University of Washington Math 523A Lecture 1 MARTINGALES: DEFINITIONS AND EXAMPLES

LECTURER: EYAL LUBETZKY

March 30, 2009

Basic definitions

Let (Ω, \mathcal{F}) be a measurable space. A filtration $\mathcal{F}_0 \subset \mathcal{F}_1 \subset \mathcal{F}_2 \ldots \subset \mathcal{F}$ is an increasing sequences of sub- σ -algebras of \mathcal{F} . A sequence of random variables (X_t) is *adapted* to a filtration (\mathcal{F}_t) if X_t is \mathcal{F}_t -measurable for all t.

Given a stochastic process, one can think of (\mathcal{F}_t) as the "history so far". In many cases, it will be useful to consider the natural filtration generated by X_t , i.e., $\mathcal{F}_t = \sigma(X_0, \ldots, X_t)$ is the smallest σ -algebra in which $\{X_i : i \leq t\}$ are measurable. In other cases, the stochastic process will include some extra randomness beyond that which is observed in the variables X_i .

Throughout the course, we will use the fact that $\mathbb{E}[\mathbb{E}[X|A]] = \mathbb{E}X$ (the so-called "tower of expectations" property). In particular, if we are conditioning on a sequence of random variables and have

$$\mathbb{E}\left[X \mid Y_1, Y_2, \dots, Y_k\right] = f(Y_1)$$

for some function f, then

$$\mathbb{E}[X | Y_1] = \mathbb{E}[\mathbb{E}[X | Y_1, Y_2, \dots, Y_k] | Y_1] = \mathbb{E}[f(Y_1) | Y_1] = f(Y_1)$$

In general, whenever we have a sub- σ -algebra, $\mathcal{F}_1 \subset \mathcal{F}_2$, and have $\mathbb{E}[X \mid \mathcal{F}_2] = Y$ for some variable $Y \in \mathcal{F}_1$, then

$$\mathbb{E}[X \mid \mathcal{F}_1] = \mathbb{E}[\mathbb{E}[X \mid \mathcal{F}_2] \mid \mathcal{F}_1] = \mathbb{E}[Y \mid \mathcal{F}_1] = Y.$$

We now move on to the definition of a martingale.

Definition 1. A sequence of random variables (X_t) adapted to a filtration (\mathcal{F}_t) is a martingale (with respect to (\mathcal{F}_t)) if the following holds for all t:

- (i) $\mathbb{E}|X_t| < \infty$
- (*ii*) $\mathbb{E}[X_{t+1} \mid \mathcal{F}_t] = X_t$

If instead of condition (ii) we have $\mathbb{E}[X_{t+1} \mid \mathcal{F}_t] \geq X_t$ for all t, we then say that (X_t) is a submartingale with respect to (\mathcal{F}_t) .

If instead of condition (ii) we have $\mathbb{E}[X_{t+1} \mid \mathcal{F}_t] \leq X_t$ for all t, we then say that (X_t) is a supermartingale with respect to (\mathcal{F}_t) .

When \mathcal{F}_t is the natural filtration generated by (X_t) , the above condition (ii) can be rewritten as $\mathbb{E}[X_{t+1} \mid X_t, \ldots, X_1] = X_t$.

The distinction between the terms submartingale and supermartingale is best remembered by the following: in a supermartingale, the current variable X_t is an overestimate for the upcoming X_{t+1} , whereas in a submartingale X_t is an underestimate for this value.

Examples

1. Sums of i.i.d. variables

Let Y_1, Y_2, \ldots be i.i.d. variables with mean 0:

$$Y_i \sim Y_1$$
 , $\mathbb{E}Y_1 = 0$,

and let

$$\mathcal{F}_t = \sigma(Y_1, \dots, Y_t) \quad , \quad S_n = \sum_{i=1}^n Y_i \; .$$

Clearly,

$$\mathbb{E}[S_{n+1} \mid \mathcal{F}_n] = S_n + \mathbb{E}[Y_{n+1} \mid \mathcal{F}_n] = S_n + \mathbb{E}Y_{n+1} = S_n$$

where in the second inequality we used the fact that the Y_i 's are independent.

Now, consider a slightly modified setting, where for some p > 0 fixed and $q \stackrel{\triangle}{=} 1 - p$,

$$Y_1 \sim \left\{ \begin{array}{rr} 1 & p \\ -1 & q \end{array} \right.$$

In this case, setting $\mu = \mathbb{E}Y_1 = p - q$ we have that $X_n = S_n - n\mu$ is martingale, since

$$\mathbb{E}[S_{n+1} \mid \mathcal{F}_n] = S_n + \mu ,$$

and so

$$\mathbb{E}[X_{n+1} \mid \mathcal{F}_n] = S_n + \mu - (n+1)\mu = X_n .$$

Remark. As an exercise, show that if $\mathbb{E}Y_1 = 0$ and $\mathbb{E}Y_1^2 = \sigma^2 < \infty$, then S_n^2 is a submartingale.

2. The "double or nothing" martingale

A casino runs a game in the form of independent trials Y_i , where $Y_i \in \{\pm 1\}$ with probability $\frac{1}{2}$ each, and the payoff (whenever $Y_i = 1$) is \$1 for each \$1 wagered. Note that by the previous example, $\sum Y_i$ is a martingale. We will later see that if $\sum Y_i$ was instead a supermartingale, then no gambling strategy can "beat the house"; meanwhile, however, the sequence Y_i represents fair coin tosses, and we consider the following gambling scheme:

• Gary the gambler sets \$1 as the initial bet.

- If he loses, Gary doubles the existing bet.
- Upon winning, Gary leaves the game (equivalently, he wagers \$0 in each subsequent round).

