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1 Optional Stopping

Problems:

1. Suppose {S¢}i>0 is simple random walk on Z, i.e. P(Sip1 — S¢ = 1|5 =
P(S¢41 — St = —1]S;) = 1/2, Find EyTion), where 74 = min{t : S; € A}. Here Ej
means the random walk start at location k.

2. For {Y;} simple random walk on [0,n]|, Ex7, =7. Here the random walk reflects
with probability 1 when at location 0 and n.

3. Find Ey(m,|m, < 10) for {Y:} or {S;}. Note that this expectation is the same for
{Yi} or {5:}.

Definition 1.1. Given a filtration {F;}, a sequence of random variable {X:} is called

Submartingale if
(i) E|Xy| < oc.
(i) E(Xi1|F) > X

Theorem 1.1. Suppose {X:}i>0 takes values in (a,b) where we allow a = —oo or
b=o00. 9 : (a,b) = R is a convex function. If {Xi}i>0 is an {Fi}i>0 martingale
then {(X¢)}e>0 is a submartingale. Moreover, if we assume in addition that ¢ is

increasing, then the conclusion still holds when {X;}t>0 is a submartingale.

Proof. This follows from conditional expectation case of Jensen’s inequality. For any
random variable X, since 1 is convex, we may take y = cx+b < ¢(z) for any = € (a, b)
but ¢(EX)+d =¢(EX). So EY(X) > E(cX +b) =cEX +b=1(EX). Here we can
take ¢ = ¢} (EX) and d = (EX) — ¢(EX) if ¢ is differentiable.



In conditional version, E(¢Y(Xi4+1)|Ft) > E(cXi+1 + d|Ft) = cE(Xi41]F) +d =
Xy +d =1Y(Xy). If ¢ is increasing, then c¢ is positive, so the inequality still hold in
case of submartingale.Note that in this case ¢ and d are random so we have to verify
that they are measurable w.r.t F;. This can be observed by noting ¢ = ¢;(X;) and
d=9Y(Xy) — cXy. O

Definition 1.2. 7: Q — {0,1,...} U {oco} is a Stopping Time for {F.} if for any
t >0, {T <t} € F;. Note that this is equivalent to for any t >0, {T =t} € F;.

Now we state the Optional Stopping Theorem in bounded case.

Theorem 1.2. Suppose {X;} is an {F;} submartingale and o < 7 are both {F;}
stopping times. P(t < M) =1 for some M constant, then EX, < EX.

Proof. We will show EX,zr < EX pr(*) by induction on k. Since 7 is bounded by
M, this will imply the theorem.
When k = 0, it is clear.

The induction step: Assuming (%) for k, we have
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where A = {0 < k}\{r <k} € F}. So we have:

E[(Xir1 — X)1a|Fi] = E(Xjs1 — Xp|Fi)1a > 0.

In optional stopping theorem, we can replace 7 < M by one of the following:
(i) sup;<, |X;] < C.
ii) More generally, sup, .. | X;| < ¢ € L'(Dominate convergence).
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(ili) |Xj41 — Xj| < C for any j > 0 and ET < oo. In this case, for any k < 7,
| X| < [ Xo| + 511X — Xja] < Xo +7C.



Now we use the optional stopping theorem to solve the problems in the beginning
of the section.

First note for simple random walk {S;}, {S;} itself is a martingale. Note also
SUDj<ry s |Sj| < n. Thus we can apply optional stopping theorem, get 'Sy = EST{M}7
ie.

k=ESy, = ES. nP(1, < T0)

{on} —
this means P(7, < 79) = k/n.
To get ETyg,} we need a somehow more complicated martingale. Consider {M,; =

S? —t} where {S;} is the usual simple random walk. Note that:

E(SE|Fy) = E((S: + Xi41)?|Fy)
= FB(S;+2S: X141+ X2 |F) = S+ 2SE(Xpy1) + E(X2 ) = S;+ 1.

This suggests that {M,;} is a martingale. To apply optional stopping we need to
prove BT < oo where 7 = 7y ,}. To prove this we first consider 7 A N where N
is an integer. This is a bounded stopping time. Applying optional stopping we get
k? = EMy = ES?,y, — ET AN. Thus ET AN = ES?, v — k¥ < n? — k% Note
that 0 < 7 AN T 7as N — oco. Applying Monotone convergence theorem we get
Er <n?— k2

Now we have sup;< |M;| < n? + 7 where is integrable, which satisfies (ii) of

conditions that can apply optional stopping. This leads to
k* = EMy = EM, = ES? — Er = n*P(1, <79) — BT = nk — ET.

which means ETy ) = k(n — k).



