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The Hoeffding-Azuma concentration inequality

Theorem 1 (Hoeffding ‘63). Let (X;) be a martingale with respect to (F), and let c1,ca,. .. be
real numbers such that | Xy — X¢—1| < ¢ for all t. Then for any a > 0,
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Proof. We will show a slightly stronger version of the above theorem: Instead of requiring that
(X:) is a martingale, we will assume that

E[Xt | thl] = Xt,1 for all t. (01)

Let Y; 2 X, — X;_1. By the above assumptions E[Y; | X;—1] = 0 and |Y;| < ¢; for all ¢.

The following simple claim says that, if Z is a r.v. bounded by 1 and with mean 0, then the
expected value of exp(AZ) is maximized when splitting the mass equally between +1.

Claim 2. Let Z be a random variable satisfying |Z| <1 and EZ = 0. Then

E[e*?] < cosh A < N2 for any A € R.

Proof of claim. As the function g(z) = e is convex, the following holds for any z € [—1,1]:
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and therefore
E[e*?] < cosh A\ + (EZ)sinh A = cosh \ .

The proof now follows from the fact that
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Applying the above claim to Y;/c¢; given X;_; (and then re-scaling by ¢;), we now get
E [e/\Y" | Xt_l} < P2 g1 all A > 0.
Let A > 0 be specified later. Noticing that
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it follows that
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Taking expectations,

E [e’\(X"*XO)} <E [e/\(anleo)} o(Aen)?/2
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and by iterating we deduce that

Applying Markov’s inequality gives
n
P(X,—Xo>a)=P (e)‘(X"_XO) > e)‘“) < exp [— Aa + %)\2 Zcﬂ ,
i=1

at which point a choice of A = a/ Y7, ¢? concludes the proof (the bound on the event Xo—X,, > a

i=1"1
follows from a similar argument). |

Examples

1. Sums of i.i.d. variables

Consider Example 1 from the previous lesson: Y7, Ys,... are i.i.d. variables,
L p
Y1~ A

for some 3 < p < 1 fixed, and S,, = > 1, Y.
e For p = %, applying Hoeffding’s inequality to the martingale S, (together with a choice of
¢t = 1 for all t) gives the well known Chernoff bound:

P(|Sn| > a) < 2exp (—a2/2n) .
e For p > %, setting 4 = p — ¢, and then applying Hoeffding’s inequality to the martingale
Xp =S, — nu (together with a choice of ¢, = 1 + p for all t) gives the bound:

P (|Sn — nu| > ay/n) < 2exp (—a2/2(1 + ) -



Remark. Note that if N ~ N (0,1) has a standard normal distribution, then for a > 1 we have
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That is, Hoeffding’s inequality implies that the tail of the martingale resembles that in a normal
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distributed random variable, and the exponent in this large-deviation bound is optimal.

2. Doob’s martingale process

Let Y be a random variable on (£2, F,P) with EY? < co. Let (X;) be a sequence of r.v.’s adapted
to a filtration (F;) C F. The following sequence is Doob’s martingale process:

YV, 2E]Y | F] .
To verify that this is a martingale, note that:

(i) Clearly E|Y;| < oo for all ¢, since the requirement EY? < oo implies that EY;? < co.
(ii) For all ¢ we have
E[Yi | ] =E[EY | Fi] | Bl =E[Y | F] =Y,
where the first inequality is by definition and the second one is due to the fact that F; C Fyy1.

To demonstrate how useful the above martingale can be, we need a few Graph Theoretic definitions.
Let G = (V, E) be a graph. That is, its vertex set is V' (the vertices are unlabeled unless mentioned
otherwise), and its set of edges is E C (‘2/) (undirected unless mentioned otherwise).

Definition 1. An independent set of a graph G = (V, E) is a set of vertices S C V with no edges
between them: For all u,v € S we have (u,v) ¢ E. The mazximum cardinality of an independent
set of G is called the independence number of G, and denoted by a(G).

