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1 Problems

Problem 1: In a sequence of fair coin tosses, find P(79o1 < 7911), where 7, is the hitting
time of the word w.

For example, in the sequence 010111001..., 7911 = 5 and 7901 = 9, so the complement of
the above event occurs. Note that although the probability of any given sequence of length
3 occurring at a particular location is 1/8; the probability that one sequence occurs before
another is not necessarily 1/2, but depends on the particular pair of sequences.

2 Basic results on hitting times for SRW

Last time we used the Optional Stopping Theorem to show that for a simple random walk
{S;} on Z, we have

Pilrn < 7o) = k/n and  Eprpony = k(n — k).
Transforming [0, n] to a general interval, if a, b,z € Z with x € [a, b], then
EoT{apy = (x —a)(b— x). (2.1)

For example,
EOT{fn,n} = TLZ.
Thus, for a simple random walk {Y;} on [0, 00), we have

Eo7, = n?

because {Y;} has the same distribution as {|S;|}, and clearly 7,(|S;|) = T{—nn}(S¢). (The
same result is also true for a simple random walk {Y}'} on [0, n] since the distribution of {Y,'}
is the same as that of {|.S;|} until the time 7,(Y/) = inf{t : Y/ = n}.)

Again applying (2.1), we see that

EpTionm = (n+k)(n—k) =n> -k
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S0
EY 7, = n? — k% (2.2)

(Here the superscripts indicate whether the expectation is for the process S = {S;}>0 or
Y = {Yi}i>0.) Another way to think about this result is as follows. Let Y* denote the
process Y started from z, and let k € [0,n]. In order for Y to hit n, it must first go from 0
to k, then go from k£ to n. Therefore we should have

Ta(Y?) £ 7 (YO) 4 7, (VF),
where Y° and Y* are independent SRW’s on [0, 00). Taking expectations, we (formally) get

EOTn = EoTk + Ean
n2 = k2 -+ Ean,

which gives (2.2). To make this argument rigorous, we need to use the Strong Markov
Property.

3 More on SRW hitting times via a new martingale

Here is a result related to (2.2):
Proposition 3.1. For a simple random walk Y = {Y; }+>0 on [0, 00), we have
n? — k?
3
Note: Proposition 3.1 remains true if Y is replaced by S. (Why?)

Eilrn | T < 10] =

Proposition 3.1 was first proved by doing a long computation, but is there a nice way to
see that the answer should be one third of the expectation in (2.2)? We'll give a proof using
martingales, but what martingale should we use? We’ve already seen the linear martingale
S; and the quadratic martingale S? — ¢, but these turn out to be insufficient. We’ll use the
third degree martingale,

M,; = S? — 3tS,.

We'll see shortly how to obtain such formulas for any degree, but for now we simply check
that M, is a martingale.
Recall that S;11 = Sy + Xy11, where {X,}4~0 are I[ID with

X +1  with probability 1/2
"1 =1 with probability 1/2.
Taking F; = 0{So, ..., S} = 0{So, X1, ..., X}, we note that X, is independent of F, so

E[S;1 | Fi] = B[Sy + 357 Xy + 38, X7, + X7y | Fi
= S} + 3S7EX 1 + 3SEX7, + EX}
=57 +0+35,+0,



and since S; is an Fi-martingale,
E[(t +1)Sp1 | F] = (¢ +1)5;.

Therefore, M is adapted to the filtration F = {F, }1>0 (because M, is defined in terms of
St € .;Et), and
E[M1 | Fi] = E[S}; = 3(t + 1)Si | Fi
= S? — 3tS, = M,,

so M is an F-martingale.

Proof of Proposition 3.1. We want to apply the Optional Stopping Theorem to M;, so we
need to verify one of the hypotheses under which it’s valid. We have

sup |M;| < n® + 3n7go,
jST{O,n}

and the righthand side is integrable, so we're good to go. Starting with Sy = k& we have
M, = k3, so

k3 =E, M, =E.M

T{0,n}

= ]P)k(’i'o < Tn) . Ek [M

7{0,n}

| T < Tn:| +Pk(7—n < To) . Ek [M

T{0,n} ‘ Tn < 7—Oj|

=Pr(m0 < 1) - Eg [O | 70 < Tn] + Pi(1, < 710) - Eg [ng —3nT, | T < 7'0}
k
:O+—-(n3—3n-Ek[Tn | T <7‘0]).
n
Therefore,
k> :n2—3~]Ek[Tn | T <TO},
which proves the theorem. O

This martingale approach is much cleaner than a more direct, computational approach
such as induction. Why would we think to use the 3rd degree martingale M; in the first
place? A general principle is that it’s a good idea to work with the ezponential martingale,
which contains all the polynomial martingales such as the ones we’ve seen so far.

