1 reflection principle

we wish to compute the distribution of τ_1 where the simple random walk start from zero.

note that we have:

$$P_0(\tau_1 = k) = P_0(X_0 = -1, S_{k-1} = 0, X_k = 1) - P_0(X_0 = -1, S_{k-1} = 0, X_k = 1, \tau_1 < k)$$

$$= \frac{1}{4}P(S_{k-1} = 0 | S_1 = -1) - \frac{1}{4}P(\tau_1 < k, S_{k-1} = 0 | S_1 = -1)$$

In order to compute the later probability, we consider the reflected mapping:

$$\varphi : (X_1, X_2, ..., X_{k-1}) \mapsto (X_1, X_2, ..., X_{\tau_1}, -X_{\tau_1+1}, ..., -X_{k-1} := (Y_1, ..., Y_{k-1})$$

Note φ is a bijection and is identity if $\tau_1 \geq k$.

φ map the event $\{X_1 = -1, \tau_1 < k, S_{k-1} = 0\}$ to $\{Y_1 = -1, \tau_1 < k, S_{k-1} = 2\}$
which is $\{Y_1 = -1, S_{k-1} = 2\}$.

Thus we have:

$$P_0(\tau_1 = k) = \frac{1}{4}P(S_{k-1} = 0 | S_1 = -1) - \frac{1}{4}P(\tau_1 < k, S_{k-1} = 0 | S_1 = -1)$$

$$= \frac{1}{4}P(S_{k-1} = 0 | S_1 = -1) - \frac{1}{4}P(S_{k-1} = 2 | S_1 = -1)$$

$$= \frac{1}{4} \left(\frac{1}{2}\right)^{k-2} \frac{k-2}{k-1} - \frac{1}{4} \left(\frac{1}{2}\right)^{k-2} \frac{k-2}{k+1}$$

which can be estimated using Stirling’s Formula. Finally we get $P_0(\tau_1 = k) \sim \frac{C}{k^{3/2}}$.

Corollary 1.1. For simply random walk start from zero, we have $E_0\tau_1 = \infty$.

2 Probability for a Martingale to stay positive

Our next goal is to estimate the probability that a Martingale stay positive for \(k \) steps.

For simple random walk (which is a Martingale), we have:

\[
P_1(S_t > 0, t = 1, 2, ..., k) = P_1(S_k > 0) - P_1(S_k < 0) = P_1(S_k > 0) - P_1(S_k < 0)
\]

\[
= P_1(S_k > 0) - P_1(S_k < 2)
\]

\[
= P_1(S_k = 1 \text{ or } 2)
\]

\[
= 2^{-k} \left(\frac{k}{k/2} \right) \sim \frac{1}{\sqrt{\pi k/2}}
\]

Now we consider general Martingale \(\{M_t\}_{t \geq 0} \) with \(M_0 = 1 \) and \(M_t \geq 0 \) for any \(t \).

We assume that:

\begin{enumerate}
 \item \(|M_{t+1}| \leq D|M_t| \) for some \(D \geq 1 \) when \(M_t \neq 0 \). (this can be weakened.)
 \item \(E((M_{t+1} - M_t)^2|F_t) \geq \sigma^2 > 0 \) for any \(t \) when \(M_t \neq 0 \).
\end{enumerate}

The example of simple random walk may suggest the probability that \(M_t \) stay positive for \(k \) steps is of order \(k^{1/2} \). In fact this is true:

Theorem 2.1. Under previous assumption, we have \(\Pr(M_t > 0, t = 1, ..., k) \leq \frac{C(D, \sigma)}{\sqrt{k}} \) where \(C(D, \sigma) \) is a constant related to \(D \) and \(\sigma \).

To prove the theorem we let \(\tau = \tau_{[0,\infty[} \wedge k \text{ and } k = \min \{ t : M_t = 0 \text{ or } M_t \geq h \} \wedge k \).

By Markov inequality and optional stopping we have \(h \Pr(M_\tau \geq h) \leq E M_\tau = 1 \).

Claim: If \(Y_t := M_t^2 - \sigma^2 t \) then \(Y_t \wedge \tau \) is a submartingale.

To see why this is true, observe that:

\[
E(M_{t+1}^2 - M_t^2 | F_t)
\]

\[
= E((M_{t+1} - M_t + M_t)^2 - M_t^2 | F_t)
\]

\[
= E(M_{t+1} - M_t)^2 | F_t) + E(2(M_{t+1} - M_t)M_t | F_t)
\]

Note that the second term is 0 since \(M_t \) is a martingale so we have \(E(Y_{t+1} - Y_t | F_t) \geq 0 \) on \(\{ M_t \neq 0 \} \). Thus \(Y_t \wedge \tau \) is a submartingale.
Note τ is integrable so applying optional stopping we have $1 = Y_0 \leq EY_{\tau} = EM^2_{\tau} - \sigma^2E\tau$.

