, respectively. Therefore, since 7, is the total amount that has been paid
by all the gamblers since time 0, applying optional stopping at time 7,, gives

0 = Epy(net gains of all gamblers at time 7,,) = Eg(27 + 9 + 3 — 7292),

SO E@TQQQ = 222 %222 = 27+9 + 3 = 39.

Now let v = 1122 and w = 221, and consider betting on w conditioned on the initial
word being v. Again we have w *x w = 27 for the one gambler who wins when w appears,
so the gross winnings at time 7, are $27. However, since there are two ways to place w so
that the beginning of w coincides with the end of v, there are two gamblers in play at time
0, and we have to take their losses into account when computing the net winnings: At time
1, the gamblers who entered at time —1 and time 0 are still in play, and make bets of $9 on
1, and $3 on 2, respectively. (This shows that v« w = 9 + 3.) Therefore, the total losses at
time 7, are 9+ 3 = 12 for these two gamblers, plus 7, for all the gamblers who entered after
time 0. Therefore, by optional stopping,

0 = E,(net gains of all gamblers at time 7,,) = E,(27 — [r, + 9+ 3]),

SO E11227’221 =221 %221 — 1122 %221 = 27 — 12 = 15.

1.4 Multiple patterns

Now suppose we are given patterns (words) wy,...,w, such that no word is a suffix of
another. For example the pair {122,112} is allowed, but {122, 1122} is not.

Goals:

e Find ep, := Eyp min 7.
1<j<n 4

1<j<n

e Find agp; :=Py (Twi = min ij).

Observe that)", ay; = 1 because, by the assumption that no word is a suffix of another,
there can be no ties when one of the words comes up. Define

eji = By, 7w, (1 # 7), ei; = By, 7w, = 0 (the waiting time is 0), and eg; = Egry,.

From the above definitions, we have

n
€pi = €px + Z Oé@jeji

= E@ mln ka + ZIP’@ (Tw = min ka> eji

1<k<n

since, starting with the empty word (), we have

n
= min 1 . T
Twz 1<k<n ka + Zl {ij:mlnlgkgi ka} Twz
J:

(where 7, = T, — ming 7,). We can encode this in a matrix multiplication:

0 1 1 ... 1 €p« 1

1 0 €21 ... €Eni app €1

1 ern 0 ... ep ape | = | ep2 | . (1.1)
1 ey, €y ... 0O Qpp, €0n

Here the matrix is (n+1) x (n+1), with rows and columns indexed from 0 to n. Fori,j > 1,
the entry of the matrix in row ¢, column j is ej;. Recall that e;; = w; * w; — w; * w; and
Cp; = W; * W;.

Fact: The matrix on the left side of (1.1) is always nonsingular. (Exercise: Find a nice proof
of this.) Thus, the above system can be solved for (eg., agi, ..., ap,).

2 Another application: Boolean functions

2.1 Monotone Boolean functions, e.g. recursive majority

Consider a Boolean function f : {1, —1}" — {1, —1} mapping n bits to 1 bit. Place a partial
ordering on elements z = (z1,...,2,) and y = (y1,...,¥,) in {1,—1}" by comparing the
digits coordinatewise: x < y iff x; < y; for 1 < i < n. (Note that this is only a partial
ordering because not every pair of elements in {1, —1}" is comparable.)
Definition 2.1. A Boolean function f : {1,—1}" — {1, —1} is monotone (increasing) if
r<y= f(z) < fly)

An example of a monotone Boolean function is the m-fold recursive majority of depth
h, s where m is odd and h € N. The function f{" : {1,—1}"" — {1, -1} is defined by
recursively taking the majority of m bits. For example, take m = 3. The function fél) :
{1,—1}3 — {1, —1} computes the majority of 3 bits. The function f§2) {1, -1 — {1,-1}
is defined by breaking the input string into three blocks of 3 bits each, finding the majority

bit in each of these three blocks separately, and then taking the majority of the resulting 3
bits. In general, féhﬂ) is defined recursively for h > 1 by

h h h h
A = 100 (£ x P [P,

where x deontes the Cartesian product of functions:

B % A0 (0 @y 2) = (AP @), 57 w), 17 (2)).

Note that, setting Qo = {1, —1}, we have (x,y, 2) € Qgh y Qgh y Qgh ~ {1, _1}3h+1 and
(£, £57w), £7(2)) € Q0 x 0 x 0 = {1,-1},

so (i V@, 2) = 17 (A7 @), 17 (), 7(2)) € Q0 = {1, -1},

The function féh) can be visualized as a ternary tree of depth h, with the root at the top
and the leaves at the bottom. Each of the 3" leaves at level h corresponds to one bit of input,
either + or —. Each of the 3" nodes at level h — 1 is assigned a + or — according to the
majority of its three children, and so on for each successive level up to the root, which gives
the final value of the function. Note that the recursive majority function does not necessarily
compute the majority of the input bits. For example, consider f§2) applied to the string

t+—++-————.

2.2 Randomized algorithms

Consider the probability space Q = Qf = {1, —1}" equipped with the probability measure
P = (%, %)n Suppose f is a monotone Boolean function on Q. If x = (zy,...,2,) is a
random element of €2, the influence of variable j on f is

1(f) = Ele; () = Blf(x) =1 | ;= 1] = B[f(2) = 1| 2; = 1]
FP{f(x) = —1 | 2 = ~1] ~ P[f(x) = ~1 | 2; = 1]

(The formula follows from the definitions of expectation and conditional probability.)

We are interested in randomized algorithms to compute f exactly. An algorithm is
specified by a random sequence of indices k(1), k(2), ..., k(7) telling us which input variables
to look at; 7 is a stopping time indicating when the algorithm is finished computing. More
explicitly, the index k(j) is computed as some function of the previously revealed variables
and an independent source of randomness:

k(j) = Fj (zua)s Th), - - - Tr-1), U;)

where U; is independent of {x,U,...,U;_1}. The time 7 when the algorithm terminates is
defined by
7 = min {j : f(x) is determined by), Tr(2), - - - ,xk(j)})

Thus 7 is a stopping time with respect to the filtration F = (F;), where
ﬂ =0 {Ul, ceey Uj ;xk(l),xk(z), Ce ,Ik(j)}

is the information available at the jth step.

For example, let f : Q3 — Qg be the majority of three variables. Let k(1) € Unif{1, 2, 3}
and k(2) € Unif({1,2,3} \ {k(1)}). If zpq) = k), then 7 = 2 and f(z) = zpq). If
Tr(1) 7 Tr2), then we need to look at the 3rd bit to determine f(z), and 7 = 3. Thus we
have

1)
P(T:2>:§ and ET:§

Now suppose n = 3" and let f = f3(h) be the 3-fold recursive majority on {2 = €. Then
it’s easy to find an algorithm with Er = (2.5)" (e.g. think of f as a ternary tree, and at
each level, choose two children at random). By comparison, the best known algorithm has
E7 = (2.46....)". Here’s a general inequality:

2
" L(f < E7 for any randomized algorithm that computes a monotone
j=17"J

f{L,—1}" — {1, -1} exactly.

For f = recursive majority, the influence of a variable at depth k is 27% (again, we are
thinking of f as a tree, and we can think of the inner nodes as intermediate variables

in the computation of f). Therefore, [;(f) = (%)h for any j. Since n = 3" we have

Z?Zl Li(f) = (%)h, so the above inequality gives (g)% = (2.25)" < Er. Thus the expected

running time (2.46...)" for the best known algorithm is already fairly close to the best we
could possibly hope for.

