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Basic definitions

Let (Ω,F) be a measurable space. A filtration F0 ⊂ F1 ⊂ F2 . . . ⊂ F is an increasing sequences of
sub-σ-algebras of F . A sequence of random variables (Xt) is adapted to a filtration (Ft) if Xt is
Ft-measurable for all t.

Given a stochastic process, one can think of (Ft) as the “history so far”. In many cases, it will
be useful to consider the natural filtration generated by Xt, i.e., Ft = σ(X0, . . . , Xt) is the smallest
σ-algebra in which {Xi : i ≤ t} are measurable. In other cases, the stochastic process will include
some extra randomness beyond that which is observed in the variables Xi.

Throughout the course, we will use the fact that E[E[X|A]] = EX (the so-called “tower of
expectations” property). In particular, if we are conditioning on a sequence of random variables
and have

E [X | Y1, Y2, . . . , Yk] = f(Y1)

for some function f , then

E [X | Y1] = E [E [X | Y1, Y2, . . . , Yk] | Y1] = E [f(Y1) | Y1] = f(Y1) .

In general, whenever we have a sub-σ-algebra, F1 ⊂ F2, and have E [X | F2] = Y for some variable
Y ∈ F1, then

E [X | F1] = E [E [X | F2] | F1] = E [Y | F1] = Y .

We now move on to the definition of a martingale.

Definition 1. A sequence of random variables (Xt) adapted to a filtration (Ft) is a martingale
(with respect to (Ft)) if the following holds for all t:

(i) E|Xt| < ∞
(ii) E[Xt+1 | Ft] = Xt

If instead of condition (ii) we have E[Xt+1 | Ft] ≥ Xt for all t, we then say that (Xt) is a
submartingale with respect to (Ft).

If instead of condition (ii) we have E[Xt+1 | Ft] ≤ Xt for all t, we then say that (Xt) is a
supermartingale with respect to (Ft).



When Ft is the natural filtration generated by (Xt), the above condition (ii) can be rewritten
as E[Xt+1 | Xt, . . . , X1] = Xt.

The distinction between the terms submartingale and supermartingale is best remembered by
the following: in a supermartingale, the current variable Xt is an overestimate for the upcoming
Xt+1, whereas in a submartingale Xt is an underestimate for this value.

Examples

1. Sums of i.i.d. variables

Let Y1, Y2, . . . be i.i.d. variables with mean 0:

Yi ∼ Y1 , EY1 = 0 ,

and let

Ft = σ(Y1, . . . , Yt) , Sn =
n∑

i=1

Yi .

Clearly,
E[Sn+1 | Fn] = Sn + E[Yn+1 | Fn] = Sn + EYn+1 = Sn ,

where in the second inequality we used the fact that the Yi’s are independent.

Now, consider a slightly modified setting, where for some p > 0 fixed and q
4= 1− p,

Y1 ∼
{

1 p ,

−1 q .

In this case, setting µ = EY1 = p− q we have that Xn = Sn − nµ is martingale, since

E[Sn+1 | Fn] = Sn + µ ,

and so
E[Xn+1 | Fn] = Sn + µ− (n + 1)µ = Xn .

Remark. As an exercise, show that if EY1 = 0 and EY 2
1 = σ2 < ∞, then S2

n is a submartingale.

2. The “double or nothing” martingale

A casino runs a game in the form of independent trials Yi, where Yi ∈ {±1} with probability 1
2

each, and the payoff (whenever Yi = 1) is $1 for each $1 wagered. Note that by the previous
example,

∑
Yi is a martingale. We will later see that if

∑
Yi was instead a supermartingale, then

no gambling strategy can “beat the house”; meanwhile, however, the sequence Yi represents fair
coin tosses, and we consider the following gambling scheme:

• Gary the gambler sets $1 as the initial bet.
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• If he loses, Gary doubles the existing bet.

• Upon winning, Gary leaves the game (equivalently, he wagers $0 in each subsequent round).

Let τ denote the first round in which Gary wins:

τ
4= min{t : Yt = 1} .