Moreover, by assumption (i) we have:

$$EM^2_{\tau} = EM^2_{\tau}1_{\{M_{\tau} \geq h\}} + EM^2_{\tau}1_{\{M_{\tau} = 0\}}$$

$$= EM^2_{\tau}1_{\{M_{\tau} \geq h\}}$$

$$\leq EDhM_{\tau}1_{\{M_{\tau} \geq h\}}$$

$$\leq Dh$$

so $1 \leq Dh - \sigma^2E\tau$ which imply $E\tau \leq \frac{Dh}{\sigma^2}$. Thus:

$$P(\tau > k) \leq \frac{E\tau}{k} \leq \frac{Dh}{\sigma^2k}$$

Remark: This is the only place that we apply assumption (i), so assumption (i) can be weakened as (iii) : $EM^2_{\tau} \leq Dh$. This turns out to be helpful when we consider the example in the following section.

To sum up, we have

$$P(M_t > 0, t = 1, ..., k) \leq P(M_t \geq h) + P(\tau > k) \leq \frac{1}{h} + \frac{Dh}{k\sigma^2}$$

To get the optimal upper bound we minimize the right term of the last inequality over $h > 0$ by taking $h = \sqrt{\frac{k\sigma^2}{D}}$. Then we have $P(M_t > 0, t = 1, ..., k) \leq \frac{2\sqrt{D}}{\sigma\sqrt{k}}$.

3 Application: Percolation on b-ary tree

Consider the bond percolation on b-ary tree with parameter $p = 1/b$. Let $C(root)$ be all vertices that can be reached from the root by open path. we will estimate $P(|C(root)| \geq k)$.

Consider the exploration process:

At each time t we have 3 types of vertexes:

(i) A_t: active vertexes.

(ii) N_t: neutral vertexes.

(iii) E_t: explored vertexes.
At the beginning, i.e. \(t = 0 \), we start with a single active vertex, the root, \(A_0 = \{ \text{root} \} \), all other vertices are neutral, and \(E_0 \) is empty.

At time \(t \), If \(A_{t-1} \) is empty then \((A_t, N_t, E_t) = (A_{t-1}, N_{t-1}, E_{t-1})\). If \(A_{t-1} \) is not empty, fix an ordering of \(A_{t-1} \) and pick the front vertex in \(A_{t-1} \), call it \(w_t \). Then:

\[
A_t = A_{t-1} \cup \{ v \in N_{t-1} : \text{edge } w_t v \text{ is open} \} - \{ w_t \}
\]

\[
E_t = E_{t-1} \cup \{ w_t \}
\]

\[
N_t = N_{t-1} - \{ v \in N_{t-1} : \text{edge } w_t v \text{ is open} \}
\]

In this process,

\[
E(|A_t||F_{t-1}) = \begin{cases}
|A_{t-1}|, & \text{if } A_{t-1} = \emptyset \\
|A_{t-1}| + pb - 1, & \text{if } \text{not}
\end{cases}
\]

In particular, \(|A_t|\) is a martingale when \(p = 1/b \). (If \(p \neq 1/b \) we may modify \(|A_t|\) a little to get a martingale so that the same method can still apply.)

Let \(\tau := \min\{t : |A_t| = 0\} \), (\(\tau = \infty \) if this set is empty.) we have \(E_\tau = C(\text{root}) \).

So:

\[P(|C(\text{root})| \geq k) = P(\tau \geq k) \leq \frac{2\sqrt{D}}{\sigma \sqrt{k}}\]

So it remains to estimate \(\sigma \) and \(D \) in exploration process.

Note that

\[E((|A_{t+1}| - |A_t|)^2|F_t) = bp(1 - p) \geq 1/2\]

since this is just the variance of a binomial random variable. Thus we may take \(\sigma = \sqrt{1/2} \).

Note that if we apply assumption (i) in the main theorem, the trivial bound of \(D \) we can get is \(b \), which is always very big in real applications. So we try to apply assumption (iii) to get estimate of \(D \).

Note that at time \(\tau \) \(A_t \) is obtained from the previous step plus a random variable \(Z \) distributed as a binomial random variable \(B(b, p) \). Thus we have

\[A_\tau 1_{\{A_\tau \geq k\}} \leq (h + Z)1_{\{A_\tau \geq k\}}\]
Since Z and $\{A_r \geq h\}$ are independent, we have
\[
EA^2_r1_{\{A_r \geq h\}} \leq h^2 P(A_r \geq h) + 2hEZ1_{\{A_r \geq h\}} + EZ^21_{\{A_r \geq h\}} \\
\leq h + 2 + 2/h \\
\leq 2h.
\]

For $h \geq 3$.

So we may take $D = 2$ and obtain
\[
P(|C(root)| \geq k) \leq \frac{2\sqrt{D}}{\sigma \sqrt{k}} \leq \frac{4}{\sqrt{k}}
\]

The exploration process can also be applied on percolation on d-regular graph or graph with maximal degree less than d.