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1 Review: Doob’s martingales on G(n,p)

Let G = (V, E) be a graph on n vertices and f a function on such graphs. The vertex set of
Gis V ={vy,...,v,}, the edge set E is a subset of {e1,...,e,}, where m = (;) Suppose
that G ~ G(n,p), i.e. the edges of G are IID Bernoulli(p). Last time we saw two special cases
of Doob’s martingale process applied to G(n, p), namely the edge exposure martingale

X = E[f(G) | 1{6160}7 SRR l{etGG}]a

and the vertex exposure martingale

Y, = E[f(G) | G|{v1 ----- vt+1}]'

,,,,, w1} denotes the induced subgraph on {vy,...,v41}. Note that for the vertex
exposure martingale Y;, the vertex v, is revealed at time ¢, along with the ¢ edges (or
nonedges) connecting vy4q to each vertex in {vy,...,v;}.

Last time we saw that for f = x (the chromatic number of G), the vertex exposure
martingale Y; satisfies |Y; —Y; ;| < 1, which allowed us to apply the Hoeffding-Azuma
inequality to prove that Vn,p, if G ~ G(n,p), then P (|x(G) — Ex(G)| > ay/n) < 2e~%/2,
We now prove an even sharper concentration for small enough p.

2 A four-value concentration for y
Theorem 2.1 (Shamir-Spencer ‘87). If p =n"" for some a > 2, then 3c = c(n,p) such that
¢ < x(G(n,p)) <c+3

asymptotically almost surely (a.a.s.).



Remarks:

e (Luczak ‘91) improved Theorem 2.1 to a 2-value concentration.
e (Alon, Krivelevich ‘97) proved a 2-value concentration for a > %

e (Achlioptas, Naor ‘03) showed where the two-value concentration is located for G(n, d/n),
d a constant.

e For p = p(n) in the range [n~'/2 1) it is still unknown what the best concentration
bound is. It is even open whether there is an n'/?>~¢ concentration for p = % and € > 0.

To prove Theorem 2.1 we will use the following lemma.
Lemma 2.2. Let G = (V, E) be ~ G(n,p), ¢ > 0 a constant. For a > %, p =n"% the
following holds with high probability (i.e tending to 1 as n — o0): Any S C V of size
|S| < ey/n is 3-colorable.

Proof. Let S be a “bad” subset (i.e. |S| < ¢y/n but S is not 3-colorable) which is minimal
with respect to size (i.e. there is no bad subset smaller than S).

Observation: The induced subgraph on S, G|g, has minimum degree > 3. Why? Suppose
some u € S has at most two neighbors in S. Remove u. By minimality, we can color S\ {u}
using 3 colors. Now return u. Then u can be colored using one of the 3 colors we used
for S\ {u} since u has at most two neighbors in S. But then S is 3-colorable, which is a
contradiction.

Since the minimum degree of S is at least 3, we have |E(G|s)| > 2 |S]| (by counting the
edges at each vertex). We will show that this has small probability, i.e.

P <E|S C V of size |S| < ey/n with |E(G|s)| > g ]S|) =o(1)

as n — oo. Let B denote the above event. Using the union bound and the inequality

(6) < ()", we have
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Proof of Theorem 2.1. Let € € (0,1), and let ¢ € N be minimal such that

Px(G(n,p)) < ¢ > e (2.1)

Note that ¢ exists because h(c) = P[x(G(n,p)) < c| is an increasing function of ¢. E.g.
h(l) = (1— p)(g), h(2) = P(G is bipartite),...,h(n) = 1. Observe also that c is the largest
integer such that P [x(G(n,p)) < ¢] <e.

Let G ~ G(n,p), and let y = y(G) be the size of the smallest possible set S such that
X(G\ S) < ¢. Then by the definition (2.1) of ¢, we have

Py =0) =Px(G) <] > e (2.2)

Now choose A so that 2¢7**/2 < ¢. We will use the vertex exposure martingale on y. The

value of y changes by < 1 as we expose each new vertex, so we can apply Hoeffding-Azuma:
P(ly — Ey| > Av/n) < 2e N2 < e, (2.3)

2.3) together imply that Ey < A\y/n. (Otherwise we would have

The inequalities (2.2) and (
)+ PEy — A\/n <y <Ey+ A/n) >e+ (1 —¢)=1.) Combining

Ply <2A/n) =2 P(y =0
this with (2.3) we get
Py > 2X\/n) < e. (2.4)

Thus, by (2.4) and the definition of y, with probability > 1 — € we can find a set S of size
|S] < 2X/n such that G\ S is c-colorable. Then, by Lemma 2.2 we can color S with 3 colors
with probability > 1 — € (for large enough n). Hence, P[x(G) < ¢+ 3] > 1 — 2¢. On the
other hand, from the definition of ¢ we have P[x(G) < ] < ¢, so for large enough n,

Plc <x(G)<c+3)>1-—3e