4 The exponential martingale

Take a general random walk on R, i.e. let {X,} ey be IID, and define S, = Z;zl X;. (We can
also add Sy, but first take Sy = 0 to simplify things.) For the induced filtration F = {F;}i>0,
we have for any \ € R,
E [e)‘st“ | ft} =K [e)“gte’\xHl | ft]
= ' [N | B



where 1(\) = Ee**" (which equals E [e*¥t+1 | ] for any ¢ since the X; are IID). Therefore,
My = e*p(A)~

will be an F-martingale for any A, namely the exponential martingale.
For a simple random walk,

er e A2\
P(N) 5 cosh(\) =1+ 5 + o +.
and
M, = e’\st cosh(A E Akt)\

where the coefficient Ay, is some function of k, ¢, and St, hence Fi-measurable. (Note: Since
for any s,t € R, the Taylor series for e**[cosh()\)]~* converges for all X in some neighborhood
of 0 which is independent of s, there is some neighborhood of 0 in which the above power
series expansion holds almost surely.) Using the fact that power series converge uniformly,
we can interchange summation with expectation to obtain

ZAMHA f] = E[Ars | FIA

D ANt = My =E[Myy, | F] =

Equating the coefficients of the power series on the left and right, we get
A =E[Api1 | F.

Thus, for each k, the collection {Ay;}+>0 is an F-martingale.
We can compute the first few martingale coefficients Ay, for SRW from the Taylor ex-
pansion of M;. Using the binomial expansion

=, [—t tHt+1 tt+ 1)(t + 2
I+a) =) b =1—tx+ (+ ).’EQ— (E+ 1+ )x3+
—~\ k 2! 3!

for |z| < 1, we have (for A near 0)

22 4 \6 -t £)\2
(COSh)\) (1+?+ﬁ+%+ ) —1—74—0415/\ +06t)\6

for some coefficients Cj ;. Thus

2Q2 3 Q3 2
et (cosh \) ™" = (1+)\St+)\25t +A6fgt +) : (1—%+04¢A4+...>

)\2 )\3

so we recover the three martingales we’ve seen so far, plus higher order martingales if we
expand more terms. The freedom of the parameter A\ allows the exponential martingale M,
to encode all the information from the martingales Ay ;.
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5 Hitting times for words

Now we begin to approach the problem from the first section.

Setting: X, X5, ... are IID and take values in some finite alphabet A, with
P(X;,=a)=p, VYaeA.
Given a word w € A*, the hitting time of w is

Tw = min{t >k (Xy_pq1,..., Xy) = w}.

Question: Find E7,.

Martingale method (Li 1980)

Think of a gambler, Gandalf, making a sequence of fair bets on w coming up, starting
at time t. First Gandalf bets on the 1st digit of w, then continues to bet on each successive
digit in a way that makes all the bets fair (i.e. his expected winnings are 0 at each step):

e At time ¢t Gandalf puts a dollar on X; = w;. He gets 0 if wrong, gets pL if right. In
wy

the latter case, he bets this on X;,; = wy,, and gets —— if right.

PwqPwy
e Continue this process Vj < k: If (X;...,Xi;-1) = (wi,...,w;), Gandalf receives
7_, - and bets that on X;,; = w;, and he wins ijll -Lif right.
=+ Puw,; =1 puw;

Assume that one gambler enters the game at each time step, and each gambler bets on w
using the scheme above. The game stops at time 7,,. Let M; be the net winnings (at time )
of all gamblers who entered by time ¢. M, is an {F; }-martingale, where F; = o(Xy, ..., X}).
For all t < 7,,, we have

k J

1

Jj=1

At time t, there are t gamblers in the game, and each has paid a dollar, hence the “—t”
term, and the sum computes their gross winnings.
Again, we want to apply the Optional Stopping Theorem to M;. We have |M;| < C + ¢

for some constant C', so

sup |[My| < C + 7.

t<Tw
Is the righthand side integrable? Yes, because if we divide time into blocks of length k, in
each block the chance of not seeing w is 1 — Py, « * * Py, SO

P(1p > £) < (1 = Py, -+ - Puy, ) H).



This shows that 7, is dominated by a geometric random variable, hence integrable. Thus,
the OST applies, so
0=EMy=EM,, =w*xw—Er,,

where
k J

1
= Z (1{(wk—j+17-~-7wk):(w17~-7wj)} . E p_wz> '

J=1

So the answer to our question is E7, = w *x w. Taking py = p; = % and w = 001, v = 000,
we have wxw =8 andv*xv=2+4+ 8 = 14.



