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1 Problems

Problem 1: In a sequence of fair coin tosses, find P(τ001 < τ011), where τw is the hitting
time of the word w.

For example, in the sequence 010111001 . . ., τ011 = 5 and τ001 = 9, so the complement of
the above event occurs. Note that although the probability of any given sequence of length
3 occurring at a particular location is 1/8, the probability that one sequence occurs before
another is not necessarily 1/2, but depends on the particular pair of sequences.

2 Basic results on hitting times for SRW

Last time we used the Optional Stopping Theorem to show that for a simple random walk
{St} on Z, we have

Pk[τn < τ0] = k/n and Ekτ{0,n} = k(n− k).

Transforming [0, n] to a general interval, if a, b, x ∈ Z with x ∈ [a, b], then

Exτ{a,b} = (x− a)(b− x). (2.1)

For example,
E0τ{−n,n} = n2.

Thus, for a simple random walk {Yt} on [0,∞), we have

E0τn = n2

because {Yt} has the same distribution as {|St|}, and clearly τn(|St|) = τ{−n,n}(St). (The
same result is also true for a simple random walk {Y ′t } on [0, n] since the distribution of {Y ′t }
is the same as that of {|St|} until the time τn(Y ′t ) = inf{t : Y ′t = n}.)

Again applying (2.1), we see that

ES
k τ{−n,n} = (n+ k)(n− k) = n2 − k2,
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so
EY
k τn = n2 − k2. (2.2)

(Here the superscripts indicate whether the expectation is for the process S = {St}t≥0 or
Y = {Yt}t≥0.) Another way to think about this result is as follows. Let Y x denote the
process Y started from x, and let k ∈ [0, n]. In order for Y 0 to hit n, it must first go from 0
to k, then go from k to n. Therefore we should have

τn(Y 0)
d
= τk(Y

0) + τn(Ỹ k),

where Y 0 and Ỹ k are independent SRW’s on [0,∞). Taking expectations, we (formally) get

E0τn = E0τk + Ekτn

n2 = k2 + Ekτn,

which gives (2.2). To make this argument rigorous, we need to use the Strong Markov
Property.

3 More on SRW hitting times via a new martingale

Here is a result related to (2.2):

Proposition 3.1. For a simple random walk Y = {Yt}t≥0 on [0,∞), we have

Ek[τn | τn < τ0] =
n2 − k2

3
.

Note: Proposition 3.1 remains true if Y is replaced by S. (Why?)

Proposition 3.1 was first proved by doing a long computation, but is there a nice way to
see that the answer should be one third of the expectation in (2.2)? We’ll give a proof using
martingales, but what martingale should we use? We’ve already seen the linear martingale
St and the quadratic martingale S2

t − t, but these turn out to be insufficient. We’ll use the
third degree martingale,

Mt = S3
t − 3tSt.

We’ll see shortly how to obtain such formulas for any degree, but for now we simply check
that Mt is a martingale.

Recall that St+1 = St +Xt+1, where {Xt}t>0 are IID with

Xt ∼

{
+1 with probability 1/2

−1 with probability 1/2.

Taking Ft = σ{S0, . . . , St} = σ{S0, X1, . . . , Xt}, we note that Xt+1 is independent of Ft, so

E[S3
t+1 | Ft] = E[S3

t + 3S2
tXt+1 + 3StX

2
t+1 +X3

t+1 | Ft]
= S3

t + 3S2
t EXt+1 + 3StEX2

t+1 + EX3
t+1

= S3
t + 0 + 3St + 0,
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and since St is an Ft-martingale,

E[(t+ 1)St+1 | Ft] = (t+ 1)St.

Therefore, M is adapted to the filtration F = {Ft}t≥0 (because Mt is defined in terms of
St ∈ Ft), and

E[Mt+1 | Ft] = E[S3
t+1 − 3(t+ 1)St+1 | Ft]

= S3
t + 3St − 3tSt − 3St

= S3
t − 3tSt = Mt,

so M is an F -martingale.

Proof of Proposition 3.1. We want to apply the Optional Stopping Theorem to Mt, so we
need to verify one of the hypotheses under which it’s valid. We have

sup
j≤τ{0,n}

|Mj| ≤ n3 + 3nτ{0,n},

and the righthand side is integrable, so we’re good to go. Starting with S0 = k we have
M0 = k3, so

k3 = EkM0 = EkMτ{0,n}

= Pk(τ0 < τn) · Ek

[
Mτ{0,n} | τ0 < τn

]
+ Pk(τn < τ0) · Ek

[
Mτ{0,n} | τn < τ0

]
= Pk(τ0 < τn) · Ek

[
0 | τ0 < τn

]
+ Pk(τn < τ0) · Ek

[
n3 − 3nτn | τn < τ0

]
= 0 +

k

n
·
(
n3 − 3n · Ek

[
τn | τn < τ0

])
.

Therefore,
k2 = n2 − 3 · Ek

[
τn | τn < τ0

]
,

which proves the theorem.

This martingale approach is much cleaner than a more direct, computational approach
such as induction. Why would we think to use the 3rd degree martingale Mt in the first
place? A general principle is that it’s a good idea to work with the exponential martingale,
which contains all the polynomial martingales such as the ones we’ve seen so far.

