
University of Washington Math 523A Lecture 5

Lecturer: Eyal Lubetzky

Monday, April 13, 2009

1 Review: Doob’s martingales on G(n, p)

Let G = (V, E) be a graph on n vertices and f a function on such graphs. The vertex set of
G is V = {v1, . . . , vn}, the edge set E is a subset of {e1, . . . , em}, where m =

(
n
2

)
. Suppose

that G ∼ G(n, p), i.e. the edges of G are IID Bernoulli(p). Last time we saw two special cases
of Doob’s martingale process applied to G(n, p), namely the edge exposure martingale

Xt = E[f(G) | 1{e1∈G}, . . . ,1{et∈G}],

and the vertex exposure martingale

Yt = E[f(G) | G|{v1,...,vt+1}].

Here G|{v1,...,vt+1} denotes the induced subgraph on {v1, . . . , vt+1}. Note that for the vertex
exposure martingale Yt, the vertex vt+1 is revealed at time t, along with the t edges (or
nonedges) connecting vt+1 to each vertex in {v1, . . . , vt}.

Last time we saw that for f = χ (the chromatic number of G), the vertex exposure
martingale Yt satisfies |Yt − Yt−1| ≤ 1, which allowed us to apply the Hoeffding-Azuma
inequality to prove that ∀n, p, if G ∼ G(n, p), then P (|χ(G)− Eχ(G)| > a

√
n) ≤ 2e−a2/2.

We now prove an even sharper concentration for small enough p.

2 A four-value concentration for χ

Theorem 2.1 (Shamir-Spencer ‘87). If p = n−a for some a > 5
6
, then ∃c = c(n, p) such that

c ≤ χ(G(n, p)) ≤ c + 3

asymptotically almost surely (a.a.s.).
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Remarks:

• (Luczak ‘91) improved Theorem 2.1 to a 2-value concentration.

• (Alon, Krivelevich ‘97) proved a 2-value concentration for a > 1
2
.

• (Achlioptas, Naor ‘03) showed where the two-value concentration is located for G(n, d/n),
d a constant.

• For p = p(n) in the range [n−1/2, 1) it is still unknown what the best concentration
bound is. It is even open whether there is an n1/2−ε concentration for p = 1

2
and ε > 0.

To prove Theorem 2.1 we will use the following lemma.

Lemma 2.2. Let G = (V, E) be ∼ G(n, p), c > 0 a constant. For a > 5
6
, p = n−a, the

following holds with high probability (i.e tending to 1 as n → ∞): Any S ⊆ V of size
|S| ≤ c

√
n is 3-colorable.

Proof. Let S be a “bad” subset (i.e. |S| ≤ c
√

n but S is not 3-colorable) which is minimal
with respect to size (i.e. there is no bad subset smaller than S).

Observation: The induced subgraph on S, G|S, has minimum degree ≥ 3. Why? Suppose
some u ∈ S has at most two neighbors in S. Remove u. By minimality, we can color S \ {u}
using 3 colors. Now return u. Then u can be colored using one of the 3 colors we used
for S \ {u} since u has at most two neighbors in S. But then S is 3-colorable, which is a
contradiction.

Since the minimum degree of S is at least 3, we have |E(G|S)| ≥ 3
2
|S| (by counting the

edges at each vertex). We will show that this has small probability, i.e.

P
(
∃S ⊆ V of size |S| ≤ c

√
n with |E(G|S)| ≥ 3

2
|S|

)
= o(1)

as n → ∞. Let B denote the above event. Using the union bound and the inequality(
a
b

) ≤ (
ea
b

)b
, we have

P(B) ≤
c
√

n∑
s=4

(
n

s

)((
s
2

)
3s
2

)
p

3s
2 union bound, neglect the (1− p) term

≤
c
√

n∑
s=4

[en

s

]s

·
[
ps(s− 1)e

2 · 3s
2

] 3s
2

using

(
a

b

)
≤

(ea

b

)b

=

c
√

n∑
s=4

[
c′
√

s · n · p 3
2

]s

=

c
√

n∑
s=4

[
c′′ · n 5

4 · n− 3
2
a
]s

since s ≤ c
√

n and p ≤ n−a

= o(1) since
3

2
a >

3

2
· 5

6
=

5

4
.
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Proof of Theorem 2.1. Let ε ∈ (0, 1), and let c ∈ N be minimal such that

P [χ(G(n, p)) ≤ c] > ε. (2.1)

Note that c exists because h(c) = P [χ(G(n, p)) ≤ c] is an increasing function of c. E.g.

h(1) = (1− p)(
n
2), h(2) = P(G is bipartite), . . . , h(n) = 1. Observe also that c is the largest

integer such that P [χ(G(n, p)) < c] ≤ ε.
Let G ∼ G(n, p), and let y = y(G) be the size of the smallest possible set S such that

χ(G \ S) ≤ c. Then by the definition (2.1) of c, we have

P(y = 0) = P[χ(G) ≤ c] > ε. (2.2)

Now choose λ so that 2e−λ2/2 < ε. We will use the vertex exposure martingale on y. The
value of y changes by ≤ 1 as we expose each new vertex, so we can apply Hoeffding-Azuma:

P
(|y − Ey| > λ

√
n
) ≤ 2e−λ2/2 < ε. (2.3)

The inequalities (2.2) and (2.3) together imply that Ey ≤ λ
√

n. (Otherwise we would have
P(y ≤ 2λ

√
n) ≥ P(y = 0) + P(Ey − λ

√
n < y < Ey + λ

√
n) > ε + (1 − ε) = 1.) Combining

this with (2.3) we get
P(y > 2λ

√
n) < ε. (2.4)

Thus, by (2.4) and the definition of y, with probability > 1 − ε we can find a set S of size
|S| ≤ 2λ

√
n such that G\S is c-colorable. Then, by Lemma 2.2 we can color S with 3 colors

with probability > 1 − ε (for large enough n). Hence, P[χ(G) ≤ c + 3] > 1 − 2ε. On the
other hand, from the definition of c we have P[χ(G) < c] ≤ ε, so for large enough n,

P(c ≤ χ(G) ≤ c + 3) ≥ 1− 3ε.
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