Finding the independence number of a graph is a formidable problem in Computer Science
(N P-hard to approximate even within a factor of |[V|'~%). Nevertheless, the graph property of
either having independent sets above a certain size, or not, is relatively intuitive. In that sense, the
following parameter is even more difficult to understand:

Definition 2. A legal coloring of a graph G = (V, E) using k colors is a mapping p : V. — {1,...,k}
that maps neighboring vertices to distinct colors:

p(u) # p(v) for any (u,v) € E.

The smallest integer k that admits a (legal) k-coloring is called the chromatic number of G, and
denoted by x(G).

Observe that a legal coloring of a graph G = (V, E) by k colors is equivalent to finding &
disjoint independent sets Si,..., Sk that cover all the vertices: V = U;S; (the set S; is simply
©~1(7)). Clearly, if the vertices of a graph can be covered by k independent sets, then they can
also be covered by k disjoint independent sets, and so x(G) is equivalent to the minimal number
of independent sets needed to cover all vertices of G.



Definition 3. The Erdds-Rényi random graph model G(n,p) is defined as follows: G ~ G(n,p)
has the vertex set {1,...,n}, and each edge (i,7) for i # j € V belongs to G with probability p,
independent of the other edges.

To study the concentration of x(G) for G ~ G(n,p), we use Doob’s martingale for graphs:

Definition 4 (Edge exposure martingale). Let f be a function on n-vertex graphs, set m = (Z)

and let e1, e, ..., ey be an arbitrary ordering of the edges of the complete graph on n vertices. For
G ~G(n,p) andi € {1,...,m}, let A; = 1¢..cqy, and define

X, 2E[f(G)| Ay, ..., Ay forte{0,...,m}.

In other words, X; is the expected value of f over all graphs H € G(n,p) that agree with G on
{e1,...,et}. According to this definition, our filtration exposes the edges of G sequentially. The
variable X is the goal function f (playing the role of Y in the definition of Doob’s martingale)
averaged over all possible “continuations” of this sequence.

For a graph G and a subset S of its vertices, the induced subgraph of G on S, denoted by G|g,
is the restriction of the graph to S: its vertex set is .S, and there is an edge between u,v € S iff
this edge exists in G. Similar to the edge exposure martingale, one can define the following:

Definition 5 (Vertex exposure martingale). Let f be a function on n-vertex graphs, m = n—1 and

V1,02, ...,y an arbitrary ordering of the vertices of the complete graph. For G ~ G(n,p), define
AN
X =E[f(G) | Glgu,, ..oieay) fort€{0,...,m}.
That is, in step ¢ we reveal all the edges between the vertex v; 1 and its predecessors {v1,...,v;}.

Note that in both of the above defined martingales, Xy = Ef(G), whereas the X,, = f(G).
Theorem 3 (Shamir, Spencer '87). For any n,p, if G ~ G(n,p) then

P (|x(G) — E[x(G)]| > \Wn) < 2e7/2
Proof. Let (X;) be the vertex exposure martingale. Crucially, |X; — X;—1| < 1 for all ¢, since:

e Fix some ¢, and note that X;_; is an average of graphs H that agree with G on {vy,...,v:}.
We can therefore write:

Xt_l = E [f(G) ’ G’{U17--~7Ut}] = E [E [f<G) ‘ G{U17--~7vt+1}] ‘ G‘{v1,-~-7vt}] :

e Let H; and Hs be two possible such subgraphs on {vi,...,v;4+1}. Then we can map every
extension of H; to the same extension of Hy into a graph on n vertices (via a measure
preserving map), and the only difference between the resulting graphs would be the edges
between v;41 and {v1,...,v:} (affecting at most 1 color). Therefore,

‘]E [f(G) | G|{U1,...,vt+1} = Hl] -E [f(G) | G|{’U1,...,Ut+1} = HQH <1.

e As this holds for any Hi, Hy, we deduce that X;_; is a weighted mean of values, whose
pairwise differences are all at most 1. Thus, the distance of the mean X; 1 is also at most 1

from each of these values. In particular, this holds for H = G|y, . realizing X;.

'7’Ut+1}7

The result now follows directly from Hoeffding’s inequality. |