4 The exponential martingale

Take a general random walk on R, i.e. let {Xj}j∈N be IID, and define St =
∑t

j=1Xj. (We can
also add S0, but first take S0 = 0 to simplify things.) For the induced filtration F = {Ft}t≥0,
we have for any λ ∈ R,

E
[
eλSt+1 | Ft

]
= E

[
eλSteλXt+1 | Ft

]
= eλStE

[
eλXt+1 | Ft

]
= eλStψ(λ),
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where ψ(λ) = EeλX1 (which equals E
[
eλXt+1 | Ft

]
for any t since the Xj are IID). Therefore,

Mt := eλStψ(λ)−t

will be an F -martingale for any λ, namely the exponential martingale.
For a simple random walk,

ψ(λ) =
eλ + e−λ

2
= cosh(λ) = 1 +

λ2

2
+
λ4

24
+ . . . ,

and

Mt = eλSt [cosh(λ)]−t =
∞∑
k=0

Ak,tλ
k,

where the coefficient Ak,t is some function of k, t, and St, hence Ft-measurable. (Note: Since
for any s, t ∈ R, the Taylor series for eλs[cosh(λ)]−t converges for all λ in some neighborhood
of 0 which is independent of s, there is some neighborhood of 0 in which the above power
series expansion holds almost surely.) Using the fact that power series converge uniformly,
we can interchange summation with expectation to obtain

∞∑
k=0

Ak,tλ
k = Mt = E[Mt+1 | Ft] = E

[
∞∑
k=0

Ak,t+1λ
k | Ft

]
=
∞∑
k=0

E [Ak,t+1 | Ft]λk.

Equating the coefficients of the power series on the left and right, we get

Ak,t = E [Ak,t+1 | Ft] .

Thus, for each k, the collection {Ak,t}t≥0 is an F -martingale.
We can compute the first few martingale coefficients Ak,t for SRW from the Taylor ex-

pansion of Mt. Using the binomial expansion

(1 + x)−t =
∞∑
k=0

(
−t
k

)
xk = 1− tx+

t(t+ 1)

2!
x2 − t(t+ 1)(t+ 2)

3!
x3 + . . .

for |x| < 1, we have (for λ near 0)

(coshλ)−t =

(
1 +

λ2

2
+
λ4

24
+

λ6

720
+ . . .

)−t
= 1− tλ2

2
+ C4,tλ

4 + C6,tλ
6 + . . .

for some coefficients Ck,t. Thus

eλSt(coshλ)−t =

(
1 + λSt +

λ2S2
t

2
+
λ3S3

t

6
+ . . .

)
·
(

1− tλ2

2
+ C4,tλ

4 + . . .

)
= 1 + λSt +

λ2

2

(
S2
t − t

)
+
λ3

6

(
S3
t − 3tSt

)
+ . . . ,

so we recover the three martingales we’ve seen so far, plus higher order martingales if we
expand more terms. The freedom of the parameter λ allows the exponential martingale Mt

to encode all the information from the martingales Ak,t.
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5 Hitting times for words

Now we begin to approach the problem from the first section.

Setting: X1, X2, . . . are IID and take values in some finite alphabet A, with

P(Xi = a) = pa ∀a ∈ A.

Given a word w ∈ Ak, the hitting time of w is

τw = min{t ≥ k : (Xt−k+1, . . . , Xt) = w}.

Question: Find Eτw.

Martingale method (Li 1980)
Think of a gambler, Gandalf, making a sequence of fair bets on w coming up, starting

at time t. First Gandalf bets on the 1st digit of w, then continues to bet on each successive
digit in a way that makes all the bets fair (i.e. his expected winnings are 0 at each step):

• At time t Gandalf puts a dollar on Xt = w1. He gets 0 if wrong, gets 1
pw1

if right. In

the latter case, he bets this on Xt+1 = wk, and gets 1
pw1pw2

if right.

• Continue this process ∀j < k: If (Xt . . . , Xt+j−1) = (w1, . . . , wj), Gandalf receives∏j
i=1

1
pwi

and bets that on Xt+j = wj, and he wins
∏j+1

i=1
1
pwi

if right.

Assume that one gambler enters the game at each time step, and each gambler bets on w
using the scheme above. The game stops at time τw. Let Mt be the net winnings (at time t)
of all gamblers who entered by time t. Mt is an {Ft}-martingale, where Ft = σ(X1, . . . , Xt).
For all t ≤ τw, we have

Mt =
k∑
j=1

(
1{

(Xt−j+1,...,Xt)=(w1,...,wj)
} · j∏

i=1

1

pwi

)
− t.

At time t, there are t gamblers in the game, and each has paid a dollar, hence the “−t”
term, and the sum computes their gross winnings.

Again, we want to apply the Optional Stopping Theorem to Mt. We have |Mt| ≤ C + t
for some constant C, so

sup
t<τw

|Mt| ≤ C + τw.

Is the righthand side integrable? Yes, because if we divide time into blocks of length k, in
each block the chance of not seeing w is 1− pw1 · · · pwk

, so

P(τw > `) ≤ (1− pw1 · · · pwk
)b`/kc.
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This shows that τw is dominated by a geometric random variable, hence integrable. Thus,
the OST applies, so

0 = EM0 = EMτw = w ∗ w − Eτw,

where

w ∗ w :=
k∑
j=1

(
1{

(wk−j+1,...,wk)=(w1,...,wj)
} · j∏

i=1

1

pwi

)
.

So the answer to our question is Eτw = w ∗ w. Taking p0 = p1 = 1
2

and w = 001, v = 000,
we have w ∗ w = 8 and v ∗ v = 2 + 4 + 8 = 14.
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