University of Washington Math 523A Lectures 10 and 11

LECTURER: YUVAL PERES

May 1 and 4, 2009

1 reflection principle

we wish to compute the distribution of τ_1 where the simple random walk start from zero.

note that we have:

$$P_0(\tau_1 = k) = P_0(X_0 = -1, S_{k-1} = 0, X_k = 1) - P_0(X_0 = -1, S_{k-1} = 0, X_k = 1, \tau_1 < k)$$

= $\frac{1}{4}P(S_{k-1} = 0|S_1 = -1) - \frac{1}{4}P(\tau_1 < k, S_{k-1} = 0|S_1 = -1)$

In order to compute the later probability, we consider the reflected mapping:

$$\varphi: (X_1, X_2, \dots, X_{k-1}) \longmapsto (X_1, X_2, \dots, X_{\tau_1}, -X_{\tau_1+1}, \dots, -X_{k-1}) := (Y_1, \dots, Y_{k-1})$$

Note φ is a bijection and is identity if $\tau_1 \geq k$.

 φ map the event $\{X_1 = -1, \tau_1 < k, S_{k-1} = 0\}$ to $\{Y_1 = -1, \tau_1 < k, \widetilde{S}_{k-1} = 2\}$ which is $\{Y_1 = -1, \widetilde{S}_{k-1} = 2\}$.

Thus we have:

$$P_0(\tau_1 = k) = \frac{1}{4} P(S_{k-1} = 0 | S_1 = -1) - \frac{1}{4} P(\tau_1 < k, S_{k-1} = 0 | S_1 = -1)$$

$$= \frac{1}{4} P(S_{k-1} = 0 | S_1 = -1) - \frac{1}{4} P(S_{k-1} = 2 | S_1 = -1)$$

$$= \frac{1}{4} (\frac{1}{2})^{k-2} {\binom{k-2}{\frac{k-1}{2}}} - \frac{1}{4} (\frac{1}{2})^{k-2} {\binom{k-2}{\frac{k+1}{2}}}$$

which can be estimated using Stirling's Formula. Finally we get $P_0(\tau_1 = k) \sim \frac{C}{k^{\frac{3}{2}}}$. Corollary 1.1. For simply random walk start from zero, we have $E_0\tau_1 = \infty$.

$\mathbf{2}$ Probability for a Martingale to stay positive

Our next goal is to estimate the probability that a Martingale stay positive for k steps.

For simple random walk(Which is a Martingale), we have:

$$P_1(S_t > 0, t = 1, 2, ..., k)$$

$$= P_1(S_k > 0) - P_1(S_k > 0, \tau_0 < k)$$

$$= P_1(S_k > 0) - P_1(S_k < 0)$$

$$= P_1(S_k > 0) - P_1(S_k > 2)$$

$$= P_1(S_k = 1 \text{ or } 2)$$

$$= 2^{-k} \binom{k}{k/2} \sim \frac{1}{\sqrt{\pi k/2}}$$

Now we consider general Martingale $\{M_t\}_{t\geq 0}$ with $M_0 = 1$ and $M_t \geq 0$ for any t. We assume that:

- (i) $|M_{t+1}| \leq D|M_t|$ for some $D \geq 1$ when $M_t \neq 0$. (this can be weakened.)
- (ii) $E((M_{t+1} M_t)^2 | F_t) \ge \sigma^2 > 0$ for any t when $M_t \ne 0$.

The example of simple random walk may suggest the probability that M_t stay positive for k steps is of order $k^{1/2}$. In fact this is true:

Theorem 2.1. Under previous assumption, we have $P(M_t > 0, t = 1, ..., k) \leq \frac{C(D, \sigma)}{\sqrt{k}}$ where $C(D,\sigma)$ is a constant related to D and σ .

To prove the theorem we let $\tau = \tau_{\{0,[h,\infty]\}} \wedge k = \min\{t : M_t = 0 \text{ or } M_t \ge h\} \wedge k.$ By Markov inequality and optional stopping we have $hP(M_{\tau} \ge h) \le EM_{\tau} = 1$. **Claim**: If $Y_t := M_t^2 - \sigma^2 t$ then $Y_{t \wedge \tau}$ is a submartingale. To see why this is true, observe that:

$$E(M_{t+1}^2 - M_t^2 | F_t)$$

= $E((M_{t+1} - M_t + M_t)^2 - M_t^2 | F_t)$
= $E(M_{t+1} - M_t)^2 | F_t) + E(2(M_{t+1} - M_t)M_t | F_t)$

Note that the second term is 0 since M_t is a martingale so we have $E(Y_{t+1}-Y_t|F_t) \ge C_{t+1}$ 0 on $\{M_t \neq 0\}$. Thus $Y_{t \wedge \tau}$ is a submartingale.

Note τ is integrable so applying optional stopping we have $1 = Y_0 \leq EY_{\tau} = EM_{\tau}^2 - \sigma^2 E\tau$.

