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1 Optional Stopping

Problems:

1. Suppose {St}t≥0 is simple random walk on Z, i.e. P (St+1 − St = 1|St) =

P (St+1 − St = −1|St) = 1/2, Find Ekτ{0,n}, where τA = min{t : St ∈ A}. Here Ek
means the random walk start at location k.

2. For {Yt} simple random walk on [0, n], Ekτn =?. Here the random walk reflects

with probability 1 when at location 0 and n.

3. Find Ek(τn|τn < τ0) for {Yt} or {St}. Note that this expectation is the same for

{Yt} or {St}.

Definition 1.1. Given a filtration {Ft}, a sequence of random variable {Xt} is called

Submartingale if

(i) E|Xt| <∞.

(ii) E(Xt+1|Ft) ≥ Xt.

Theorem 1.1. Suppose {Xt}t≥0 takes values in (a, b) where we allow a = −∞ or

b = ∞. ψ : (a, b) → R is a convex function. If {Xt}t≥0 is an {Ft}t≥0 martingale

then {ψ(Xt)}t≥0 is a submartingale. Moreover, if we assume in addition that ψ is

increasing, then the conclusion still holds when {Xt}t≥0 is a submartingale.

Proof. This follows from conditional expectation case of Jensen’s inequality. For any

random variable X, since ψ is convex, we may take y = cx+b ≤ ψ(x) for any x ∈ (a, b)

but c(EX) + d = ψ(EX). So Eψ(X) ≥ E(cX + b) = cEX + b = ψ(EX). Here we can

take c = ψ′t(EX) and d = ψ(EX)− c(EX) if ψ is differentiable.
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In conditional version, E(ψ(Xt+1)|Ft) ≥ E(cXt+1 + d|Ft) = cE(Xt+1|Ft) + d =

cXt + d = ψ(Xt). If ψ is increasing, then c is positive, so the inequality still hold in

case of submartingale.Note that in this case c and d are random so we have to verify

that they are measurable w.r.t Ft. This can be observed by noting c = ψ′t(Xt) and

d = ψ(Xt)− cXt.

Definition 1.2. τ : Ω → {0, 1, ...} ∪ {∞} is a Stopping Time for {Ft} if for any

t ≥ 0, {τ ≤ t} ∈ Ft. Note that this is equivalent to for any t ≥ 0, {τ = t} ∈ Ft.

Now we state the Optional Stopping Theorem in bounded case.

Theorem 1.2. Suppose {Xt} is an {Ft} submartingale and σ ≤ τ are both {Ft}
stopping times. P (τ ≤M) = 1 for some M constant, then EXσ ≤ EXτ .

Proof. We will show EXσΛk ≤ EXτΛk(?) by induction on k. Since τ is bounded by

M , this will imply the theorem.

When k = 0, it is clear.

The induction step: Assuming (?) for k, we have

E(XτΛ(k+1) −XσΛ(k+1))− E(XτΛk −XτΛk)

= E(XτΛ(k+1) −XτΛk)− E(XσΛ(k+1) −XσΛk)

= E(Xk+1 −Xk)(1{τ≥k+1} − 1{σ≥k+1})

= E(Xk+1 −Xk)(1{σ≤k} − 1{τ≤k}

= E(Xk+1 −Xk)1A.

where A = {σ ≤ k}\{τ ≤ k} ∈ Fk. So we have:

E[(Xk+1 −Xk)1A|Fk] = E(Xk+1 −Xk|Fk)1A ≥ 0.

In optional stopping theorem, we can replace τ ≤M by one of the following:

(i) supj≤τ |Xj | ≤ C.

(ii) More generally, supj≤τ |Xj | ≤ ϕ ∈ L1(Dominate convergence).

(iii) |Xj+1 − Xj | ≤ C for any j ≥ 0 and Eτ < ∞. In this case, for any k ≤ τ ,

|Xk| ≤ |X0|+
∑k

j=1 |Xj −Xj−1| ≤ X0 + τC.
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Now we use the optional stopping theorem to solve the problems in the beginning

of the section.

First note for simple random walk {St}, {St} itself is a martingale. Note also

supj≤τ{0,n}
|Sj | ≤ n. Thus we can apply optional stopping theorem, get ES0 = ESτ{0,n} ,

i.e.

k = ES0 = ESτ{0,n} = nP (τn < τ0)

this means P (τn < τ0) = k/n.

To get Eτ{0,n} we need a somehow more complicated martingale. Consider {Mt =

S2
t − t} where {St} is the usual simple random walk. Note that:

E(S2
t+1|Ft) = E((St +Xt+1)2|Ft)

= E(S2
t + 2StXt+1 +X2

t+1|Ft) = S2
t + 2StE(Xt+1) + E(X2

t+1) = S2
t + 1.

This suggests that {Mt} is a martingale. To apply optional stopping we need to

prove Eτ < ∞ where τ = τ{0,n}. To prove this we first consider τ ∧ N where N

is an integer. This is a bounded stopping time. Applying optional stopping we get

k2 = EM0 = ES2
τ∧N − Eτ ∧ N . Thus Eτ ∧ N = ES2

τ∧N − k2 ≤ n2 − k2. Note

that 0 ≤ τ ∧ N ↑ τ as N → ∞. Applying Monotone convergence theorem we get

Eτ ≤ n2 − k2.

Now we have supj≤τ{0,n}
|Mj | ≤ n2 + τ where is integrable, which satisfies (ii) of

conditions that can apply optional stopping. This leads to

k2 = EM0 = EMτ = ES2
τ − Eτ = n2P (τn < τ0)− Eτ = nk − Eτ.

which means Eτ{0,n} = k(n− k).
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