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The Hoeffding-Azuma concentration inequality

Theorem 1 (Hoeffding ‘63). Let (Xt) be a martingale with respect to (Ft), and let c1, c2, . . . be
real numbers such that |Xt −Xt−1| ≤ ct for all t. Then for any a > 0,

P(|Xn −X0| ≥ a) ≤ 2 exp
(
− a2

2
∑n

i=1 c2
i

)
.

Proof. We will show a slightly stronger version of the above theorem: Instead of requiring that
(Xt) is a martingale, we will assume that

E[Xt | Xt−1] = Xt−1 for all t . (0.1)

Let Yt
4= Xt −Xt−1. By the above assumptions E[Yt | Xt−1] = 0 and |Yt| ≤ ct for all t.

The following simple claim says that, if Z is a r.v. bounded by 1 and with mean 0, then the
expected value of exp(λZ) is maximized when splitting the mass equally between ±1.

Claim 2. Let Z be a random variable satisfying |Z| ≤ 1 and EZ = 0. Then

E[eλZ ] ≤ coshλ ≤ eλ2/2 for any λ ∈ R .

Proof of claim. As the function g(x) = eλx is convex, the following holds for any x ∈ [−1, 1]:

eλx ≤ 1− x

2
e−λ +

1 + x

2
e−λ = coshλ + x sinhλ ,

and therefore
E[eλZ ] ≤ coshλ + (EZ) sinhλ = coshλ .

The proof now follows from the fact that

coshλ =
∞∑

k=0

λ2k

(2k)!
≤

∞∑

k=0

λ2k

2kk!
= eλ2/2 . ¥



Applying the above claim to Yt/ct given Xt−1 (and then re-scaling by ct), we now get

E
[
eλYi | Xt−1

]
≤ e(λct)2/2 for all λ > 0 .

Let λ > 0 be specified later. Noticing that

E
[
eλ(Xn−X0)

]
= E

[
eλ(Xn−1−X0)eλYn

]
,

it follows that

E
[
eλ(Xn−X0) | Xn−1

]
= E

[
eλ(Xn−1−X0)eλYn | Xn−1

]
= eλ(Xn−1−X0)E

[
eλYn | Xn−1

]

≤ eλ(Xn−1−X0)e(λcn)2/2 .

Taking expectations,

E
[
eλ(Xn−X0)

]
≤ E

[
eλ(Xn−1−X0)

]
e(λcn)2/2 ,

and by iterating we deduce that

E
[
eλ(Xn−X0)

]
≤ exp

[
1
2λ2

n∑

i=1

c2
i

]
.

Applying Markov’s inequality gives

P(Xn −X0 ≥ a) = P
(
eλ(Xn−X0) ≥ eλa

)
≤ exp

[
− λa + 1

2λ2
n∑

i=1

c2
i

]
,

at which point a choice of λ = a/
∑n

i=1 c2
i concludes the proof (the bound on the event X0−Xn ≥ a

follows from a similar argument). ¥

Examples

1. Sums of i.i.d. variables

Consider Example 1 from the previous lesson: Y1, Y2, . . . are i.i.d. variables,

Y1 ∼
{

1 p

−1 q
4= 1− p

for some 1
2 ≤ p < 1 fixed, and Sn =

∑n
i=1 Yi.

• For p = 1
2 , applying Hoeffding’s inequality to the martingale Sn (together with a choice of

ct = 1 for all t) gives the well known Chernoff bound:

P (|Sn| ≥ a) ≤ 2 exp
(−a2/2n

)
.

• For p > 1
2 , setting µ = p − q, and then applying Hoeffding’s inequality to the martingale

Xn = Sn − nµ (together with a choice of ct = 1 + µ for all t) gives the bound:

P
(|Sn − nµ| ≥ a

√
n
) ≤ 2 exp

(−a2/2(1 + µ)
)

.
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Remark. Note that if N ∼ N (0, 1) has a standard normal distribution, then for a À 1 we have

P(N > a) =
1√
2π

∫ ∞

a
e−t2/sdt ≈ 1√

2πa
e−a2/2 .

That is, Hoeffding’s inequality implies that the tail of the martingale resembles that in a normal
distributed random variable, and the exponent in this large-deviation bound is optimal.

2. Doob’s martingale process

Let Y be a random variable on (Ω,F ,P) with EY 2 < ∞. Let (Xt) be a sequence of r.v.’s adapted
to a filtration (Ft) ⊂ F . The following sequence is Doob’s martingale process:

Yt
4= E[Y | Ft] .

To verify that this is a martingale, note that:

(i) Clearly E|Yt| < ∞ for all t, since the requirement EY 2 < ∞ implies that EY 2
t < ∞.

(ii) For all t we have

E [Yt+1 | Ft] = E [E[Y | Ft+1] | Ft] = E [Y | Ft] = Yt ,

where the first inequality is by definition and the second one is due to the fact that Ft ⊂ Ft+1.