Moreover, by assumption (i) we have:

$$EM_{\tau}^{2} = EM_{\tau}^{2}1_{\{M_{\tau} \ge h\}} + EM_{\tau}^{2}1_{\{M_{\tau} = 0\}}$$

$$= EM_{\tau}^{2}1_{\{M_{\tau} \ge h\}}$$

$$\leq EDhM_{\tau}1_{\{M_{\tau} \ge h\}}$$

$$\leq Dh$$

so $1 \leq Dh - \sigma^2 E \tau$ which imply $E \tau \leq \frac{Dh}{\sigma^2}$. Thus:

$$P(\tau > k) \le \frac{E\tau}{k} \le \frac{Dh}{\sigma^2 k}$$

Remark: This is the only place that we apply assumption (i), so assumption (i) can be weakened as $(iii) : EM_{\tau}^2 \leq Dh$. This turns out to be helpful when we consider the example in the following section.

To sum up, we have

$$P(M_t > 0, t = 1, ..., k) \le P(M_\tau \ge h) + P(\tau > k) \le \frac{1}{h} + \frac{Dh}{k\sigma^2}$$

To get the optimal upper bound we minimize the right term of the last inequality over h > 0 by taking $h = \sqrt{\frac{k\sigma^2}{D}}$. Then we have $P(M_t > 0, t = 1, ..., k) \leq \frac{2\sqrt{D}}{\sigma\sqrt{k}}$.

3 Application: Percolation on *b*-ary tree

Consider the bond percolation on *b*-ary tree with parameter p = 1/b. Let C(root) be all vertices that can be reached from the root by open path. we will estimate $P(|C(root)| \ge k)$.

Consider the exploration process:

At each time t we have 3 types of vertexes:

- (i) A_t : active vertexes.
- (ii) N_t : neutral vertexes.
- (iii) E_t : explored vertexes.

At the beginning, i.e. t = 0, we start with a single active vertex, the root, $A_0 = \{root\}$, all other vertices are neutral, and E_0 is empty.

At time t, If A_{t-1} is empty then $(A_t, N_t, E_t) = (A_{t-1}, N_{t-1}, E_{t-1})$. If A_{t-1} is not empty, fix an ordering of A_{t-1} and pick the front vertex in A_{t-1} , call it w_t . Then:

$$A_{t} = A_{t-1} \cup \{v \in N_{t-1} : edge \ w_{t}v \ is \ open\} - \{w_{t}\}$$
$$E_{t} = E_{t-1} \cup \{w_{t}\}$$
$$N_{t} = N_{t-1} - \{v \in N_{t-1} : edge \ w_{t}v \ is \ open\}$$

In this process,

$$E(|A_t||F_{t-1}) = \begin{cases} |A_{t-1}|, & \text{if } A_{t-1} = \emptyset\\ |A_{t-1}| + pb - 1, & \text{if } not \end{cases}$$

In particular, $|A_t|$ is a martingale when p = 1/b. (If $p \neq 1/b$ we may modify $|A_t|$ a little to get a martingale so that the same method can still apply.)

Let $\tau := min\{t : |A_t| = 0\}$, $(\tau = \infty$ if this set is empty.) we have $E_{\tau} = \mathcal{C}(root)$. So:

$$P(|\mathcal{C}(root)| \ge k) = P(\tau \ge k) \le \frac{2\sqrt{D}}{\sigma\sqrt{k}}$$

So it remains to estimate σ and D in exploration process.

Note that

$$E((|A_{t+1}| - |A_t|)^2 | F_t) = bp(1-p) \ge 1/2$$

since this is just the variance of a binomial random variable. Thus we may take $\sigma = \sqrt{1/2}$.

Note that if we apply assumption (i) in the main theorem, the trivial bound of D we can get is b, which is always very big in real applications. So we try to apply assumption (iii) to get estimate of D.

Note that at time τA_t is obtained from the previous step plus a random variable Z distributed as a binomial random variable B(b, p). Thus we have

$$A_{\tau} 1_{\{A_{\tau} \ge h\}} \le (h+Z) 1_{\{A_{\tau} \ge h\}}$$

. Since Z and $\{A_\tau \geq h\}$ are independent, we have

$$EA_{\tau}^{2}1_{\{A_{\tau} \ge h\}} \leq h^{2}P(A_{\tau} \ge h) + 2hEZ1_{\{A_{\tau} \ge h\}} + EZ^{2}1_{\{A_{\tau} \ge h\}}$$
$$\leq h + 2 + 2/h$$
$$\leq 2h.$$

For $h \geq 3$.

•

So we may take D = 2 and obtain

$$P(|\mathcal{C}(root)| \ge k) \le \frac{2\sqrt{D}}{\sigma\sqrt{k}} \le \frac{4}{\sqrt{k}}$$

The exploration process can also be applied on percolation on d-regular graph or graph with maximal degree less than d.