Let τ denote the first round in which Gary wins:

$$\tau \stackrel{\triangle}{=} \min\{t : Y_t = 1\} \ .$$

If we let X_t denote the total earnings (positive or negative) of Gary after playing t rounds (i.e., at the beginning of round t + 1), the following holds:

$$X_{0} = 0 ,$$

If $t > \tau$ then $X_{t+1} = X_{t}$ (no bet), and otherwise:
$$X_{t+1} = X_{t} + Y_{t}2^{t} \sim \begin{cases} X_{t} - 2^{t} & \frac{1}{2} \\ X_{t} + 2^{t} & \frac{1}{2} \end{cases} .$$

Indeed, by definition (X_t) is a martingale with respect to the natural filtration it defines:

$$\mathbb{E}[X_{t+1} \mid \mathcal{F}_t] = X_t \; .$$

The advantage in this gambling strategy is obvious: τ is a geometric random variable $\operatorname{Geo}(\frac{1}{2})$, and so we are guaranteed to win: $\mathbb{P}(\tau < \infty) = 1$. Moreover, on the event that $\tau = k$ $(k \ge 1)$ we have

$$X_{k+1} = 2^k - \sum_{i=0}^{k-1} 2^i = 1$$
,

hence, once we win a round, its gain will cover our entire cumulative loss up to that point, plus an extra \$1. That is to say, this method guarantees profit with probability 1.

The drawback is clear as well — if one uses this method, he or she must be prepared to suffer a substantial cumulative loss before reaching the round that would yield this mentioned profit. Indeed, on the event that $\tau = k$ ($k \ge 2$) we have lost rounds $1, 2, \ldots, k-1$, in which we wagered $1, 2, \ldots, 2^{k-2}$ dollars resp., and so

$$X_k = -\sum_{i=0}^{k-2} 2^i = -(2^{k-1} - 1) ,$$

and so, since $\tau \sim \text{Geo}(\frac{1}{2})$, and if $\tau = 1$ we immediately win \$1,

$$\mathbb{E}X_{\tau} = \frac{1}{2} - \sum_{k=2}^{\infty} 2^{-k} (2^{k-1} - 1) = -\infty .$$

Remark. In the above example, clearly for any fixed m we have that $\mathbb{E}X_m = X_0 = 0$. Compare this to the random stopping time τ , where $\mathbb{E}X_{\tau} = -\infty$. In the future, we will learn to distinguish between cases where one can consider a random stopping time for the martingale such that it would still maintain its properties.

3. Branching processes

Let $X_i^{(t)}$ be i.i.d. random variables, $X_i^{(t)} \sim X$ for some X (a typical example one may consider is when $X \sim \text{Geo}(p)$ for some 0). The branching process is the stochastic process describingthe evolution of a population, as follows:

$$Z_0 = 1$$
, $Z_{t+1} = \sum_{i=1}^{Z_t} X_i^{(t+1)}$

That is, each of the elements from the previous round spawns new siblings independently according to the same law (the law of X, or equivalently, of Z_1). The key observation is that, on the event $Z_t = k$, we have

$$Z_{t+1} \sim \sum_{i=1}^k X_i^{(t+1)}$$
,

that is, Z_{t+1} is the sum of k independent copies of X. In particular, (Z_t) is a Markov chain: the distribution of Z_{t+1} is completely determined by the value of Z_t (rather than the entire history \mathcal{F}_t).

Let $m \stackrel{\triangle}{=} \mathbb{E}X$. By the above discussion,

$$\mathbb{E}[Z_{t+1} \mid Z_t] = mZ_t \; ,$$

and iterating we have that for any integer $t \ge 1$,

$$\mathbb{E}Z_t = m^t$$

Therefore, letting $W_t \stackrel{\triangle}{=} m^{-t} Z_t$ we get

$$\mathbb{E}[W_{t+1} \mid \mathcal{F}_t] = m^{-(t+1)}(mZ_t) = W_t ,$$

and so (W_t) is a martingale. This is no surprise: Since each element spawns new elements with expectation m, one anticipates that the population size should be roughly m^k after k rounds.

The following martingale is less obvious. Let $f : [0,1] \to \mathbb{R}^+$ be the probability generating function of X:

$$f(s) \stackrel{\scriptscriptstyle \Delta}{=} \mathbb{E}\left[s^X\right] \;,$$

and let q be the smallest non-negative solution to the equation f(s) = s. It then follows that $Y_t = q^{Z_t}$ is a martingale, since, recalling that the distribution of Z_t is determined by Z_{t-1} ,

$$\mathbb{E}[Y_{t+1} \mid \mathcal{F}_t] = \mathbb{E}\left[q^{\sum_{i=1}^{Z_t} X_i^{(t+1)}} \mid Z_t\right] = \prod_{i=1}^{Z_t} \mathbb{E}\left[q^{X_i^{(t+1)}}\right] = (f(q))^{Z_t} = q^{Z_t} = Y_t ,$$

where in the second inequality we used the fact that the variables X_i are independent, and after that we used the definitions of f(s) and q.

Remark. Though this will not be used in the present example, in the future we will see that q is in fact the extinction probability for the branching process, that is:

$$q = \mathbb{P}(Z_t = 0 \text{ for some } t)$$
.

Remark. The martingale (W_t) is in fact a special case of the following: if P is the transition matrix of a Markov chain (X_t) , and g is a non-negative eigenfunction of P corresponding to an eigenvalue λ , then $W_t \stackrel{\triangle}{=} \lambda^{-t} g(X_t)$ is a martingale. In the example above, g(x) = x and $X_t = Z_t$.