To demonstrate how useful the above martingale can be, we need a few Graph Theoretic definitions.
Let G = (V, E) be a graph. That is, its vertex set is V (the vertices are unlabeled unless mentioned
otherwise), and its set of edges is E ⊂ (

V
2

)
(undirected unless mentioned otherwise).

Definition 1. An independent set of a graph G = (V,E) is a set of vertices S ⊂ V with no edges
between them: For all u, v ∈ S we have (u, v) /∈ E. The maximum cardinality of an independent
set of G is called the independence number of G, and denoted by α(G).

Finding the independence number of a graph is a formidable problem in Computer Science
(NP -hard to approximate even within a factor of |V |1−ε). Nevertheless, the graph property of
either having independent sets above a certain size, or not, is relatively intuitive. In that sense, the
following parameter is even more difficult to understand:

Definition 2. A legal coloring of a graph G = (V, E) using k colors is a mapping ϕ : V → {1, . . . , k}
that maps neighboring vertices to distinct colors:

ϕ(u) 6= ϕ(v) for any (u, v) ∈ E .

The smallest integer k that admits a (legal) k-coloring is called the chromatic number of G, and
denoted by χ(G).

Observe that a legal coloring of a graph G = (V, E) by k colors is equivalent to finding k

disjoint independent sets S1, . . . , Sk that cover all the vertices: V = ∪iSi (the set Si is simply
ϕ−1(i)). Clearly, if the vertices of a graph can be covered by k independent sets, then they can
also be covered by k disjoint independent sets, and so χ(G) is equivalent to the minimal number
of independent sets needed to cover all vertices of G.
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Definition 3. The Erdős-Rényi random graph model G(n, p) is defined as follows: G ∼ G(n, p)
has the vertex set {1, . . . , n}, and each edge (i, j) for i 6= j ∈ V belongs to G with probability p,
independent of the other edges.

To study the concentration of χ(G) for G ∼ G(n, p), we use Doob’s martingale for graphs:

Definition 4 (Edge exposure martingale). Let f be a function on n-vertex graphs, set m =
(
n
2

)

and let e1, e2, . . . , em be an arbitrary ordering of the edges of the complete graph on n vertices. For
G ∼ G(n, p) and i ∈ {1, . . . , m}, let Ai = 1{ei∈G}, and define

Xt
4= E [f(G) | A1, . . . , At] for t ∈ {0, . . . ,m} .

In other words, Xt is the expected value of f over all graphs H ∈ G(n, p) that agree with G on
{e1, . . . , et}. According to this definition, our filtration exposes the edges of G sequentially. The
variable Xt is the goal function f (playing the role of Y in the definition of Doob’s martingale)
averaged over all possible “continuations” of this sequence.

For a graph G and a subset S of its vertices, the induced subgraph of G on S, denoted by G|S ,
is the restriction of the graph to S: its vertex set is S, and there is an edge between u, v ∈ S iff
this edge exists in G. Similar to the edge exposure martingale, one can define the following:

Definition 5 (Vertex exposure martingale). Let f be a function on n-vertex graphs, m = n−1 and
v1, v2, . . . , vn an arbitrary ordering of the vertices of the complete graph. For G ∼ G(n, p), define

Xt
4= E

[
f(G) | G|{v1,...,vt+1}

]
for t ∈ {0, . . . ,m} .

That is, in step i we reveal all the edges between the vertex vi+1 and its predecessors {v1, . . . , vi}.
Note that in both of the above defined martingales, X0 = Ef(G), whereas the Xm = f(G).

Theorem 3 (Shamir, Spencer ’87). For any n, p, if G ∼ G(n, p) then

P
(|χ(G)− E[χ(G)]| > λ

√
n
)

< 2e−λ2/2 .

Proof. Let (Xt) be the vertex exposure martingale. Crucially, |Xt −Xt−1| ≤ 1 for all t, since:

• Fix some t, and note that Xt−1 is an average of graphs H that agree with G on {v1, . . . , vt}.
We can therefore write:

Xt−1 = E
[
f(G) | G|{v1,...,vt}

]
= E

[
E

[
f(G) | G{v1,...,vt+1}

] | G|{v1,...,vt}
]

.

• Let H1 and H2 be two possible such subgraphs on {v1, . . . , vt+1}. Then we can map every
extension of H1 to the same extension of H2 into a graph on n vertices (via a measure
preserving map), and the only difference between the resulting graphs would be the edges
between vt+1 and {v1, . . . , vt} (affecting at most 1 color). Therefore,

∣∣E [
f(G) | G|{v1,...,vt+1} = H1

]− E [
f(G) | G|{v1,...,vt+1} = H2

]∣∣ ≤ 1 .

• As this holds for any H1,H2, we deduce that Xt−1 is a weighted mean of values, whose
pairwise differences are all at most 1. Thus, the distance of the mean Xt−1 is also at most 1
from each of these values. In particular, this holds for H = G|{v1,...,vt+1}, realizing Xt.

The result now follows directly from Hoeffding’s inequality. ¥
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