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1 reflection principle

we wish to compute the distribution of 7 where the simple random walk start from
zZero.

note that we have:

Py(mm=k) = P(Xo=-1,5%_1=0,X,=1)— Py (Xo=—-1,5—1=0, X =1,71 < k)
= TP(Sia =081 = —1) — 1P(n <k, Sy = 0] = 1)
In order to compute the later probability, we consider the reflected mapping:
o (X1, Xoy ooy Xpo1) — (X1, Xoy oo, Xy =X 41y ooy, = X1 = (Y1, 0, Yi1)

Note ¢ is a bijection and is identity if 7 > k.
¢ map the event {X; = —1,71 < k,Sk—1 = 0} to {Y1 = —1,71 < k,Sp_q = 2}
which is {Y; = —1, Sj_1 = 2}.

Thus we have:

1 1
Py =k) = ZP(Sk_l =0[S1=-1)— ZP(Tl <k,Sk—1=0]|S; =-1)
1 1
= TP(S =081 = 1)~ [P(Si1 =281 = 1)

= 1% k=1 )~ 4\5 k+1
472 =/ 42 =
which can be estimated using Stirling’s Formula. Finally we get Py(r; = k) ~ <.

k2
Corollary 1.1. For simply random walk start from zero, we have Egm = oo.



2 Probability for a Martingale to stay positive

Our next goal is to estimate the probability that a Martingale stay positive for k steps.

For simple random walk(Which is a Martingale), we have:

Pl(St >0,t=1,2, .., k‘)

= Pi(S;>0)— Pi(Sk >0,70 <k)
= Pi(Sk>0)— Pi(Sk <0)

= Pi(S;>0)— P (Sk>2)

= P(Sp=1or2)

I
DO

_k< k ) 1
k/2 7k /2
Now we consider general Martingale {M;}+>o with My =1 and M; > 0 for any t¢.

We assume that:

(i) |Miy1| < D|My| for some D > 1 when M; # 0. (this can be weakened.)

(ii) B((Mgy1 — My)?|Fy) > 0% > 0 for any t when M; # 0.

The example of simple random walk may suggest the probability that M; stay

positive for k steps is of order k%/2. In fact this is true:

C(D,o)
N

Theorem 2.1. Under previous assumption, we have P(M; > 0,t = 1,...,k) <

where C(D, o) is a constant related to D and o.

To prove the theorem we let 7 = 7o 00y Ak = min{t : My = 0or My > h} A k.
By Markov inequality and optional stopping we have hP(M,; > h) < EM, = 1.
Claim: If Y; := Mt2 — 0%t then Yj,, is a submartingale.

To see why this is true, observe that:

E(M?, — M| Fy)
= E((Mys1— My + My)* — M} |Fy)
= E(My1 — My)?|Fy) + E(2(Myy1 — My) My|F)

Note that the second term is 0 since M, is a martingale so we have F (Y1 —Y;|F}) >
0 on {M; # 0}. Thus Yjr is a submartingale.



Note 7 is integrable so applying optional stopping we have 1 = Yy < FY, =
EM? — c%ET.

Moreover, by assumption (i) we have:

EM? EMZ1(a, >0y + EMZ Ly, —0)
= EMI1{,>n)
< EDhM;1py 5p

< Dh

so 1 < Dh — 02E7 which imply ET < 22 Thus:
g

Remark: This is the only place that we apply assumption (i), so assumption (i)
can be weakened as (4ii) : EM?2 < Dh. This turns out to be helpful when we consider
the example in the following section.

To sum up, we have

1 D
P(Mt>0,t:1,...,k‘)§P(MT2h)+P(T>k)§E+k7Z
g

To get the optimal upper bound we minimize the right term of the last inequality

over h > 0 by taking h = ’%Q. Then we have P(M; > 0,t =1,....k) < Z\/\g

3 Application: Percolation on b-ary tree

Consider the bond percolation on b-ary tree with parameter p = 1/b. Let C(root)
be all vertices that can be reached from the root by open path. we will estimate
P(|C(root)| > k).

Consider the exploration process:

At each time t we have 3 types of vertexes:
(i) Ay active vertexes.
(ii) Ng: neutral vertexes.

(iii) Ey: explored vertexes.



At the beginning, i.e. t = 0, we start with a single active vertex, the root, Ag =
{root}, all other vertices are neutral, and Fy is empty.
At time ¢, If Ay is empty then (A, Ny, Ey) = (Ap—1, Ny—1, Ep—1). If A;—1 is not

empty, fix an ordering of A;_; and pick the front vertex in A;_1, call it w;. Then:
A = A1 U{v € Ny_1 : edge wv is open} — {w;}
E, = Ey1 U{w}
Ny = Ni—1 — {v € Ny_; : edge wyv is open}
In this process,

|At—1’7 /ifAt—l - @
|At—1’ +pb - ]-a ,Lf not

E(|A||Fi-1) =

In particular, |4;| is a martingale when p = 1/b. (If p # 1/b we may modify |A;| a
little to get a martingale so that the same method can still apply.)
Let 7 := min{t : |A¢] = 0}, (7 = oo if this set is empty.) we have E; = C(root).

So:
<2\/5
= i

P(|C(root)| > k) = P(T > k)

So it remains to estimate o and D in exploration process.

Note that
E((|As1] — [Ad])?Fy) = bp(1 — p) > 1/2

since this is just the variance of a binomial random variable. Thus we may take
o=+/1/2.

Note that if we apply assumption (i) in the main theorem, the trivial bound of
D we can get is b, which is always very big in real applications. So we try to apply
assumption (iii) to get estimate of D.

Note that at time 7 A; is obtained from the previous step plus a random variable

Z distributed as a binomial random variable B(b,p). Thus we have

Arlia,>ny < (h+ Z2)1a, >



. Since Z and {A, > h} are independent, we have

EAZ1a 5y < B*P(Ar > h)+2hEZ1y sy + EZ%1 04 5py
< h+2+2/h
< 2h.
For h > 3.

So we may take D = 2 and obtain

2\/5<i
ovk ~ Vk

P(|C(root)| > k) <

The exploration process can also be applied on percolation on d-regular graph or

graph with maximal degree less than d.