If we let Xt denote the total earnings (positive or negative) of Gary after playing t rounds (i.e., at
the beginning of round t + 1), the following holds:

X0 = 0 ,

If t > τ then Xt+1 = Xt (no bet), and otherwise:

Xt+1 = Xt + Yt2t ∼
{

Xt − 2t 1
2

Xt + 2t 1
2

.

Indeed, by definition (Xt) is a martingale with respect to the natural filtration it defines:

E[Xt+1 | Ft] = Xt .

The advantage in this gambling strategy is obvious: τ is a geometric random variable Geo(1
2), and

so we are guaranteed to win: P(τ < ∞) = 1. Moreover, on the event that τ = k (k ≥ 1) we have

Xk+1 = 2k −
k−1∑

i=0

2i = 1 ,

hence, once we win a round, its gain will cover our entire cumulative loss up to that point, plus an
extra $1. That is to say, this method guarantees profit with probability 1.

The drawback is clear as well — if one uses this method, he or she must be prepared to suffer
a substantial cumulative loss before reaching the round that would yield this mentioned profit.
Indeed, on the event that τ = k (k ≥ 2) we have lost rounds 1, 2, . . . , k − 1, in which we wagered
1, 2, . . . , 2k−2 dollars resp., and so

Xk = −
k−2∑

i=0

2i = −(2k−1 − 1) ,

and so, since τ ∼ Geo(1
2), and if τ = 1 we immediately win $1,

EXτ =
1
2
−

∞∑

k=2

2−k(2k−1 − 1) = −∞ .

Remark. In the above example, clearly for any fixed m we have that EXm = X0 = 0. Compare
this to the random stopping time τ , where EXτ = −∞. In the future, we will learn to distinguish
between cases where one can consider a random stopping time for the martingale such that it would
still maintain its properties.
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3. Branching processes

Let X
(t)
i be i.i.d. random variables, X

(t)
i ∼ X for some X (a typical example one may consider is

when X ∼ Geo(p) for some 0 < p < 1). The branching process is the stochastic process describing
the evolution of a population, as follows:

Z0 = 1 , Zt+1 =
Zt∑

i=1

X
(t+1)
i .

That is, each of the elements from the previous round spawns new siblings independently according
to the same law (the law of X, or equivalently, of Z1). The key observation is that, on the event
Zt = k, we have

Zt+1 ∼
k∑

i=1

X
(t+1)
i ,

that is, Zt+1 is the sum of k independent copies of X. In particular, (Zt) is a Markov chain: the
distribution of Zt+1 is completely determined by the value of Zt (rather than the entire history Ft).

Let m
4= EX. By the above discussion,

E[Zt+1 | Zt] = mZt ,

and iterating we have that for any integer t ≥ 1,

EZt = mt .

Therefore, letting Wt
4= m−tZt we get

E[Wt+1 | Ft] = m−(t+1)(mZt) = Wt ,

and so (Wt) is a martingale. This is no surprise: Since each element spawns new elements with
expectation m, one anticipates that the population size should be roughly mk after k rounds.

The following martingale is less obvious. Let f : [0, 1] → R+ be the probability generating
function of X:

f(s) 4= E
[
sX

]
,

and let q be the smallest non-negative solution to the equation f(s) = s. It then follows that
Yt = qZt is a martingale, since, recalling that the distribution of Zt is determined by Zt−1,

E[Yt+1 | Ft] = E
[
q
∑Zt

i=1 X
(t+1)
i | Zt

]
=

Zt∏

i=1

E
[
qX

(t+1)
i

]
= (f(q))Zt = qZt = Yt ,

where in the second inequality we used the fact that the variables Xi are independent, and after
that we used the definitions of f(s) and q.

Remark. Though this will not be used in the present example, in the future we will see that q is in
fact the extinction probability for the branching process, that is:

q = P(Zt = 0 for some t) .

Remark. The martingale (Wt) is in fact a special case of the following: if P is the transition matrix
of a Markov chain (Xt), and g is a non-negative eigenfunction of P corresponding to an eigenvalue
λ, then Wt

4= λ−tg(Xt) is a martingale. In the example above, g(x) = x and Xt = Zt.
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